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Abstract 
 

The object of this article consists with the application of the spectral method 
Galerkin to solve the equation of energy in a flow with axisymmetric 
geometry where the main axis of the flow coincides with the axis of pipe. 
By giving itself the equation of energy in absence of the external sources of 
heat and a dissipation of the mechanical energy, this equation associated with 
the boundary conditions suitable undergoes transformations necessary for the 
applicability of the method itself. The examination of this flow is focused 
particularly in the stationary case, i.e. there is no explicit dependence with the 
time of the sizes such speed or the temperature. 
 
Keywords: energy equation, axisymmetric flow, spectral method of Galerkin, 
polynomials of Chebyshev 

 
 
Introduction 
The undertaken study, in this research task relates to the numerical resolution of the 
energy equation by the spectral method. Let us announce that the spectral method is 
one of the numerical methods of resolution of a problem given in the form of partial 
derivative equations. However, the choice of a numerical method for the resolution of 
a problem is an delicate subject owing to the fact that this one must meet certain 
requirements such: stability, convergence, the taking into account of the physical 
parameters of the problem.  
 In the work suggested in this article, the duct is considered axisymmetric and 
periodical in space. It is shown that the spectral method is appropriate for this type of 
situation (Batchi, 2005; Batina et al., 1989 ) from where interest of the justification of 
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the choice of the method. Moreover, the boundary conditions of the thermal problem 
also enable us to apply the spectral method. 
 This one requires a wise choice of functions basis. Thus he is proposed the use of 
the developments according to the polynomial Chebyshev basis in the two directions 
axial and radial of channel then in other situations the polynomials of Legendre prove 
more adapted (Shen and Temam,1993). As the examination of the heat transfer in the 
duct takes place thanks to a forced convection, one considers the formulation stream 
function-vorticity of the dynamic problem. 
 This paper is subdivided in three great parts: the first part is concerning to the 
formulation of the problem of energy and the characterization of the duct geometry. 
Taking into consideration this geometry, one gives oneself boundary conditions 
relating to the temperature such as the conditions to the entry, the exit and the walls 
 Then, one proceeds to introduce reference variables which give us a new 
formulation of the thermal problem and also of the new boundary conditions. 
 The last section relates to the application of the Galerkinspectral method for the 
resolution of the energy equation. Indeed, by energy, it is a question of examining the 
change of the temperature in this type of flow when one gives oneself certain 
conditions upstream and downstream but the way in which the heat transfer takes 
place. 
 
The Energy Equation formulation and Characterization of the Geometry 
In the absence of external sources of heat and a dissipation of the mechanical energy, 
the energy equation is given by: 

 
( ) TaT

t

T
Δ∇+

∂
∂ =.v in Ωx]0,T[  (3.1)  

 
Where T represents the fluid temperature of the fluid and T being time. The 
coefficient a  = k/ ρ CP is thermal diffusivity where in this relation k is thermal 
conductivity and CP the thermal capacity. 
 
Geometry domain study 
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 Let beΩ  the open and bounded of R2 such as it is indicated on the figure above 
andΓ=Γ Γ Γ  being the border of the domain Ω . 
 
Boundary conditions 

• Entry of channel: it is supposed that the fluid enters channel with the 
conditions of noted room temperature T∞ , one thus has  

 T0 (z = 0, r) = T∞  
 

• Exit of channel: it is considered that one has a null variation in temperature. 
What results in a homogeneous condition of Neumann 

 
0=0

z

T

∂
∂  

 
• Walls of channel: one considers a heated wall at temperature constant Tw from 

where it comes that T = Tw 
 
 
New Formulation of the Thermal Problem 
Setting in dimensionless form 
To characterize the flow, it is physically important to introduce sizes or numbers 
without dimension. In our case, one establishes the dimensionless equations of 
assessment whose reference variables are the following ones: the L0 length, U0 speed, 
the P0 pressure, time t0 and the T0 temperature. 
 Considering a temperature of constant wall, one poses 

