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Abstract

The quantization of the gauge charge in the standard model is derived from a com-
patibility condition for Abelian bundles over manifolds occuring in the geometric
description of the internal symmetry spaces. The quantization of the electric charge
and other Abelian charges of composite hadron states may be found by considering
a flux quantization condition which is required for a global Lagrangian formulated
on a U(1) bundle over the initial base space. The values of the quark charges are
determined by the charges of the composite states in isospin multiplets.
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1. Introduction

The confinement of the fractional charge of the quark is consistent with the introduction
of a linearly rising potential generated by the exchange of gluons. As the separation
between the quark and anti-quark increases, there is sufficient energy in the vacuum to
create another quark- anti-quark pair. It is known also that quantum chromodynamics
has the property of asymptotic freedom, implying that the quarks propagate almost freely
at very short distances.

Support for the confinement of quarks arises from the proportionality of the Wilson
loop operator for a quark-anti-quark pair with the area. Furthermore, no fractional charge
has been observed independently in the final state of a reaction. However, the analytic
proof of the existence of a potential, derived from a force field being governed by strings,
is complicated by the perturbative evaluation of its path integral representation.

Nevertheless, a theoretical explanation can be provided for the values of the fractional
charges of the quarks in the standard model, given the charges of composite states
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in isospin multiplets. It might be anticipated that these techniques could be useful
in an investigation of quark confinement. The convergence of the perturbation series
about nonperturbative states such as quark-anti-quark pairs and instanton-anti-instanton
configurations [1], and the divergence of the expansion for values of the isospin less than
a fixed bound [2], confirms that there is a effective description of the strong interactions
in terms of the composite states which provides a basis for the non-observability of free
quarks.

2. Quantization of Charge and Isospin in the Standard Model

The existence of only a local Lagrangian can be used to construct a global Lagrangian
with the augmentation of the total space by a U (1) bundle. Suppose that the curvature
form � on a space is closed but not exact. An exact form �̃ may be defined on the U (1)
bundle over this space such that �̃ = d� where � is a global one-form and the projected
form is �. It has been demonstrated that if there is a local Lagrangian with a global
Hamiltonian H and symplectic form ω such that the integral of ω over any closed two-
surface in the configuration space is quantized, then there exists a U (1) bundle admitting
a global Lagrangian [3].

These results may be used as a basis for the quantization of charge in the standard
model. While the Lagrangian of quantum electrodynamics is globally defined on four-
dimensional Minkowski space-time, it must be combined with the weak and strong
nuclear forces in a complete description of the elementary particle interactions. In the
SU (3)c × SU (2)L × U (1)Y standard model, the U (1) electric charge is derived from
a linear combination of the hypercharge Y and the isospin I3. It may be recalled that

the Hopf fibration S3 U (1)

→ S2 is nontrivial and the U (1) action is not globally defined

on S2 � SU (2)/U (1). Instead, it is given on two overlapping patches, each of which
can be retracted to a hemisphere, and thereby, the conditions for the previously stated
theorem hold. Since the U (1)-invariant Lagrangian of quantum electrodynamics must
include this U (1) action on SU (2)L, it is only locally defined on the space (SU (3) ×
SU (2))/(SU (2) × U (1)′) × M4. Likewise, the U (1) × U (1) bundle over (SU (3) ×
SU (2))/(SU (2) × U (1)′ × U (1)′′) × M4 might be used to deduce the quantization of
two U(1) charges. Consequently, quantization of the electric charge and other quantum
numbers would be expected in the standard model.

This method then can be adapted to define quantized Abelian charges in the standard
model through compatibility of the transition functions on the intersection of overlapping
neighbourhoods on the base space of the bundle. For a U(1) bundle, the compatibility
conditions have the form

gαβ = eiqfαβ (2.1)

gαβgβγ gγα = 1

where the transition functions in the overlap of the two open sets Uα and Uβ take values
in U(1). Since a U(1) gauge transformation has the form g = eiqχ , such that the potential
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transforms as Aμ → Aμ + q∂μχ , the quantization of q follows from the condition

q(fαβ + fβγ + fγ δ) = 2πn, n ∈ Z. (2.2)

When a similar quantization condition is placed on the exponential factor eiq
∫

Aμdxμ

,
and the different components of the line integral over a contour in a four-dimensional
region with the angular variables taking values in half of the interval [0, 2π ], without the
imaginary unit, are identified with the electric charge, the negative of the baryon number
and the negative of the strangeness, quantization of each of these Abelian charges for the
composite hadron states can be derived [4].

