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Abstract 
 

In this paper we obtained the formula for the common solution of the linear 
differential equation of the second order with the variable coefficients in the 
more common case. We also obtained the formula for the solution of the 
Cauchy problem. 
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 We consider the equation 
 L[y] = y''+p(t)y'+q(t)y = f(t), t  I,  (1) 
 
where , ,  , ,  and f(t) are known continuous functions on I. 
 Many works [1-4] are dedicated to the determination of the common solutions of 
the linear and nonlinear ordinary differential equations. But in common case any 
formulas for the decision of the linear differential equations haven't obtained. It is 
well known that if p(t) =  = const, q(t)=  = const, then depending on the sign of 
discriminant 4  the common solution of the equation (1) will be written 
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by three formulas. In this theme the equation (1) is investigated in the more common 
cases. Depending on the correlation between p(t) and q(t) formulas for the 
determination of the common solution of this equation were obtained.  
 
Theorem 1. Let 

,                                                 2  

1
2 ,   ,                                                                            3  

 
where  and  are respectively the derivatives of the functions  and , 

0 for all   . Then the common solution of the equation (1) will be written in 
the next form  

                                                                  4  
 
where  and  are arbitrary constants, 

,                                   5  

.                                              6  

.                              7  

 
Proof: We show that  

0, 0, , .  
 
At first we proof . In fact if we differentiate (5) we shall obtain  

,          8  

 

.                       9  

 
 Then taking into account (8),(9),(2)and (3) we have 
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0, .  

 
 Thus it is proved 0. 
 We show . If we differentiate (6) we shall have 

,          10  

 

.                       11  

 
 On the strength of (10),(11), (2) and (3) it follows that 
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0, .  

 
 We are going to proof , . Differentiating (7) we have 

,   12  

 

.                13  

 
 Taking into account (12), (13), (2) and (3) we have 
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, .  
 
 Then , , 
where ,  are arbitrary constants. Theorem 1 has been proved.  
 
Corallary: Let , , 

2 2 ,        14  

 
where , 0. Then the common solution of the equation (1) will be written in 
the form (4), where the functions ,  and  are defined by the formulas 
(5), (6), (7) and 

2 2 , .                                                    15  

 
Proof: Differtiating (15) we obtain 

2 , .  
 Hence we have (3). Taking into account (15) and (3) we obtain (2). The corallary 
has been proved. 
 
Theorem 2: Let ,  , and suppose that the conditions of Theorem 1 
hold. Then solution of the equation (1) with initial condition 

, , ,                                                                       16  
 
will be written in the next form 

1
, ,                        17  

 
where the functions ,  and  are defined by the formulas (5), (6) and 
(7).  
 
Proof: Taking into account (5), (6), (7), (8), (10), (12) and (4) from (16) we obtain  

,
1

.                                                                     18  
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 On the strength (18) we have the formula (17). Theorem 2 has been proved. 
 
Example 1. We consider the equation (1) for 

4 2 , ,                          19  

 
where , , 0, . In this case for 

,  2 , , all conditions of theorem 1 hold. 
Therefore the common solution of the equation (1) will be written in the form (4), 
where 

, 

, 

, , . 

If 0, , 0 for all , then from (19) we have  

, 2 . 

 
 Then 

, , 

 , , . 

If , 0, then 0, , 

cos , sin , 

sin , , . 

 
Example 2: We consider the equation (1) for ,  and 

1
4

1
2 , , 
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where , 0. In this case formulas (2) and (3) hold for  and 
, . Then  

1
2 cos , 

1
2 sin , 

1
2 sin . 

If p  ,  , 0, , then  

2 cos , 

2 sin , 

2 sin . 

 
Example 3: We consider the equation (1) for , ,

 , , 0, ∞ , , , 0, 0,
1. Hence  

1
4

1
2 2 , . 

 

 In this case the formulas (2) and (3) hold for , ,
. 

 Then 
1
2 cos 1 , 

1
2 1 , 

1
2 sin 1 , 

 
where , . 
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