An Alternative Method for Evaluating the Determinant of a Square Matrix

A.O. Ajibade, A.M. Ibrahim, *A. Alkali and M.I. Yakubu
Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria
E-mail: olubadey2k@yahoo.com, adekubash@yahoo.com alkali_4real@yahoo.com, miyakubu@yahoo.com
*Corresponding Author E-Mail: adekubash@yahoo.com

Abstract

In [1] a strange property of the determinant of minors of a matrix was discussed. In this paper, we show that evaluation of the determinant of any square matrix can be obtained using this property.

Keywords: Matrix, determinant and entrywise

Introduction

Let M be the matrix of the minors of a square matrix A of order n. For every square submatrix of order k; $M_{k}=\left(M_{i j}\right)$ of M, the determinant of a square submatrix of order ($n-k$) of A is defined as
$\delta_{k}=\left|\left(a_{p q}\right)\right|, 1 \leq p, q \leq n ; \mathrm{p} \neq i, \mathrm{q} \neq j$
With this notion, the relationship
$\left|M_{i j}\right|=|A|^{k-1} \delta_{k}$
was proved in [1]. The result is trivially true for $k=1$ and it is also true for $n=k$.
A particular case of equation (1) where $k=2$ gave the equation $\left|M_{2}\right|=\delta_{2}|A|$, so that

$$
\begin{equation*}
|A|=\frac{1}{\delta_{2}}\left|M_{2}\right| \text { provided } \delta_{2} \neq 0 \tag{2}
\end{equation*}
$$

The expression in (2) provides an easy way of obtaining the determinant of A.

Evaluation of the determinant of 3×3 dimensional matrices

Given any 3×3 dimensional matrices, each $M_{i j}$ is a 2×2 matrix and δ_{2} is of order (3-2) which is a scalar quantity. δ_{2} is chosen arbitrarily so that $\delta_{2} \neq 0$ and $M_{i j}$ is calculated for the complementary row/column to the selected δ_{2}.

Let $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$, and we select $\delta_{2}=a_{31} \neq 0$ then $M_{2}=\left(\begin{array}{l}m_{12} m_{13} \\ m_{22}\end{array} m_{23}\right)$ so that

$$
\begin{aligned}
& \left|M_{2}\right|=\left|\begin{array}{ll}
m_{12} & m_{13} \\
m_{22} & m_{23}
\end{array}\right|=m_{12} m_{23}-m_{13} m_{22} \\
& \quad=\left(a_{21} a_{33}-a_{23} a_{31}\right)\left(a_{11} a_{32}-a_{12} a_{31}\right) \\
& \quad-\left(a_{21} a_{32}-a_{22} a_{31}\right)\left(a_{11} a_{33}-a_{13} a_{31}\right) \\
& =\left(a_{11} a_{21} a_{32} a_{33}+a_{12} a_{23} a_{31}^{2}+a_{13} a_{21} a_{31} a_{32}+a_{11} a_{22} a_{33} a_{31}\right) \\
& -\left(a_{12} a_{21} a_{31} a_{33}+a_{11} a_{23} a_{31} a_{32}+a_{11} a_{21} a_{32} a_{33}+a_{13} a_{22} a^{2}{ }_{31}\right) \\
& =a_{31}\left[\left(a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}\right)-\left(a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}+\right.\right. \\
& \left.\left.a_{13} a_{22} a_{31}\right)\right]
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|M_{2}\right|=a_{31}|A| \text { or }|A|=\frac{\left|M_{2}\right|}{a_{31}} \tag{3}
\end{equation*}
$$

If δ_{2} is replaced by a_{22} on the right hand side of equation (2) then

$$
M_{2}=\binom{a_{11} a_{22}-a_{12} a_{21} a_{12} a_{23}-a_{13} a_{22}}{a_{21} a_{32}-a_{22} a_{31} a_{22} a_{33}-a_{23} a_{32}}
$$

so that

$$
\left|M_{2}\right|=\left|\begin{array}{l}
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| \tag{4}\\
\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|
\end{array}\right|
$$

That is, each entry in M_{2} is the determinant of each adjacent 2×2 submatrices of A.

Evaluation of the determinant of $\boldsymbol{n} \times \boldsymbol{n}$ dimensional matrices

For a matrix of higher order, a sequence of every overlapping submatrices of order 3×3 evaluated by the determinant of adjacent 2×2 submatrices

$$
\begin{equation*}
\left(M_{2}^{*}\right)_{k} k=(n-1),(n-2) \ldots 1 \tag{5}
\end{equation*}
$$

and sequence of component divisors

$$
\begin{equation*}
\left(\delta_{2}\right)_{\mathrm{k}} k=(n-2),(n-3) \ldots 1 \tag{6}
\end{equation*}
$$

are obtained so that

$$
\left(M_{2}\right)_{k}=\cdot \frac{\left(M_{2}^{*}\right)_{k}}{\left(\delta_{2}\right)_{k}}, k=(n-2),(n-3) \ldots 1,
$$

where - - denotes division is done entrywise.
$\left(M_{2}\right)_{n-1}=\left(M_{2}^{*}\right)_{n-1}$
And $|A|=\left|\cdot \frac{\left(M_{2}^{*}\right)_{1}}{\left(\delta_{2}\right)_{1}}\right|$ provided $\left(\delta_{2}\right)_{1} \neq 0$ and has no zero component.
It should be noted that the division on the right hand side of equation (7) are done component wise. If $\left(\delta_{2}\right)_{k}$ is zero, row/column be interchanged to obtain nonzero $\left(\delta_{2}\right)_{k}$.

