Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 8, Number 3 (2012), pp. 263-273
© Research India Publications
http://www.ripublication.com/gjpam.htm

The Stress: Intensity Factorsfor Three Griffith-
cracks opened by Body Forcesin Stress-free | sotropic
Rectangle

Dharam Veer Singh', Harendra Singh?, P.S. Kushwaha®
and Shelendra Kumar?

'Department of Mathematics, Research Scholar,
. John's College, Agra-280002, Uttar Pradesh, India.
E-mail: ds99yadav@gmail.com
Z3Department of Mathematics, Hindustan College of Science & Technology,
Farah-281122, Mathura, Uttar Pradesh, India.
“Department of Mathematics, Sanjay | nstitute of Engineering & Management,
Chaumunha, Mathura-281406, Uttar Pradesh, India.
E-mail: skumar_maths@rediffmail.com

Abstract

The closed form expressions of stress-intensity factors and of crack shape
have been obtained by using finite Fourier sine and cosine transform along
with cross-linear superposition principle. A special case of point body Force
has been considered.
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Introduction
In the present paper we shall be discussing the analysis due to presence of three
interior Griffith-cracks. The cracks occupy the region y=0, 0<|{<b,c<|x<d in a
rectangle of dimensions 2a and 26 along X and Yy axis, respectively. The physical
problem is reduced to the following boundary conditions,
ox(@y)=0,(aYy)=0,0<y<d,
0,(%0)=0,(x5)=0,(x0)=0,0<x<a (1.1)-(1.5)
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Where symmetry of geometry has been used. The solution domain will be
[0,a]u[0,5]. The mixed-boundary conditions are given below.

u,(x0)=0,b<x<cd<x<a,

0,/(%0)=0,0<x<bc<x<d (1.6) - (1.7)

Where middle crack is of length 2b and two outer similar cracks are of lengths (d -
c).

We shall divide the physical quantities, stress and displacement component at a
point (X, Y) as

0 (% Y) =012 (% Y)+ 0" (X Y),U (X Y) =u® (% )+ U (X, Y) , ij=XY

The super scripts (b) and (e) correspond to body force and elasticity problem,
respectively. The shear stress developed by body forces at (a, ), (x,8), (X,0) are zero
and u)” (x,0)=0

Thus the boundary conditions (1.1) — (1.5) are reduced to,

O (@Y)=-0g (ay),o, (@y)=0, 0<y<s (1.8) - (1.9)

oy (%,6)=—-0)) (%.6),0% (X%6)=0,04(x0)=0, 0<x<a (1.10) - (1.12)

And mixed-boundary conditions,
u?(x0)=0, b<x<c, d<x<a;oy(x0)=-0(x0),0

<x<b, d<x<e, (1.13)-(1.14)
It is observed throughout; see Burniston [1],
uP(x,0)=0, 0<[<b, c<|¥<d, (1.15)
c, (X, 8)=0,(x, 8)=0,0<[x|<a
AY YA
x| L x
o .
% u,(x0=0, b<|y<c,d<|q<a |YS <
> o, (x,00=0,0<|x|<b —
< c,(x0=0, 0<|qd <a c< x| <d >
LG <0
,?x > < > < > < > x-axis .?X %
50 -d.0) (~c,00 (-b,0)] (b0 (c0) (d, 0) o
flﬁ' X
= ¢
o X
Y Y X
2a

o, (X,—8) =0, (X,—0)=0,0<X|<a

(FIGURE- 1. Geometry of Problem with Boundary Conditions.)
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Microcrack interaction with a main crack obtained by Rose [8]. Tanigawa and
Subra [9] developed Thermal stress analysis of a rectangular plate and its thermal
stress intensity factor for compressive stress field. Ken et al [3] analysed Stress
intensity factor doe to an edge crack in an anisotropic elastic solid. Evaluation of
crack tip fields and stress intensity factors in functionally graded elastic materials:
cracks parallel to elastic gradient investigated by Rousseau and Tippur [7]. Wang [10]
studied Fracture mechanics analysis models for functionally graded Materials with
arbitrarily distributed properties (modes II and III problems). Thermal stress intensity
factors for a normal crack in multilayered medium has found by Kadaoayler [5].
Recently, Rousseau et al [2] discussed Experimental Fracture Mechanics of
Functionally Graded Materials: An Overview of Optical Investigations.

