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1. Introduction

Let R be the set of real numbers. Denote |·| to be the euclidean vector norm on Rn,
‖·‖ is the norm of n × n matrix. In this work, we study the conditions of asymptotic
equivalence in the system of nonlinear ODEs

dy

dt
= A(t)y + f (t , y) (1)

to the linear system

dx

dt
= A(t)x (2)
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Definition 1.1. Systems (1) and (2) are asymptotically equivalent for t → ∞ if there
exists a one-to-one correspondence between their solutions x(t) and y(t) such that

lim
t→∞ |x(t) − y(t)| = 0

The question of asymptotic equivalence was addressed in the works of various au-
thors. The classic result in this direction is Levinson Theorem [8], which gives the
conditions of asymptotic equivalence to the system

dy

dt
= Ay + B(t)y (3)

and

dx

dt
= Ax (4)

It states that if all solutions of system (3) are bounded on semi-axes, and

∞∫
0

‖B(t)‖ dt <

∞, then systems (3) and (4) are asymptotically equivalent. For the time-dependent matrix
A(t), the similar results were obtained by Winter [12], in the case when all the solutions
of (4) are bounded and the following condition holds; namely

lim
t→∞ inf

t∫
0

sup [B(s)] ds > −∞

Later Yakubovich [13] studied the conditions of asymptotic equivalence of system
(1) and (2) in the case of constant matrix A(t) ≡ A but without imposing the boundness
condition on the solutions of system (2).

After the pioneering works mentioned above, the asymptotic equivalence was studied
by various authors for different classes of differential equations, including functional,
impulsive and stochastic systems [4,6,7,8, and 10].

We also mention the workAkhmet M.U, Tleubergenova M.A. and ZaferA. [1], where
the authors study the conditions of asymptotic equivalence of systems (3)-(4) in the case
of nonconstant matrix A(t). However, the imposed conditions are rather difficult to verify.
The present work generalizes the results of [13].

We study the conditions of asymptotic equivalence of systems (1) and (2) in the case
of exponential dichotomy of system (2).

Let X(t , s) be the matriciant of the system (2), i.e. the fundamental matrix, normalized
with the condition X(s, s) = I , where I is identity matrix and X(t) = X(t , 0).
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Definition 1.2. System (2) is called exponentially dichotomic on R if one can find two
complementing projectors P1 and P2, and also positive constants ν1, ν2, N1, N2 such that
the following inequalities hold:

∥∥X(t)P1X
−1(s)

∥∥ ≤ N1e
ν1(t−s) , t ≥ s (5)

and
∥∥X(t)P2X

−1(s)
∥∥ ≤ N2e

υ2(s−t) , s ≥ t (6)

The conditions of exponential dichotomy are well studied (see, e.g. Ateiwi, [2,3],
Daleckiy, Kreyn [5], and Mitropolskiy, Samoilenko, Kulik [9] ).

We shall now impose the following conditions:

C1) The matrixA(t) is defined, continuous and bounded onR, so thata := sup
t∈R

‖A(t)‖ <

∞.

C2) The vector-valued function f (t , y) is defined and continuous for t ≥ 0 , y ∈ Rn,
satisfies the condition |f (t , y1) − f (t , y2)| ≤ η(t) |y1 − y2| , for all t ≥ 0, y1, y2 ∈
Rn, and some nonnegative function η(t) defined for t ≥ 0.

C3) a1 :=
∞∫
0

η(t)dt < ∞.

C4) f (t , 0) = 0, for t ≥ 0.

2. Auxiliary results

In this section, we present the results used in further analysis.

Lemma 2.1. Under the condition C1, the matriciant X(t , s) of system (2) satisfies the
following inequality for arbitrary t , s ∈ R :

‖X(t , s)‖ ≤ ea|t−s| (7)

The proof of this Lemma follows from the integral representation

X(t , s) = I +
t∫
s

A(τ )X(τ , s)dτ ,

and Gronwall-Bellman inequality
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Lemma 2.2. Under the conditions C1− C4, there exists a positive constant a2, such that
any solution of system (2) satisfies the inequality

|y(t)| ≤ a2 |y(t0)| ea(t−t0), t ≥ t0. (8)

Proof. Clearly, the existence of any solution y(t) of system (2) for t ≥ t0 follows from
the conditions of the lemma. Such solution must satisfy the integral identity

y(t) = X(t , t0)y(t0) +
t∫
t0

X(t , τ )f (τ , y(τ ))dτ .

