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Abstract 
 

Digital filters are used extensively in all areas of electronic industry in which 

FIR filters are most widely used. This paper presents a design of FIR filter by 

using BOOTH multiplier and CARRY SKIP adder. Optimizing the speed and 

area of a multiplier is a major design issue. The area and speed are the 

conflicting constraints because the faster speed results in the larger area. The 

faster execution speed and smaller area are the important factors in designing 

the DSP systems. In this paper the multiplier considered is the Booth 

Multiplier. And the adder is the carry skip adder. So mentioned multiplier is 

combined with the adders in the design of FIR filter so that they occupy less 

amount of space when compared with the normal multiplier. This criterion is 

very important in the fabrication of the chips and the high performance system 

requires components which are as small as possible. Finally the simulation 

and synthesis results obtained are compared with the results of previous 

methods and to say which one is the best. 
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I.  INTRODUCTION 

Filter is a frequency selective network. It passes a band of frequencies while 

attenuating the others. Filters are classified as analog and digital depending on nature 

of inputs and outputs. Filters are further classified as finite impulse response and 

infinite impulse response filters depending on impulse response. Analog filters can be 

passive or active. Passive filters use only resistors, capacitors, and inductors. Passive 

designs tend to be used where there is a requirement to pass significant direct current 
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(about 1mA) through low pass or band stop filters. They are also used more in 

specialized applications, such as in high-frequency filters or where a large dynamic 

range is needed. (Dynamic range is the difference between the background noise floor 

and the maximum signal level.) Also, passive filters do not consume any power, 

which is an advantage in some low-power systems. The main disadvantage of using 

passive filters containing inductors is that they tend to be bulky. This is particularly 

true when they are designed to pass high currents, because large diameter wire has to 

be used for the windings and the core has to have sufficient volume to cope with the 

magnetic flux. Very simple analog low pass or high pass filters can be constructed 

from resistor and capacitor (RC) networks. The RC filter works because the capacitor 

reactance reduces as the frequency increases. At low frequencies the reactance of the 

capacitor is very high and the output voltage is almost equal to the input, with 

virtually no phase difference. At the cut off frequency, the resistance and the 

capacitive reactance are equal and the filter's output is l / f i of the input voltage, or -3 

dB. At this frequency the output will not be in phase with the input , it will lag by 45" 

due to the influence of the capacitive reactance. At frequencies above the 3 dB 

attenuation point, the output voltage will reduce further. The rate of attenuation will 

be 6 dB per doubling of frequency (per octave). As the frequency rises, the capacitive 

reactance falls and the phase shift lag approaches 90". 

 Digital filters are used extensively in all areas of electronic industry. This is 

because digital filters have the potential to attain much better signal to noise ratios 

than analog filters and at each intermediate stage the analog filter adds more noise to 

the signal, the digital filter performs noiseless mathematical operations at each 

intermediate step in the transform. The digital filters have emerged as a strong option 

for removing noise, shaping spectrum, and minimizing inter-symbol interference in 

communication architectures. These filters have become popular because their precise 

reproducibility allows design engineers to achieve performance levels that are 

difficult to obtain with analog filters. Digital Filters can be constructed from 3 

fundamental mathematical operations which are Addition (or subtraction), 

Multiplication (normally of a signal by a constant), Time Delay i.e: delaying a digital 

signal by one or more sample periods. 

 

 
 

Figure 1.1 Block diagram of a Simple Digital Filter 
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 The Impulse Response of a digital filter, h(n) is the response of the filter to an 

input consisting of the unit impulse function, δ(n). If the impulse response of a system 

is known, it is possible to calculate the system response for any input sequence x(n). 

By definition, the unit impulse is applied to a system at sample index n=0. So, the 

impulse response is non-zero only for values of n greater than or equal to zero i.e h(n) 

is zero for n<0. This impulse response is said to be causal otherwise the system would 

be producing a response before an input has been applied. It is known from the time-

invariance property of a Linear Time Invariant System that the response of a system 

to a delayed unit impulse δ(n-k) will be a delayed version of the unit impulse, i.e h(n-

k). It is also known from the linearity property that the response of a system to a 

weighted sum of inputs will be a weighted sum of responses of the system to each of 

the individual inputs. Therefore, the response of a system to an arbitrary input x(n) 

can be written as follows: 

 

 
 

 Finite Impulse Response (FIR) filters are one of two primary types of filters 

used in DSP, the other type being Infinite Impulse Response Filters (IIR) filters. The 

impulse response of an FIR filter is “finite" because there is no feedback in the filter. 

 

 
 

Figure 1.2 FIR Filter Architecture 

 

 

II.   BOOTH MULTIPLIER 

Booth's multiplication algorithm is a multiplication algorithm that multiplies two 

signed binary numbers in two's complement notation. The algorithm was invented by 

Andrew Donald Booth in 1950. Booth used desk calculators that were faster at 

shifting than adding and created the algorithm to increase their speed. Booth's 

algorithm is of interest in the study of computer architecture. Booth's algorithm 

examines adjacent pairs of bits of the N-bit multiplier Y in signed two's complement 
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representation, including an implicit bit below the least significant bit, y-1 = 0. For 

each bit yi, for i running from 0 to N-1, the bits yi and yi-1 are considered. Where these 

two bits are equal, the product accumulator P remains unchanged. Where yi = 0 and yi-

1 = 1, the multiplicand times 2
i
 is added to P; and where yi = 1 and yi-1 = 0, the 

multiplicand times 2
i
 is subtracted from P. The final value of P is the signed product. 

