An Alternative Method for Evaluating the Determinant of a Square Matrix

A.O. Ajibade, A.M. Ibrahim, *A. Alkali and M.I. Yakubu

Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria E-mail: olubadey2k@yahoo.com, adekubash@yahoo.com alkali_4real@yahoo.com, miyakubu@yahoo.com *Corresponding Author E-Mail: adekubash@yahoo.com

Abstract

In [1] a strange property of the determinant of minors of a matrix was discussed. In this paper, we show that evaluation of the determinant of any square matrix can be obtained using this property.

Keywords: Matrix, determinant and entrywise

Introduction

Let M be the matrix of the minors of a square matrix A of order n. For every square submatrix of order k; $M_k = (M_{ij})$ of M, the determinant of a square submatrix of order (n-k) of A is defined as

$$\delta_k = |(a_{pq})|, 1 \le p, q \le n; p \ne i, q \ne j$$

With this notion, the relationship $|M_{ij}| = |A|^{k-l} \delta_k$ (1)

was proved in [1]. The result is trivially true for k = 1 and it is also true for n = k. A particular case of equation (1) where k = 2 gave the equation $|M_2| = \delta_2 |A|$, so that

$$|A| = \frac{1}{\delta_2} |M_2| \text{ provided } \delta_2 \neq 0$$
 (2)

The expression in (2) provides an easy way of obtaining the determinant of A.

Evaluation of the determinant of 3×3 dimensional matrices

Given any 3 \times 3 dimensional matrices, each M_{ij} is a 2 \times 2 matrix and δ_2 is of order (3-2) which is a scalar quantity. δ_2 is chosen arbitrarily so that $\delta_2 \neq 0$ and M_{ij} is calculated for the complementary row/column to the selected δ_2 .

Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, and we select $\delta_2 = a_{31} \neq 0$ then $M_2 = \begin{pmatrix} m_{12} & m_{13} \\ m_{22} & m_{23} \end{pmatrix}$ so

$$\begin{split} |M_2| &= \left| \begin{matrix} m_{12} \ m_{13} \\ m_{22} \ m_{23} \end{matrix} \right| = m_{12} \, m_{23} - m_{13} \, m_{22} \\ &= (a_{21} \, a_{33} - a_{23} \, a_{31}) \, (a_{11} \, a_{32} - a_{12} \, a_{31}) \\ &- (a_{21} \, a_{32} - a_{22} \, a_{31}) \, (a_{11} \, a_{33} - a_{13} \, a_{31}) \\ &= (a_{11} \, a_{21} \, a_{32} \, a_{33} + \, a_{12} \, a_{23} \, a_{31}^2 + \, a_{13} \, a_{21} \, a_{31} \, a_{32} + \, a_{11} \, a_{22} \, a_{33} \, a_{31}) \\ &- (a_{12} \, a_{21} \, a_{31} \, a_{33} + \, a_{11} \, a_{23} \, a_{31} \, a_{32} + \, a_{11} \, a_{21} \, a_{32} \, a_{33} + \, a_{13} \, a_{22} \, a_{31}) \\ &= a_{31} \left[(a_{11} a_{22} a_{33} + \, a_{12} a_{23} a_{31} + \, a_{13} a_{21} a_{32}) - (a_{11} a_{23} a_{32} + \, a_{12} a_{21} a_{33} + \, a_{13} a_{22} a_{31}) \right] \end{split}$$

Hence

$$|M_2| = a_{31}|A| \text{ or } |A| = \frac{|M_2|}{a_{31}}$$
 (3)

If δ_2 is replaced by a_{22} on the right hand side of equation (2) then $M_2 = \begin{pmatrix} a_{11} & a_{22} - a_{12} & a_{21} & a_{12} & a_{23} & - & a_{13} & a_{22} \\ a_{21} & a_{32} & - & a_{22} & a_{31} & a_{22} & a_{33} & - & a_{23} & a_{32} \end{pmatrix}$

$$M_2 = \begin{pmatrix} a_{11} & a_{22} - a_{12} & a_{21} & a_{12} & a_{23} - a_{13} & a_{22} \\ a_{21} & a_{32} - a_{22} & a_{31} & a_{22} & a_{33} - a_{23} & a_{32} \end{pmatrix}$$

$$|M_2| = \begin{vmatrix} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \\ \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$
 (4)

That is, each entry in M_2 is the determinant of each adjacent 2 x 2 submatrices of A.