Therefore

|y(t)| ≤ ‖X(t , t0)‖ |y(t0)| +
t∫
t0

‖X(t , τ )‖ f (τ , y(τ ))dτ

Thus by conditions C2, C4 and Lemma 2.1, we obtain

|y(t)| ≤ ‖X(t , t0)‖ |y(t0)| +
t∫
t0

‖X(t , τ )‖ η(τ ) |y(τ )| dτ

≤ ea(t−t0) |y(t0)| +
t∫
t0

ea(t−τ )η(τ ) |y(τ )| dτ.

Now, multiplying the last inequality by e−a(t−t0), we get

|y(t)| e−a(t−t0) ≤ |y(t0)| +
t∫
t0

e−a(τ−t0)η(τ ) |y(τ )| dτ.

Applying the Gronwall-Bellman inequality, we have

|y(t)| e−a(t−t0) ≤ |y(t0)| e
∫ t

t0
η(τ )dτ ≤ |y(t0)| ea1 ,

or

|y(t)| ≤ ea1 |y(t0)| ea(t−t0).

Note that the statement of Lemma 2.2 follows with a2 := ea1 . �

Denote X1(t , s) = X(t)P1(s)X−1(s), and X2(t , s) = X(t)P2(s)X−1(s).

Lemma 2.3. The matrices X(t , s), X1(t , s) and X2(t , s) satisfy the following relations:
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1) X(t , s) = X1(t , s) +X2(t , s).

2) Xi(t , τ ) = Xi(t , s)Xi(s, τ ), for all t , s, and τ.

3) Xi(t , τ ) = Xi(t , s)Xi(s, τ ); i = 1, 2.

Proof. The first statement follows from the definition of the matricesX1(t , s) and X2(t , s).
The equality X(t , s) = X(t)X−1(s) and mutually complementing property or the vectors
P1, P2, P1 + P2 = I .

To prove the second statement, we have

Xi(t , s)Xi(s, τ ) = X(t)PiX
−1(s)X(s)Pi(s)X−1(τ )

= X(t)P 2
i X−1(τ ) = Xi(t , τ ).

Finally, the third statement follows analogously. �

3. Main result

In this section, we prove the key result on the asymptotic equivalence of systems (1) and
(2).

Theorem 3.1. Assume that conditions C1, C2, and C4 are satisfied. Also, suppose that
system (2) is exponentially dichotomic on R.Additionally, If

a3 :=
∞∫
0

eatη(t)dt < ∞ (9)

then systems (1) and (2) are asymptotically equivalent for t → ∞.

Proof. Let y(t) be an arbitrary solution of system (1). Using the integral representation
and Lemma 2.3 we have, for t0 > 0,

y(t) = X(t , t0)y(t0) +
t∫
t0

X(t , τ )f (τ , y(τ ))dτ =

= X(t , t0)y(t0) +
t∫
t0

X1(t , τ )f (τ , y(τ ))dτ +
t∫
t0

X2(t , τ )f (τ , y(τ ))dτ

= X(t , t0)y(t0) +
t∫
t0

X1(t , τ )f (τ , y(τ ))dτ +
∞∫
t0

X2(t , τ )f (τ , y(τ ))dτ

−
∞∫
t0

X2(t , τ )f (τ , y(τ ))dτ
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= X(t , t0)

⎡
⎣y(t0) +

∞∫
t0

X2(t0, τ )f (τ , y(τ ))dτ

⎤
⎦ +

t∫
t0

X1(t , τ )f (τ , y(τ ))dτ

−
∞∫
t0

X2(t , τ )f (τ , y(τ ))dτ (10)

The absolute convergence of the improper integrals in (10) follows from the estimates
∞∫
t0

‖X2(t , τ )‖ |f (τ , y(τ ))| dτ ≤
∞∫
t0

N2e
−ν2(τ−t0)η(τ ) |y(τ )| dτ

≤ N2a2

∞∫
t0

e−ν2(τ−t0)η(τ )ea(τ−t0) |y(t0)| dτ

≤ N2a2 |y(t0)|
∞∫
t0

eaτη(τ )dτ < ∞

which hold due to (6), Lemma 2.2, and the conditions C2 and C4. Note that condition
(9) implies C3.

The solutions y(t) and x(t) of systems (1) and (2) are uniquely defined by their initial
conditions. Thus, for each solution y(t) of system (1) with initial condition y(t0) = y0,
we put into correspondence the solution x(t) with initial condition x(t0) = x0 given by

x(t0) = y(t0) +
∞∫
t0

X2(t0, τ )f (τ , y(τ ))dτ (11)

Let us show that the correspondence between solutions y(t) and x(t) given by (11) is
one-to-one under the proper choice of t0.