In this present study, the rectangle is assumed in plane strain condition. The body
forces are symmetrical. The plan of the paper is as follows: In section-2 we will give
solution of body force problem and will reduce the problem to quadruple series
equation by solving elasticity problem see Sneddon [4]. The solution of above series
equation will be given in section 3 see Kushwaha [6]. The physical quantities of
interest will be given in section 4. The solution of Fredholm integral equation for
point body force will be given section 5. Discussion and Conclusion will be in section
6.

Solution of Problem

Body force Problem

The problem of body force is obtained by taking the finite Fourier sine & Cosine
transforms of equations of equilibrium in the presence of body forces (X,Y). Then
using the stress-strain relations, after taking Fourier transform of these, in the
transformed relations of equations of equilibrium. We will get two algebraic equations
in transform of Uy and uy. Then solving these equations for Uy and Uys. Thus, after

Fourier inversion, we get stress-components oy, oy, oy and displacement

components (uf”,u’)-

X 27y
U (0Y) = U2 (60042 U2 (4 ) cos(,) 2.1)
U 00Y) = U2 (0.9)+ 2 U (e, ) cos(@) (2.2)
(b) o ©
o (XY)= %{%ﬂ” 0,0+ > 0302 (¢t B) c0s(@t,X) cos(ﬂmy)} (2.3)
4ol (0,0) & &
oy (% ¥) = 5{%7(& 2.2 O (s B c05(@,X) cos(ﬂmy)} 2.4)
05 00Y) = 3 S 0l (e fy)sin(a ) sin(5,) (2.5)

u® (%, ) = %Z U (@, fr)sina,¥), UD (. y)%i U (@, B)sin(B,y) (2.62)
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o = L X W, + Yo, ], o = L[ X o, + YW, |, o = =L [ X w, + Yowl 1] (2.6b)
VVS WS WS

W, = par, [ (A+2p) g +(BA+ u— B | Wy = B, [ (A+2u) = 4B ).

W, = a,ul A —(A+2u) B |, W = uB[ (A+2) B +(34+4u) ez |, (2.6¢)
W, =, ((A+20 80— e ), W, =—pa((A+2um)e; = A7)
Solution of Elasticity Problem

The solution of elasticity problem is obtained by the method of Airy’s stress function
method see Sneddon [4], and then using cross-linear-superposition principle. We get-

U (x,y) = %ui?(x, 0)+ 3 cos(B U (x. £+ sin(t,. XU (1. V). 2.7)
U (X, y) = %u;? 0.y)+ S cos(ay. U (. y) + 3 sin( By (x. B, (2.8)
Where -

U () = {(l—n)Gw<x,ﬁm>2—nﬂ;Gx,<x,ﬂm)} ’

s
ug)(an,y)=|:(1_77)Hyy(an’y)_77anH:l (2.9)
an
1-n)H s\Uny YY) r? ns e
U (a,.y) = {( Dy, (aazy) T4 y}u‘y:(x,ﬂm)
_ (1_U)Gmﬂ(x’ﬂm)_ﬂﬂme(x’ﬂm) (210)
B,

H(a,,Y)=(A+yB)cosh(a,y)+(C+ yD)sinh(e,, y),

G(x,3,) = (E+ xF)cosh(S,X) (2.11)

Where A, B, C, D, E, & F are six unknown constants which are to be determined
by six boundary conditions.
. a,(A+ yB)sinh(a,y) ;
o (X Y) =D a, sin(a,X)| +Bcosh(a,y) + a,(C+ YD) |+ . B, [ B (E+ XF)sinh(B,x)] (2.12)
i cosh(a,y) + Dsinh(a, ) !
ax) (X y) = —i a; [(A+ yB)cosh(a,y) + (C + yD)sinh(a, y) | cos &, X

n=1

+i[ﬂ;(E+ XF ) cosh(/3,X) + 2F 3, sinh 3, X |cos B,y (2.13)

M

c2(xy)= [an (A+ yB)cosh(er,y) + 2Bsinh(er, Y) + &, (C + yD) sinh(er, Y) + 2D cosh(a,, Y)

1

=]
Il

8

cos(a,X) = Y, Ba(E + XF)cosh(3,X) cos(S,Y) 2.14)
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The boundary conditions (1.8) — (1.12) will determine five constants in terms of
sixth i.e. B.

