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Abstract

In this paper we obtained the formula for the common solution of the linear
differential equation of the second order with the variable coefficients in the
more common case. We also obtained the formula for the solution of the
Cauchy problem.
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We consider the equation
LIVl = y*+p()y+at)y = (), te |, 1)

wherel = (ty,t,),t; < t,,p(t),q(t) and f(t) are known continuous functionson I.

Many works [1-4] are dedicated to the determination of the common solutions of
the linear and nonlinear ordinary differential equations. But in common case any
formulas for the decision of the linear differentia equations haven't obtained. It is
well known that if p(t) = p, = const, q(t)= g, = congt, then depending on the sign of
discriminant D = p3 — 4q, the common solution of the equation (1) will be written
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by three formulas. In this theme the equation (1) is investigated in the more common
cases. Depending on the correlation between p(t) and q(t) formulas for the
determination of the common solution of this equation were obtained.

Theorem 1. Let
q(t) = K*(t) + B*(t) + K'(t) _%K(t) (2)
B'(t)
K(t) = lp(t)+ 50| ,tel, 3)

where K'(t) and B’ (t) are respectively the derivatives of the functions K (t) and B(t),
B(t) #+ 0 for dl t e I. Then the common solution of the equation (1) will be writtenin
the next form

y(t) = c1y1(t) + 22 (1) + y3(t) %)

where c; and ¢, are arbitrary constants,

y,(t) = exp {— ftl((s)ds} cos I tﬁ(s)dsl Jto €1 (5)
y2(t) = exp {— ftK(s)ds} sin [ tﬁ(s)dsl. (6)
ys(t) = L:exp{ f K(T)dr}msm U ,B(T)drl ds. (7)

Proof: We show that
L[yl] = OIL[yZ] = 01L[y3] = f(t),t € I

At first we proof L[y,] = 0. In fact if we differentiate (5) we shall obtain
y1(t) = —K(®)y1(t) — B(t)exp {— f K (s)ds} sinl B(s)dsl, (8)

y1' () = =K'(®)y,(t) — K(©)y1(t) = B*(O)y, () —
_[B'(D) - BOK(D]exp {— f K(s)ds}sin [ f B(s)dsl- ©)

Then taking into account (8),(9),(2)and (3) we have



One Formula for Solution of the Linear Differential Equations 323
—K'(®)y1() = K(©Oy1(8) = B2(O)y:(D) -
_[B'() — BAOK(D)]exp {— f K(s)ds} sin [ f B(s)dsl +

B, , B'(¢)
lZK(t) IG) (&) + K20y () + B2(®)y1 () + K' )y (1) — WKU)% (©)

K(t) - V0] [y1(0) + K@®)y: (O] = [B' (1)

— B()K(t)]exp {— ftK(s)ds} sin U tﬁ(s)dsl =

_ I B ()

= lK(t) — % {—K(t)yl(t) — B(t)exp I— L:K(s)dsl sin Ut:ﬁ(s)dsl

+K (t)yl(t)} -

_[B'() — BOOK(B)]exp l— f tK(s)dsl sin [ f tﬁ(s)dsl —o0tel

Thusitisproved L[y;] = 0.
Weshow L[y4] = 0. If we differentiate (6) we shall have

Y4(6) = —K(©)y2(6) + B(©exp [— f K(s)ds] cos [ f ﬁ(s)ds], (10)
y3 (£) = =K' (O)y,(t) — K(®)y;(t) — B2(t)y.(t) +

HIB' (D) — BOK®)]exp [— f K(s)dsl cos I f B(s)dsl. (11)

On the strength of (10),(11), (2) and (3) it follows that
Lly;] = =K' (®)y.(t) — K(©)y;(t) = B*(t)y,(t) +

+[B'(t) — B()K(t)]exp I—f K(s)dsl cos U ﬁ(s)dsl +

+ lZK ) — £ y2(8) + K20y, (1) + B2([)y.(t) + K'(t)y,(t)

B(®)
B'(t)

—K(t)m)@(t) =
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- k@ - 55| b + kw0
+[B'(t) — B(K(t)]exp I—f K(s)dsl cos [f ﬁ(r)drl =
[1{( ) — [;T()) {K(t)yz(t) + B(Dexp [— ft :K(T)drl cos I ft :B(T)drl
+ K(t)y, (t)} +

+[B'(t) — B()K(t)]exp l— ftK(s)dsl cos Utﬁ(r)drl =0,t €l

Wearegoingto proof L[y;] = f(t),t € I. Differentiating (7) we have

Y40 = ~KOy(0) + B0 [ exp [— [ k@ar AS,

56) cos [ftﬁ(r)drl ds, (12)
y3 (£) = =K'(D)y3(t) — K (t)}’§(t) ﬁ (©ys(®) + f(t) +

HIB' () — K(OBWD)] f exp [— f K(o)dr mcos [ f B(T)drl ds. (13)

Taking into account (12), (13), (2) and (3) we have
Llys] = —K'(®)ys(t) — K(©)y3(t) — ﬁ (t)Y3(t) + () +