Denote x0 = x(t0) and y0 = y(t0). For every fixed t0 the set{
(t0, y0), y0 ∈ Rn

}
(12)

uniquely describes the set of solutions of (1) due to the existence and uniqueness theorems
for ODEs. Similary, the set {

(t0, x0), x0 ∈ Rn
}

(13)

uniquely describes the entire set of solutions of (2).
In our notation, the solution y(τ ) in (11) is y = y(τ , t0, y0). Additionally, denote

�(t0, y0) =
∞∫
t0

X2(t0, τ )f (τ , y(τ , t0, y0))dτ
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Then (11) has the form

x0 = y0 + �(t0, y0) (14)

Thus, in order to establish one-to-one correspondence between the solutions of (1) and
(2), it suffices to show that (14) gives one-to-one correspondence between the sets (12)
and (13) for some t0.

Thus, we need to establish that for fixed t0, and for every x0 ∈ Rn the equation (14)
can be uniquely solved for y0 ∈ Rn.

Rewrite equation (14) in the form y0 = x0 − �(t0, y0) and show that the map
x0 − �(t0, y0) is a contraction map in Rn for every x0 ∈ Rn and for some t0.

Indeed, for all y0 and y1 ∈ Rn, we have

|x0 − �(t0, y0) − x0 + �(t0, y1)| ≤ |�(t0, y1) − �(t0, y0)| (15)

≤
∞∫
t0

‖X2(t0, τ )‖ η(τ ) |y(τ , t0, y1) − y(τ , t0, y0)| dτ .

But

y(τ , t0, y1) = y1 +
τ∫
t0

A(s)y(s, t0, y1)ds +
τ∫
t0

f (s, y(s, t0, y1))ds,

and

y(τ , t0, y0) = y0 +
τ∫
t0

A(s)y(s, t0, y0)ds +
τ∫
t0

f (s, y(s, t0, y0))ds,

Subtracting the second equation from the first equation, we get

|y(τ , t0, y1) − y(τ , t0, y0)| ≤ |y1 − y0| + |
t∫
τ

a |y(s, t0, y1) − y(s, t0, y0)| ds

+
t∫
t0

η(s) |y(s, t0, y1)-y(s, t0, y0))| ds |

and thus, by Grownwall-Beilman Lemma, we have

|y(τ , t0, y1) − y(τ , t0, y0)| ≤ |y1 − y0| ea((τ−t0)+
∫ τ

t0
η(s)ds

.

Using condition C3, we get

|y(τ , t0, y1) − y(τ , t0, y0)| ≤ |y1 − y0| ea(τ−t0)+a1 . (16)
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Substituting (16) into (15), we get

|�(t0, y1) − �(t0, y0)| ≤
∞∫
t0

‖X2(t0, τ )‖ η(τ ) |y1 − y0| ea(τ−t0)+a1dτ

≤ N2e
a1

∞∫
t0

e−ν2(τ−t0)ea(τ−t0)η(τ ) |y1 − y0|

≤ N2e
a1

∞∫
t0

eaτη(τ ) |y1 − y0| . (17)

By Equation (9), we can choose t0 > 0 such that

N2e
a1

∞∫
t0

eaτη(τ ) < 1 (18)

Then from (17) and (18), it follows that x0 − �(t0, x0) is a contraction mapping in Rn,
thus (14) has a unique solution in Rn for certain t0 and for any x0 ∈ Rn. Therefore, the
correspondence between the solutions of systems (1) and (2) given by (11) is one-to-one.

To complete the proof of the theorem, it remains to prove (3) for the corresponding
solutions x(t) and y(t).

Since x(t) takes the form

x(t) = X(t , t0)x(t0),

and x(t0) is defined by (11); from (10), we have

|x(t) − y(t)| ≤
∣∣∣∣∣∣

t∫
t0

X1(t , τ )f (τ , y(τ ))dτ

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∞∫
t0

X2(t , τ )f (τ , y(τ ))dτ

∣∣∣∣∣∣ . (19)

Now, let us show that both integrals approach to zero for t → 0. By Equations (5)
and (8), we estimate the first integral as follows:
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t∫
t0

X1(t , τ )f (τ , y(τ )dτ ≤
t∫
t0

‖X1(t , τ )‖ η(τ ) |y(τ )| dτ

≤
t∫
t0

N1e
−ν1(t−τ )η(τ )a2 |y(t0)| ea(τ−t0)dτ

≤ N1a2 |y(t0)|
t∫
t0

e−ν1(t−τ )η(τ )eaτ dτ

= N1a2 |y(t0)|
⎡
⎢⎣

t
2∫
t0

e−ν1(t−τ )η(τ )eaτ dτ +
t∫
t
2

e−ν1(t−τ )η(τ )eaτ dτ

⎤
⎥⎦

≤ N1a2 |y(t0)|
⎡
⎢⎣e− t

2

∞∫
t0

η(τ )eaτ dτ +
t∫
t
2

η(τ )eaτ dτ

⎤
⎥⎦ .