Reduction to Quadruple Series Equation
The mixed condition (1.13-1.14) and (1.15) give:

2(1—77)[%:2 Bcosanx} =0,b<x<cd<x<a, u= 2(1277) = constant (2.15)
ianBcos(anx) =—0,,)(%,0)+ p“(x)—i p,(N,X)B, 0<x<bc<x<d (2.16)
B0 = P+ B0+ (1) By () (2.16a)
B0 = .0+ P00~ P, 0. Py (1) =, B : B =30 o0

R0 =SR2 5, 1t o0+ 2, sinh(5, 0]

%) :cosanxg;% A cosh ﬁmaﬁ (2.16b)

m(x)=iﬁmtl—g“)[ﬂm<l+qu>coshﬁm<x>+2aﬂsinhﬂmx]

m

P, (X) = Z z( D" Bia, (m)cosh B at, (m )M, s(x)=io‘nal d,(a,) cos(at,X)

n=l  m=l tm ( a, ﬂm n=l 816

Thus the problem is reduced to the solution of quadruple series relation given by
(2.15) & (2.16).

Solution of Quadruple Series Equation

The solution of %+i Bcosa,x=0,b<x<cd<x<a, (3.1)
n=1

> a,Bcos(a,X) = -0 (x,0)+ p”(x)—i Bp,(n,x), 0<x<bc<x<d (3.2)

n=1 —

Will be obtained by the method of Kushwaha [3]. We take trial solution as
,B= 2[<j g+’ h(t)>sm(a t)dt} U :2[<J0bg(t)+ [’ h(t)>+dt}, (3.3)- (3.4)

a
Use of %t Z sin(e,, t)r::os(a WX) {E > X
n=1 0

<X

and (3.1) will be satisfied identically if,
d
L h(t)dt =0, (3.5)
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The substitution of (3.3) into (3.2) and then using the method of Kushwaha [7] we
get,

g(t) = az %[Ao(tw(ﬁg(a)—f h(a))k(a,t)da},o <t<b, (3.6)
h(t) = % Sm(qzt/) 2 [Ao(t) + (job g h(a)) k(a,t)da},c <t<d, (3.7)
A (t) = <j - >C°é((qxt/)2) W, (X)P, (X)dx + D (3.8)
K(a,t) =<j0b—j: >%}WM (%, a0)dx (3.9)
M(X,a) = 22 P (N, X)sin(e, X) cos(@,X), Py (X) = =0 (X,0) + py, (X) (3.10)

n=1

While p;1(X), pi2(X), are given by (2.16b) and (2.16a), respectively. and,
¥ (%) =[G(xb)G(x,)G(x.d)"*|. G(x.b) = cos(x) ~ cos(gb).q = 7/ 3 (3.11)

D is an arbitrary constant which will be determined though (3.5) and the solution
of coupled Fredholm integral equation of second kind given by (3.6) — (3.7).

Physical Quantities
The physical quantities of interest in fracture mechanics are crack opening
displacement (COD) and stress-intensity factors (SIF).

Crack Shape
The crack shape is plot of u{(x0), against X. u{’(x0),is obtained from the values of

series (2.15) for, 0<x<b, c<x<d. Thus using (3.3) — (3.4) in (2.15), we get,

[Caat.0<x<b
X (4.1)

U (x,0)=2(1-17)1""
L h(t)dt,c< x<d

Where g(t) and h(t) are solutions of Fredholm integral equation (3.6) — (3.7).