 ∞

∞

−
−

TT

TT

w

=θ
 

(3.2) 

 
 A dimensionless temperature is thus defined θ  based on the variation in 
temperature enters the Tw wall and the infinite temperature T∞ upstream. 
 The various dimensionless sizes obtained are: the Reynolds number Re, the 
number of Prandtl Pr, the Peclet number Pe = Pr. Re 
 Thus, the dimensionless writing of the equation of energy is 

 ( ) θθθβ Δ∇+
∂
∂

Ret .Pr
1=.v  (3. 3) 

 

where β  is a parameter related to the geometry of channel.  
 After the dimensionless formulation takes place, the equation of the energy which 
takes account of the new geometry of channel is given by: 
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where Ř e = λ  Re .The wall function ( )( )( )1cos1
2

1=)( +−+ xn
e

xh π where n indicates 

the number of geometrical periods and e represents the reduced amplitude. 
 While multiplying (3. 4) by h2 and taking account of the dimensionless frame of 
reference (x,r), one leads to: 
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(3. 5) 

 
whereΔ Fis the operator defined by : 
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 Taking account of the transformations related to the geometry of duct, the 
domainΩis brought back to a square unit. Thus, boundary conditions associated 
relating to θ  who are written then: 

• wall of channel : θ  =1 at r = ±  1 ∀  x ∈  [-1, 1]  
• entry of channel corresponding to x = -1, one gives oneself a crenel of 

temperature regularized of the typeθ  = r2mwhere m indicates the degree of the 
polynomials which must be regulated in a data-processing way. 

• exit of channel: one imposes 
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The Stationary Thermal Problem 
By expressing the velocity field v= (u, v) according to ϕandω , finally the stationary 
thermal problem consists in solving the equation  
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 Sϕ being the source term. 
 The temperatureθ is then approximate as follows:  
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whereθ kl are the unknown coefficients to determine,Mx and Mr being the orders of 
truncation of the developments in series according to the directions axial and radial 
respectively. 

I Taking account of the function formulation stream function-vorticity(ψ-ω ) for 
the Navier-Stokes equations in which the incompressibility condition is automatically 
satisfied, ψis developed as follows:  

 
)()(=),( 2

0=0=

rPxQrx lkkl

rN

l

xN

k

ψψ ∑∑
 

(3.9) 

 
with ),(),( rxrx fψω Δ−=  and whereQk(x) determine the polynomial basis depending 
on the axial direction x and P2l (r) the polynomial basis depending on radial 
coordinate r. The boundary conditions imposed onψthen allow to write: 

 

2 2
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with k= 0,1, 2,…,Nx 
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(3.11) 

 
with l=0, 1, 2,…., Nr 
 These basic functions were developed in a way detailed in work of thesis ofBatchi 
(2005). 
 
Note: The method of Galerkin applied to the equation (3.7) consists in projecting this 
one according to the basis (qk(x) p2l (r)) (Canuto et al.,1988). One then obtains a 
system of equations which must lead us to the determination of the unknown 
coefficients. 
 
Determination of The Basic Functions in the Relation (3.7) 
The polynomialsbasis(qk(x) p2l (r)) is selected so that the boundary conditions of the 
problem are satisfied(Shen (1997), Gelfgat, 2004). 
 