Evaluation of the determinant of $n \times n$ dimensional matrices

For a matrix of higher order, a sequence of every overlapping submatrices of order 3×3 evaluated by the determinant of adjacent 2×2 submatrices

$$(M_2^*)_k k = (n-1), (n-2)...1$$
 (5)

and sequence of component divisors

$$(\delta_2)_k k = (n-2), (n-3)...1$$
 (6)

are obtained so that

$$(M_2)_k = \frac{(M_2^*)_k}{(\delta_2)_k}, k = (n-2), (n-3)...1,$$

where \cdot – denotes division is done entrywise.

$$(M_2)_{n-1} = (M_2^*)_{n-1} (7)$$

And $|A| = |\cdot \frac{(M_2^*)_1}{(\delta_2)_1}|$ provided $(\delta_2)_1 \neq 0$ and has no zero component.

It should be noted that the division on the right hand side of equation (7) are done component wise. If $(\delta_2)_k$ is zero, row/column be interchanged to obtain nonzero $(\delta_2)_k$.

Sample Examples

(i). Given $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$, |A| is calculated as follows:

Take

$$(\delta_2)_1 = -5 \text{ and } (M_2^*)_2 = \begin{pmatrix} \begin{vmatrix} 12 \\ 4 - 5 \end{vmatrix} \begin{vmatrix} 23 \\ -56 \end{vmatrix} \\ \begin{vmatrix} 4 - 5 \\ 78 \end{vmatrix} \begin{vmatrix} -56 \\ 89 \end{vmatrix} \end{pmatrix}$$

So that

$$|(M_2^*)_2| = \begin{vmatrix} -13 & 27 \\ 67 & -93 \end{vmatrix}$$
 and $(M_2^*)_1 = -600$

Hence
$$|A| = \frac{|(M_2^*)_2|}{(\delta_2)_1} = \frac{-600}{-5} = 120$$

(ii). Let
$$B = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & 0 & 4 & 1 \\ -1 & 3 & 0 & 3 \\ 4 & 4 & 1 & 1 \end{pmatrix}$$
, $|B|$ is also evaluated as follows:

If $(\delta_2)_2$ is selected as $\begin{bmatrix} 0 & 4 \\ 3 & 0 \end{bmatrix}$, it contain zero components hence the following interchanges are made col <1, 2> and <3, 4> so that

$$B^* = \begin{pmatrix} 0 & 1 & 3 & 2 \\ 0 & 2 & 1 & 4 \\ 3 & -1 & 3 & 0 \\ 4 & 4 & 1 & 1 \end{pmatrix},$$

it is noted that $|B| = |B^*|$, now let $(\delta_2)_2 = \begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix}$ then $(\delta_2)_1 = 7$

$$(M_{2}^{*})_{3} = \begin{pmatrix} \begin{vmatrix} 0 & 1 \\ 0 & 2 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} & \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} \\ \begin{vmatrix} 0 & 2 \\ 3 & -1 \end{vmatrix} & \begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 4 \\ 3 & 0 \end{vmatrix} \\ \begin{vmatrix} 3 & -1 \\ 4 & 4 \end{vmatrix} & \begin{vmatrix} -1 & 3 \\ 4 & 1 \end{vmatrix} & \begin{vmatrix} 3 & 0 \\ 1 & 1 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} 0 - 5 & 10 \\ -6 & 7 - 12 \\ 16 & -13 & 3 \end{pmatrix}$$
$$|(M_{2}^{*})_{3}| = \begin{vmatrix} 0 - 5 & 10 \\ -6 & 7 - 12 \\ 16 & -13 & 3 \end{vmatrix} = |(M_{2})_{3}|$$
$$|(M_{2}^{*})_{2}| = \begin{vmatrix} -30 & -10 \\ -34 & -135 \end{vmatrix},$$

and by dividing $|(M_2^*)_2|$ component wise by $(\delta_2)_2$ we obtained

$$(M_2)_2 = \begin{pmatrix} -15 & -10 \\ 34 & -45 \end{pmatrix}$$

Therefore,
$$|(M_2^*)_2| = \begin{vmatrix} -15 & -10 \\ 34 & -45 \end{vmatrix} = 1015$$

Hence $(M_2^*)_1 = 1015$

And according to our formula,

$$|B| = \frac{(M_2^*)_1}{(\delta_2)_1},$$

= $\frac{1015}{7} = 145$

Hence,
$$\begin{vmatrix} 1 & 0 & 2 & 3 \\ 2 & 0 & 4 & 1 \\ -1 & 3 & 0 & 3 \\ 4 & 4 & 1 & 1 \end{vmatrix} = 145$$

Remark

Manual evaluation of $n \times n$ matrices with $n \ge 5$ is very tedious but the method of successive reduction has reduced the rigour. The order of the matrix is successively reduced by evaluating the determinant of adjacent 2 x 2 submatrices until the determinant is obtained.

Reference

- [1] Ajibade A. O., and Rashid M. A. (2007), A strange property of the determinant of minors, International Journal of Mathematical Education in Science and Technology, 38:6, 852 858.
- [2] Kreyszig, E. (1999), Advanced Engineering Mathematics, 8th edition, New York, John Wiley and Sons Inc., 341–350.