Normal Stress
The normal stress oy, (x,0)is obtained from the value of series (3.2), keeping right

hand side on left hand side for b<x<c and d<x<a, and then using (3.3) we get,
sin q

o¥(x,0) = <j g+ j h(t)> o

-R0+FX (4.2)

F00=([; o) (e M (@, x)d

M (. X) = Zi b, (n, X)sin(aa, ) cos(a,,, X) (4.3)- (4.4)

an
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Now using the values of g(t) and h(t) from (3.6) and (3.7) and evaluating the
integrals.

o 2 sin(gx/2
O-;y) (x,0)= {a (@x/2)

[2,00+([ 9@ [ )| -Ry 00+ F (x)}, b<x<c

¥o(X)
R 2 sin(gx/2) b d
o'9(x,0)= —{EW[AO(X)-F(J‘O g(@)-| h(a)) K(e, x)da}— P,(x)+F (x)},
d<x<a (4.5)

Stress-Intensity Factor
The stress-intensity factors at crack tips are defined as :

K, = ling_ Vx=ba{y (x,0), K, = limvc—xol(x,0), K, = lindr1+ Vx-dol(x,0)  (4.6)-(4.8)

Using (4.5) in (4.6) — (4.8) and evaluating the limits we get
Kb =Y, (b)Az (b), Kc =V, (C)Az (©), Kd =Y, (d)Az (d) (49)

A, (X) = A, (X) —(j:’ g(@) - [’ h(a)) K (e, X)da (4.10)

w,(X)=2 ML o(X) = |(cos(qx) —cos(qc))(cos(qx) —cos(qd)>| (4.11)- (4.12)
V' za 6%

Solution of Fredholm Integral Equation

Point Body Force

The rivets are very commonly used. Therefore, it is of practical importance to find out
the physical quantities, used in fracture mechanics, due to point body forces. We
discuss the point body force, see figure-2

Y(x,y>:f—;[a(y—m—a‘(wh>]6<x>,><(x, y)=0 (5.1)

G, (x, §=0,(x, §=00<[x<a

y-axis
Q, X

© Y = p_ﬁ(y—h)b(x)
n o,(x,0)=0, 0<|x|<b,b< x| <d ﬁ
>
< o,(%0)=0,0<|M<a =
| w <
~ Vv R
5= ¢ =
I v —d,O I v
T 5
I x
~ Q >
¢ Vv - Tosiye m o °

2a

o, (X,-8)=0,(X,—8)=0,0<[x|<a

(FIGURE- 2. Geometry of Problem with Special Point Body Force)
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Above point force is of magnitude Qp (constant) and acting at (0,+h)in positive &
negative y-directions respectively. And p is mass density of the medium.

The finite Fourier cosine and sine transform of Y with respect to x, y, respectively
yields,

Yo (@ B) = Lsin(p,h) (5.2)
P

Now we evaluate o', (x,0)

o (x,0)= 22 {%M;i%(ﬁ)} ,

ao 2(1-n) dx
v,0= Y, (0")y,(0) = Y w0, (07) (5.3)
PR O (54)
cosh {q(&)' } —cos(gX) cosh {q(@)' } —cos(gX)
0" =h,0® =h+25,0% =46 -h,0" =25 +h, (5.5)

The evaluation of p;i(X) and pia(X) is done by expanding the function

(Ps, P> Prs Pys Py, Py ) in terms of €™ and retaining up to e** i.e. n=1, 2, 3, 4 only.

Solution of Fredholm Integral Equation (FIE)
The solution of Fredholm integral equation is obtained by the method of approximate
expansion of functions involved in equation. These expansions are done in term of

{e_mqa} . We retained up to m = 0, 1, 2, 3, 4 only. Before we come to the solution of

FIE, we approximate M (a,x)and K(a,t).

<A5 (a,1;%28)+e* YA (a,r; x,45)>

M(x,a)=e’* 2i {@ - %(1 +cos(2qX)sin(2qer)e”* ) (5.6)
+%<% R(a,8,X)-q log|R, (5, x)|> _ﬂTq R (a,8,X)R(a,5,X) sin(qx)}
As(a.r;xy)= ;Tzrr< R*(a,¥,), R (a,¥,X) =2cos(@)sin(@)e ¥R (a, ¥, X) (5.7)
R (aa Y, X) = (1 - e—ZQY)RZ (aa Y, X)s Ro(y5 X) = COSh(qy) - COS(qX) (5 8)
R (a, Y, X) = 1+2cos(gx) sin(gx)e ¥ + cos(20x) sin(2qa )€Y —4 cos(qa) sin(qa)e ¥ '