Determination of the base qk (x) 
We seek the functions qk (x) like a linear combination of the polynomials of 
Chebyshev in the following way:  
 qk (x) = Tk(x)+ α 1Tk+1 (x) + α 2 Tk+2 (x)  
 
 The new functionθ (x,r) must check the boundary conditions established in 
section 2.  
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 Subtitling (3.8) in the expressions giving the boundary conditions of section 2, the 
constantsα 1 andα 2 check the system of equation: 

 ⎩
⎨
⎧

=+′++′++′
=−+−+−

++

++

0)1()1()1(
0)1()1()1(

2211

2211

kkk

kkk

TTT

TTT

αα
αα

 

 
 While taking of account the properties on the Chebyshev polynomials (Boyd, 
1989) by their respective values, it comes whereas this system with two equations 
gives us: 
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 From where one can write 
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with k = 0, 1, …, Mx 
 
Determination of the base p2l (r)  
In a similar way, the approximate solution (3.8) satisfying the condition given in 
section 2, involves that p2l (r) checks the condition established forθ  (x, r) = 0 at r = 1. 
One writes then p2l (r)= T2l(r) + β 1T2(l+1) (r)  
 One finds thus without difficultyβ 1 = -1 andthus p2l (r) is written as follows: 
 p2l (r) = T2l(r) - T2 (l+1) (r) 
 with l= 0, 1, 2, …, Mr 
 
 
Resolution of the equation (3.7) by the spectral method of Galerkin 
The spectral method Galerkin is based on a variational formulation which 
incorporates the conditions in the poles and takes account the singularity in r=0. 
However in the case of the axisymmetric problems, there are no conditions with the 
poles but the singularity remains present. 
 
Variational formulation of the problem 
Problem : 
Setting { }rxlkrMxM MlMkrpxqvectW ≤≤≤≤× ;00).;()(= 2 the subspace generated by 

the base ).()( 2 rpxq lk  
 The approximation of Galerkin consists in posing the problem as follows : 
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 By considering the development of
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M W ×∈θ in the basis (qk(x) p2l (r)), and 

when one takes as function test the functions qi (x) p2j(r)dans (3.7), it comes whereas 
the equation (3.7) is equivalent to: 
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Matrix writing of the energyequation  
The relation (4.3) can be put in matrix form 
 BA =Θ   (4.4) 
 
i.e. while writing according to the elements of each matrix 
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where the matrix B  is written : )()(,=)(= 2 rpxqSBB jiij ϕ with 0 ;xMk ≤≤

rMl ≤≤0 . 
 The unknown factorθ is written : ( )T
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;xMk ≤≤ rMl ≤≤0  et )(= ,klijAA  avec 0 ;, xMik ≤≤ rMjl ≤≤ ,0 est la matrice du 
système. 
 It is pointed out that the matrix A  is the discrete writing of the variational form
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M θθ ∑∑ is the projection ofθ on the basis
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( ))()( 2 rpxq lk and the tria
obtains thus : 
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Development of the conve
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 From where we have finally a more elegant writing for the diffusion term of D4: 

   (4.11) 

 
Remark: 
The constitution of the elements of the matrix has is formed of the scalar products 
which require a linearization for their exploitation. Coefficients of the matrix  are 
thus given by :  
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Development of the second member of (4.3) 
That is to say the source term who can then be written: 
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Remark 
The resolution of the equation (4.5) requires as a preliminary the calculation of the 
various scalar products. 
 With this intention, the treatment of the various scalar products contained in (4.12) 
and (4.13) must take account of the properties of the polynomials of Chebyshev of 
first species. It is a question of checking that these products of polynomials are also 
linear combinations of the polynomials of Chebyshev for the implementation in the 
data-processing plan. 
 
 
Conclusion 
The study carried out in this work primarily concerned the numerical resolution of the 
equation of energy by the spectral method Galerkin. Indeed, the spectral method thus 
consists in building starting from a vector space of the polynomial functions to a 
variable and degree lower or equal to N, a space of approximation which uses the 
boundary conditions of the problem. To solve the problem by the aforementioned 
method, then amounts finding a solution approximate of the solution exact of the 
problem in the space of approximation so that the residue is small.  
 A work in the course of implementation will produce some results of the data 
processing of the problem but especially to examine the non stationary case. It will be 
a question of looking at the way in which the heat transfer is done by calculating the 
number of Nusselt. 
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