While the Wilson loop factor initially differs from the integral over the curvature
form, these may be related by Stokes’ theorem since∫

S

�̃ =
∫

S

d� =
∫

C

� (2.3)

where the one-form � can be identified with iqAμdxμ.

3. The Quark Charges

The octupole moment of vibrations of the nucleus has angular momentum 3. An analo-
gous method might be used to deduce the fractional charge of quarks in the proton and
neutron. The charge density of a nucleon can be derived from the form factor

F (�q) =
∫

ρ(�r)e−i �q·�rd3�r. (3.1)

As

e−i �q·�r = 1 − i �q · �r − (�q · �r)2

2! + i
(�q · �r)3

3! − ..., (3.2)

i

∫
ρ(�r)

(�q · �r)3

3! d3�r would be the octupole moment. By identifying the axes in the

diagram with the coordinates of the octonions, a link is established between this algebra
and the presence of substructure of nucleons consisting of three components.

The octonionic module has been found to be necessary for the inclusion of quarks
in the spinor space defined by a tensor product of division algebras. The octonions
furthermore can be viewed as a semidirect product of three copies of C. It is known also
that SU(3) is an appropriate symmetry group for strongly interacting fermions while the
projection from S7 to S3×S3 is useful for a theoretical explanation of the properties of the
vector bosons. Then the existence of three fractional charges adding to the charges of the
proton and neutron, with these two particles forming an isospin doublet, is constrained
by the relations

q1 + q2 + q3 = 1 (3.3)

q ′
1 + q ′

2 + q ′
3 = 0
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where the triplet {q ′
1, q ′

2, q ′
3} can be formed from the triplet {q1, q2, q3} after the inter-

change of one charge. There are three possible cases.
I. q1 = q2 = q3

Since q1 + q2 + q3 = 1, q1 = q2 = q3 = 1

3
. An interchange of any two quarks

yields a triplet with the same charge
1

3
, and thus, q ′

1 + q ′
2 + q ′

3 �= 0.

II. q1 = q2 �= q3
Then

2q1 + q3 = 1 (3.4)

q3 = 1 − 2q1

The interchange yields a triplet with charges q ′
1 = q1, q ′

2 = q ′
3 = q3. Then

q ′
1 + q ′

2 + q ′
3 = q1 + 2q3 = 0 (3.5)

and

q3 = −1

2
q1 (3.6)

−1

2
q1 = 1 − 2q1

3

2
q1 = 1

q1 = 2

3

q3 = 1 − 2

(
2

3

)
= −1

3

III. q1 �= q2 �= q3
As q3 = 1 − q1 − q2, an interchange of the charges does not change the triplet

{q ′
1, q ′

2, q ′
3}. Therefore, the properties of the isospin operator must be used.

If

q ′
1 = q1 − 1 q ′

2 = q2 q ′
3 = q3 (3.7)

q ′
1 = q1 q ′

2 = q2 − 1 q ′
3 = q3

q ′
1 = q1 q ′

2 = q2 q ′
3 = q3 − 1

it follows that

q ′
1 + q ′

2 + q ′
3 = (q1 + q2 + q3) − 1 = 0 (3.8)

However, {q ′
1, q ′

2, q ′
3} also must equal q2 or q3. If q1 − 1 = q2,

1 − q1 − q2 = 1 − q1 − (q1 − 1) = 2(1 − q1) (3.9)

q1 + q2 + q3 = q1 + q1 − 1 + 2(1 − q1) = 1
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The latter triplet has the property q ′
1 = q ′

2 �= q ′
3 and therefore it belongs to class II.

Inverting the roles of {q1, q2, q3} and {q ′
1, q ′

2, q ′
3} implies that {q1, q2, q3} should consist

of only two values of charges. Since this conclusion is contrary to the characteristic of
class III triplets, the charges must be

{q1, q2, q3} =
{2

3
,

2

3
, −1

3

}
(3.10)

{q ′
1, q ′

2, q ′
3} =

{2

3
, −1

3
, −1

3

}

which is consistent with the known values for the u and d quarks.

4. Extension of the Quantization to Fractional Values

The theorem in §2 provides a theoretical basis for the quantization of charge in the
standard model. However, the relative fractional value of the quark to lepton electric
charges is left undetermined. A further examination of the bundle structure shows that
the Lagrangian describing a unification of the electromagnetic, weak and strong nuclear
forces is defined locally on (SU (3) × U (1))/(SU (2) × U (1)′) × M4 and globally on an
SU (2) bundle over this manifold or locally on (SU (2) × U (1))/(SU (2) × U (1)′) × M4
and globally on an SU (3) bundle over this base space.