By Equation (9), it is obvious that the right hand side of last inequality approaches 0 as
t → ∞.

To estimate the second integral in (19), we have

∣∣∣∣∣∣
∞∫
t

X2(t , τ )f (τ , y(τ ))dτ

∣∣∣∣∣∣ ≤
∞∫
t

‖X2(t , τ )‖ η(τ )a2e
a(τ−t0)dτ

≤ N2a2

∞∫
t

η(τ )eaτ dτ → 0, as t → ∞.

Thus lim
t→∞ |x(t) − y(t)| = 0, and the result follows. This completes the proof of the

theorem. �

Let us now consider the following example.

Example 3.2. Consider the following system of type (2) in R2 :

⎧⎪⎪⎨
⎪⎪⎩

dx1

dt
= −( tanh t)x1

dx2

dt
= x1 + ( tanh t)x2

⎫⎪⎪⎬
⎪⎪⎭

(20)
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Here the matrix A(t) has the form( − tanh t 0
1 tanh t

)

It is not difficult to see that system (20) is exponentially dichotomic on R.

The corresponding projectors are

P1 =
(

1 0
0 0

)
, P2 =

(
0 0
0 1

)

Clearly

∥∥∥∥sup
t∈R

A(t)

∥∥∥∥ ≤ √
3, Then, by Theorem 1, the following system

⎧⎪⎪⎨
⎪⎪⎩

dy1

dt
= −( tanh t)y1 + f1(t)( sin t)y2

dy2

dt
= y1 + ( tanh t)y2 + f2(t)( sin t)y1

⎫⎪⎪⎬
⎪⎪⎭

is asymptotically equivalent to system (1) if

∞∫
0

|fi(t)| e
√

3t dt < ∞, for i = 1, 2.

References

[1] Akhmet M.U, Tleubergenova M.A and Zafer A. Asymptotic equivalence of differ-
ential equations and asymptotically almost periodic solutions, Nonlinear Analysis:
Theory Methods and Applications, P. 67, 2007.

[2] Ateiwi A. M, On Dichotomy of linear systems of difference equations, Nonlinear
Oscillations, 3(4):435–441, 2000.

[3] Ateiwi A. M, A study of Dichotomy of linear systems of difference equations using
the quadratic forms, Journal of fractional calculus, 25:93–100, 2004.

[4] Choi S.K, Goo Y.H and Koo N.J. Asymptotic equivalence between two linear dif-
ferential systems and Differential Equations, 13:44–52, 1997.

[5] Daletskiy U.L and Kreun M.G. Stability of solutions of differential equations in
Banah spaces, Nauka. Moscow., 1970.

[6] Haddok J.R, Krisztin T.K and Wu J.H. Asymptotic equivalence of neutral and
infinite retarded differential equations, Nonlinear Anal., 14:369–377, 1990.

[7] Komashynaka I. V and Ateiwi A. M. On asymptotic equivalence of systems of
difference equations, First conference on mathematical sciences, zerqa private
university, April 18-20, Jordan, PP. 213–216, 2006.



Asymptotic Equivalence of Exponentially Dichotomic Systems 251

[8] Levinson N. The asymptotic nature of solutions of linear systems of differential
equations, Duke Math. Jour., 15:111–126, 1948.

[9] Mitropolskiy U.A, Samoilenko A.M and Kylik V.L. Investigation of dichotomy
of linear differential systems with help of Lyapunov’s functions, Naukova dumka.
Kiev, 1990.

[10] Samoilenko A.M and Perestyuk N.A. Impulsive equations. Word Scientific. Singa-
pore, 1995.

[11] Samoilenko A.M and Stanzhitskyi O.M. Qualitative and asymptotic analysis of
differential equations with random perturbations, Naukova Dumka. Kiev, 2009.

[12] Winter A. Linear variations of constants, Amer. Jour. Math., 68:185–213, 1946.

[13] Yakubovich V.A. On the asymptotic behavior of systems of differential equations,
Math. Sbornic., 28:217–240, 1951.



 