Now we evaluate K(a,t)with, 0<a,t<bfor g (a) and c< a, t<d for h (a),
K(a,t) =80 sin(gar) [Tl ta)e™™ -T,(t,a)e ® +T,(t,a)e* +T, (t,a)e‘°q5:|, (5.9)

v © =271, +1,0+ 80 -2 S 0 (5.10)
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T, () =sin(@e)y, (1).T, (to) = sin(@e), (1),
T,(t,@) = 1, (t) —sin(qa) sin(20a) (21, () - 1, (1)) + 2sin(2ga)1, (t) (5.11)
T, (t,a) = 2sin(ga)l, (t) +sin(2qa) (21, () - 1, (1))

(P9 \sin(ox)G, (X) cos(nox) _ (e (gx) sin(gx)G, (x)dx
'”(t)_(jo j ) G(x,t) ’S’(t)_m(jo j ) G(x,t)

(e \SiIn(@)G (9 log|R, (6]
Sz(t)—(jo ) ) 000 dx (5.11a)

Now we assume
g(t)_Zg(t)em‘”o<t<bh(t)_2he"‘q5c<t<d (5.12)

m=0 m=0

And then substitute (5.12) in (3.6) and (3.7) and then compare the coefficients of
e ™ on both sides we get,

.
go()_ 2 6 (t)sin(qt/2) 0<t<bihy ()= 2 67(t)51n(qt/2) c<t<d
V() VoD
0.0 =([ - )COS(qX/é?’X"’t()X)H3(X)+8((2112’;25Io(t)+D, am=h®=0 § (513
R0 =0y (x0)+R ()=~ P (X
J

2 sin(qt/2)

9,0)=— 0,(t),c<t<d
a’

2 sin(qt/2)
T 0,1),0<t<b;h(t)=— " —o(t)

0.0=23 el O+RO+ R, 0, RO =X ([ 9,0~ [ (@) A(aliy.onda, - (5.14)

A, 1s defined is (5.7)., R, (1) =T, (t)—ﬂ Rz(t)———é(t)

2 sin(qt /2) 2 sin(qgt/2)

o,(t),c<t<d

g1 = 6;(1),0<t<bh®=—

O(t) a o(t)
0,0 =21,(OR,, R :(j: gy (@)~ [’ ho(a))sinz(qa)da, (5.15)
3
g,(t) = 2M9(t)0<t<bh(t) 2M9(t),c<t<d
O(t) a’ o(t)
04(t):T4(t)+2R {2|3(t)—|1(t)}+2R2|1(t), >
_ ( [Pa, @[, (a))sin(qa)sin(2qa)da, (5.16)

R, = (J‘Ob g,(a)- Ld hz(oz))sin(qoz)doz,T4 ®) =1, () (7 —Tn95) )
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To evaluate D we take h~h only then using second of (5.13) and (3.5) and
evaluating the integrals.
jd 6, (V)sin(qt / 2) dt
> w®
Jd sin(qt/2) ot
©y(®

(P \eos(ax/ 2y, (¥R (X) | 2+57
H“(t)_(jo J ) G(x.t) +8(1+77)77|°(t) (517

>

g(,[):§s1n(qt/2) A(D),0<t<b; h(t):ism(qt/z)

w, (1) a’ w,()

A, O =61+ 00" (5.18)

A,(t),c<t<d

The crack shape will be evaluated through (5.18) and (4.1) after evaluating the
integral numerically. The stress-intensity factors are to be evaluated though (5.11a)
and (4.9). The integrals involved are to be evaluated numerically.

Discussion and Conclusion

1. The closed form expressions for normal-stress components are obtained.

2. It is observed that normal stress components have Cauchy type singularity at
crack tips. The stress-intensity factors too are evaluated.

3. The crack opening displacement is smooth at crack tip.

4. The physical quantities are obtained in terms of solution of coupled Fredholm
integral equation. The kernel of Fredholm integral equation is function of
boundary conditions and mixed-boundary conditions. Through boundary
condition it becomes the function of geometric parameters say &,a,b,cetc.
Through mixed-boundary conditions (more than three parts) we get coupled
Fredholm integral equation. Authors are not aware about any other numerical
or experimental so that we can compare with.
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