The extension of the argument for the quantization of electric charge could be consid-
ered for these bundles. Instead of the curvature form equalling dθα on a neighbourhood
Uα, such that d(θα − θβ) = 0 on Uα ∩ Uβ or θα − θβ = dfαβ , such that

d(fαβ + fβγ + fγα) = 0 on Uα ∩ Uβ ∩ Uγ (4.1)

and

fαβ + fβγ + fγα = 2πnαβγ λ n ∈ Z (4.2)

with the transition functions

gαβ = e
ifαβ

λ (4.3)

satisfying

gαβgβγ gγα = 1 on Uα ∩ Uβ ∩ Uγ (4.4)

the replacement λ → χ̄ �σ · �τχ for SU (2) yields relations of the form

fαβ + fβγ + fγα = 2πnαβγ χ̄ �σ · �τχ (4.5)

and

gαβ = e
ifαβ

χ̄ �σ ·�τχ (4.6)
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However, if χ1 =
(

χ1

χ2

)
, the bilinear equals

(χ∗
1 χ2 + χ∗

2 χ1)τ1 + i( − χ∗
1 χ2 + χ∗

2 χ1)τ2 + (χ∗
1 χ1 − χ∗

2 χ2)τ3 (4.7)

this form is too complex for the description of the group element. Moreover, it must be
contained in a product of U (1) factor, which is indicative of the embedding of U (1) into
the larger group SU (2) rather than the entire nonabelian group. A similar conclusion
would hold for SU (3).

The diagonal embeddings of U (1) × ... × U (1) into U (n) would consist of matrices
of the form ⎛

⎝ e2πiα1 ... 0
0 ... 0
0 ... e2πiαn

⎞
⎠ (4.8)

The restriction to SU (n) would imply that α1 + ... + αn = k for some integer k.
The most trivial constraint would be

α1 + ... + αn = 0 (4.9)

which, for n = 2, is equivalent to α1 = −α2. A constraint of this form would imply the
existence of charges of opposite sign. When k = 1, the constraint

α1 + ... + αn = 1 (4.10)

would be satisfied by fractional values of the parameters αi . A symmetric embedding,

with α1 = ... = αn would imply that αi = 1

n
for all n. When n = 2, αi = 1

2
, whereas, if

n = 3, it follows that αi = 1

3
. For a less symmetric distribution of exponents, in SU (2),

the values for a doublet could be given by {0, 1}, while the values for SU (3) could be{
2

3
,

2

3
, −1

3

}
.

When k ≥ 2, the values of αi can be chosen to multiples of those for k = 1. This
would imply that the basic units of charge would be determined by the values for k = 1.

It may be recalled that Eq.(4.2) led to the quantization of the two-surface integral∫
�

� = 2πνλ ν = 0, ±1, ±2, ... (4.11)

The integral values of ν may be replaced by the fractional values for the set {αi}.
Presuming that the integral of the curvature over the SU (2) and SU (3) bundles

does not show any discontinuities, the symmetric diagonal embedding is preferable.
Consequently, the integrals would have the form∫

�

� = 2πνSU (2)λ νSU (2) = 0, ±1

2
, ±1, ... (4.12)
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and ∫
�

� = 2πνSU (3)λ νSU (3) = 0, ±1

3
, ±2

3
, ... (4.13)

The electric charges of leptons in SU (2) doublets are known to be integer. It may be
surmised, therefore, that the U (1) charge being quantized in Eq.(4.12) is different from
the electric charge or the hypercharge. However, the third component of the isospin
satisfying the Gell-Mann-Nishijima formula

Q = Iz + 1

2
Y (4.14)

can have half-integral values, which are consistent with the quantum numbers of the
leptons.

Finally, Eq.(4.13) confirms the quantization of the electric charge of the quarks as

multiples of
1

3
of the electron charge. The method of §3 then can be used to establish

the values for each of the quarks in the three generations.

5. Conclusion

The values of the charges of the quarks in the standard model can be determined from
group theoretical considerations for baryons belonging to isospin multiplets. The quan-
tization of the charge also follows from the consistency condition for the overlap of the
curvature form of a nontrivial bundle representing the gauge invariances of the standard
model. The electric charges are identified through an embedding of U (1)×U (1)×U (1)
in SU (3). The Gell-Mann-Nishijima formula is related to the quantization condition for
the definition of a global Lagrangian. The flux integral may be shown to be equivalent
to the two-dimensional integral of the curvature form of the U(1) field which repre-
sents the connection of the U(1) bundle required for a global formulation of the Abelian
symmetries over in the higher-dimensional description of the standard model.
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