+[B'(t) —K(t),[?(t)]f exp I—f K(T)dr ,6'( )cos lf ,B(T)drl ds +
IZK ) —[;T()) y3(6) + K2(0)y3() + B2(0)ys(t) + K' ()ys(¢)
O
KO G5 9:(0) =
B B'@®], )
= |K(t) IO} [y3(®) + K@®)ys (O] + f() + [B'(t) — K(©B()] X
x] exp[ jK(T)dT %cos [f B(T)drl ds = [K(t)—ﬁﬁ((t))

f(s)
B(s)

X {—K(t)y3(t) +ﬁ(t)f exp l—f K(t)dt
+

cos [f ﬁ(’[)d’[l ds + K(t)ys (t)}
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FECD) + [B'(6) — KOBWD)] t:exp[ j K(1)dr mcos I f ,B(T)drl ds
= f(t),t €I

Then Lciy1(t) + c2y,(8) + y3()] = c1L[y1] + c;Ly.] + Llys] = f(£), t €1,
where ¢4, ¢, are arbitrary constants. Theorem 1 has been proved.

Corallary: Let p(t),K(t) € C(1),

q(6) = K(Op(b) — K2(6) + K'(t)+a’exp {2 f (2K (£) — p(t)]dt}, (14)

where a € R, a # 0. Then the common solution of the equation (1) will be written in
the form (4), where the functions y, (t), y,(t) and y;(t) are defined by the formulas
(5), (6), (7) and

B(t) = aexp {2 f[ZK(t) — p(t)]dt},t €l (15)

Proof: Differtiating (15) we obtain

B'(t) = [2K(t) —p(0)]B (), t € I

Hence we have (3). Taking into account (15) and (3) we obtain (2). The corallary
has been proved.

Theorem 2: Let ty € I = (t4,t,) , and suppose that the conditions of Theorem 1
hold. Then solution of the equation (1) with initial condition

y(to) =m,y'(t)) =n,mn €R (16)

will be written in the next form

y(@) = my; () + == [K(to)m + n]y,(t) + y3(t),t €1, (17)

1
B (to)

where the functions y, (t), y,(t) and y;(t) are defined by the formulas (5), (6) and
(7).

Proof: Taking into account (5), (6), (7), (8), (10), (12) and (4) from (16) we obtain

L =m,c; = [K(ty)m + n]. (18)

B (to)
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On the strength (18) we have the formula (17). Theorem 2 has been proved.

Example 1. We consider the equation (1) for

q(t) = Kop(t) — K¢ + a’exp {41(01: -2 f p(t)dt}, t el (19)

where Ky,a € R,a + 0,p(t) € C(I). In this case for
K(t) = Ky, B(t) = a exp{2K,t — [ p(t)dt},t € I, al conditions of theorem 1 hold.
Therefore the common solution of the equation (1) will be written in the form (4),
where

y1(t) = exp[—Ko(t — to)]cos [ B (S)dsl'

y2(8) = exp[=Ko(t — to)]sin l tﬁ (S)dSl,

t

ys(t) = f exp [—Ky(t — s)] msm U ﬁ(r)drl ds, ty, t € 1.

If K, = 0,q(t) € C(t),q(t) > 0 foral t €I, then from (19) we have

() = Ja@,p(6) = —z"q—((%.

Then

y1(t) = cos <f v Q(S)d5>:3’2(t) = sin <f v Q(S)d5>,

y3(t) = J;Oj%sin Us w/q(r)drl ds, to, t € I.

If g(t) = qo — const,q, > 0,thenp(t) =0,t €1,
y1() = cos[\[qo(t — to)], ¥2 () = sin[/qo(t — t5)],

t

y3(t) =] f/(;_)sin [\/%(t—s)] ds, ty, t € 1.

Example 2: We consider the equation (1) for p(t) € C*(I), f(t) € C(I) and

1 1
q(t) = sz(t) + B¢ +5p'(0), €l
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where S, € R, B, # 0. In this case formulas (2) and (3) hold for K(t) = %p(t) and
B(t) = Byt € 1. Then

‘1
yi(6) = exp {— | 5p<s)ds} cos[Bo(t — to)],

0

tq
y2(t) = exp {— j EP(S)dS} sin [Bo(t — to)],

0

y3(t) = fexp {— f:%P(T)dT}%z)Sin[ﬁo(t —s)]ds.

0

If p(t) = py — const, q(t) = % pé + B&,Bo # 0,t € I, then
p
y1(6) = exp |~ (¢ = to) ] cos[Bo(t = to)],

y2(8) = exp [~ 22 (¢ = )] sinlBo ¢ — )],

730 = [ exp -2 - 9] L sinlgate - 1 s

Example 3: We consider the equation (1) for p(t) € C*(I),f(t) € C(I),q(t) =
%pz(t) + +a?t?@ +%'p’(t) a4+22a,t €1, c (0,00),a,xE R,a # 0, x# 0, x#
—1. Hence

q(t) =%[p(t) +%]2+a2t2“ [p'(t) —t—] ——[ (®) +—] tel.

In this case the formulas (2) and (3) hold for K (t) = %[p(t) + %] B() = at® t €
I.
Then

X
1 (ta+1 _ t(c)>c+1)],

y1(t) = exp {_ ftt% [p(s) + %] ds} cos [O(

y,(t) = exp {— .];t% “p(s) + %]l ds} sin [o(o:_l (tott — t3<+1)],

ys(t) = j;texp {— ft% [p(r) + ;] dr}f(s) sin [OCO_CH (Lot — s““)] ds,

as“

where t,, t € I.
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