Sample Examples

(i). Given $A=\left(\begin{array}{c}123 \\ 4-56 \\ 789\end{array}\right),|A|$ is calculated as follows:

Take
$\left(\delta_{2}\right)_{1}=-5$ and $\left(M_{2}^{*}\right)_{2}=\left(\left.\begin{array}{ccc}\mid & 2 & ||c c| \\ 4 & 2 & 3 \\ 4 & -5 & 6\end{array} \right\rvert\,\right)$
So that
$\left|\left(M_{2}^{*}\right)_{2}\right|=\left|\begin{array}{cc}-13 & 27 \\ 67-93\end{array}\right|$ and $\left(M_{2}^{*}\right)_{1}=-600$
Hence $|A|=\cdot \frac{\left|\left(M_{2}^{*}\right)_{2}\right|}{\left(\delta_{2}\right)_{1}}=\frac{-600}{-5}=120$
(ii). Let $B=\left(\begin{array}{cccc}1 & 0 & 2 & 3 \\ 2 & 0 & 4 & 1 \\ -1 & 3 & 0 & 3 \\ 4 & 4 & 1 & 1\end{array}\right),|B|$ is also evaluated as follows:

If $\left(\delta_{2}\right)_{2}$ is selected as $\left|\begin{array}{ll}0 & 4 \\ 3 & 0\end{array}\right|$, it contain zero components hence the following interchanges are made col $<1,2>$ and $<3,4>$ so that

$$
B^{*}=\left(\begin{array}{cccc}
0 & 1 & 3 & 2 \\
0 & 2 & 1 & 4 \\
3 & - & 1 & 3
\end{array}\right)
$$

it is noted that $|B|=\left|B^{*}\right|$, now let $\left(\delta_{2}\right)_{2}=\left|\begin{array}{c}21 \\ -1\end{array}\right|$ then $\left(\delta_{2}\right)_{1}=7$

$$
\begin{aligned}
& \left(M_{2}^{*}\right)_{3}=\left(\begin{array}{ccc}
\left|\begin{array}{lll}
0 & 1 \\
0 & 2
\end{array}\right| & \left|\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right| & \mid l l \\
1 & 2 & 4
\end{array} \left\lvert\,,\left(\begin{array}{cc}
0 & 2 \\
3 & -1
\end{array}\left|\begin{array}{cc}
2 & 1 \\
-1 & 3
\end{array}\right|\left|\begin{array}{ll}
1 & 4 \\
3 & 0
\end{array}\right|+\left(\begin{array}{ccc}
0 & -5 & 10 \\
-6 & 7 & -12 \\
16 & -13 & 3
\end{array}\right)\right.\right.\right. \\
& \left|\left(M_{2}^{*}\right)_{3}\right|=\left|\begin{array}{ccc}
0-5 & 10 \\
-67-12 \\
16-13 & -1
\end{array}\right|=\left|\left(M_{2}\right)_{3}\right| \\
& \left|\left(M_{2}^{*}\right)_{2}\right|=\left|\begin{array}{cc}
-30 & -10 \\
-34 & -135
\end{array}\right| \text {, }
\end{aligned}
$$

and by dividing $\left|\left(M_{2}^{*}\right)_{2}\right|$ component wise by $\left(\delta_{2}\right)_{2}$ we obtained
$\left(M_{2}\right)_{2}=\binom{-15-10}{34-45}$
Therefore, $\left|\left(M_{2}^{*}\right)_{2}\right|=\left|\begin{array}{c}-15-10 \\ 34-45\end{array}\right|=1015$
Hence $\left(M_{2}^{*}\right)_{1}=1015$
And according to our formula,
$|B|=\cdot \frac{\left(M_{2}^{*}\right)_{1}}{\left(\delta_{2}\right)_{1}}$,
$=\frac{1015}{7}=145$
Hence, $\left|\begin{array}{cccc}1 & 0 & 2 & 3 \\ 2 & 0 & 4 & 1 \\ -1 & 3 & 0 & 3 \\ 4 & 4 & 1 & 1\end{array}\right|=145$

Remark

Manual evaluation of $n \times n$ matrices with $n \geq 5$ is very tedious but the method of successive reduction has reduced the rigour. The order of the matrix is successively reduced by evaluating the determinant of adjacent 2×2 submatrices until the determinant is obtained.

Reference

[1] Ajibade A. O., and Rashid M. A. (2007), A strange property of the determinant of minors, International Journal of Mathematical Education in Science and Technology, 38:6, 852 - 858.
[2] Kreyszig, E. (1999), Advanced Engineering Mathematics, $8^{\text {th }}$ edition, New York, John Wiley and Sons Inc., 341-350.