 The representation of the multiplicand and product are not specified; typically, 

these are both also in two's complement representation, like the multiplier, but any 

number system that supports addition and subtraction will work as well. Here, the 

order of the steps is not determined. Typically, it proceeds from LSB to MSB, starting 

at i = 0; the multiplication by 2
i
 is then typically replaced by incremental shifting of 

the P accumulator to the right between steps; low bits can be shifted out, and 

subsequent additions and subtractions can then be done just on the highest N bits of P.
 

There are many variations and optimizations on these details. The algorithm is often 

described as converting strings of 1's in the multiplier to a high-order +1 and a low-

order –1 at the ends of the string. When a string runs through the MSB, there is no 

high-order +1, and the net effect is interpretation as a negative of the appropriate 

value. 

 

Reason for Choosing Booth Multiplier 

The general multiplication process is done by a dot method. The figure below shows a 

dot method representation i.e. how the basic dot multiplication process proceeds. 

 

 
 

Figure 2.1 16 bit simple multiplication. 

 

 

 Each dot in the diagram is a place holder for a single bit which can be a zero 

or one. The partial products are represented by a horizontal row of dots, and the 

selection method used in producing each partial product is shown by the table in the 

upper left corner. The partial products are shifted to account for the differing 
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arithmetic weight of the bits in the multiplier, aligning dots of the same arithmetic 

weight vertically. The final product is represented by the double length row of dots at 

the bottom. This dot multiplication process has more complexity when compared with 

the Booth multiplier. 

 In Booth multiplier a generator that creates a smaller number of partial 

products will allow the partial product summation to be faster and use less hardware. 

The simple multiplication generator can be extended to reduce the number of partial 

products by grouping the bits of the multiplier into pairs, and selecting the partial 

products from the set {0, M, 2M, 3M}, where M is the multiplicand. This reduces the 

number of partial products by half, but requires a carry propagate add to produce the 

3M multiple, before any partial products can be generated. The implementation of the 

Booth Multiplier has been discussed in the next section. 

 

Carry skip Adder 

 

 
 

Figure  2.2   Block diagram of a carry skip adder 

 

 

III.   BOOTH MULTIPLICATION ALGORITHM 

Booth’s algorithm can be implemented by repeatedly adding (with ordinary unsigned 

binary addition) one of two predetermined values A and S to a product P, then 

performing a rightward arithmetic shift on P. Let m and r be the multiplicand and 

multiplier, respectively and let x and y represent the number of bits in m and  r. 

1.  Determine the values of A and S and the initial value of P. All of these 

numbers should have a length equal to (x + y + 1). 

1.  A: Fill the most significant (leftmost) bits with the   value of  m. Fill the 

remaining (y + 1) bits with zeros. 

2.  S: Fill the most significant bits with the value of (−m) in two's complement 

notation. Fill the remaining (y + 1) bits with zeros. 

3.  P: Fill the most significant x bits with zeros. To the right of this, append the 

value of r. Fill the least significant (rightmost) bit with a zeros. 

2.  Determine the two least significant (rightmost) bits of P. 

1.  If they are 01, find the value of P + A. Ignore any overflow. 

2.  If they are 10, find the value of P + S. Ignore any overflow. 

3.  If they are 00, do nothing. Use P directly in the  next step. 

4.  If they are 11, do nothing. Use P directly in the next step. 
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3.  Arithmetically shift the value obtained in the 2nd step by a single place to the 

right. Let P now equal this new value. 

4.  Repeat steps 2 and 3 until they have been done y times. 

5.  Drop the least significant (rightmost) bit from P. This is the product of m and 

r. 

 

Example 

Find 3 × (−4), with m = 3 and r = −4, and x = 4 and y = 4 

m = 0011, -m = 1101, r = 1100 

A = 0011 00000 

S = 1101 00000 

P = 0000 11000 

 

Perform the loop four times 

1. P = 0000 1100 0. The last two bits are 00 

 P = 0000 0110 0. Arithmetic right shift 

 

2. P = 0000 0110 0. The last two bits are 00 

 P = 0000 0011 0. Arithmetic right shift 

 

3. P = 0000 0011 0. The last two bits are 10 

 P = 1101 0011 0. P = P + S 

 P = 1110 1001 1. Arithmetic right shift 

 

4. P = 1110 1001 1. The last two bits are 11 

 P = 1111 0100 1. Arithmetic right shift 

 

 The product is 1111 0100, which is −12. 

 

 

IV.   SIMULATION RESULTS 

The simulation is performed using XILINX ISE 13.1 version. The block schematic of 

FIR filter, RTL schematic and the waveforms of FIR filter are shown in the figure 

below. These results are obtained by considering the eight bit input data. The 

synthesis is also performed and the results obtained are compared with the previous 

methods used for the design of FIR filter. By observing the comparison results, the 

delay becomes reduced as well as the power also. Therefore the speed performance of 

the filter is increased. 

 



Implementation Of Fir Filter 27483 

 
 

Figure 4.1  Schematic of FIR Filter 

 

 
 

Figure 4.2 RTL Schematic of FIR filter 
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Figure 4.3 Waveform of the FIR filter 

 

 The design summary reports obtained by performing synthesis, includes area 

utilization, delay and power consumed by the device for the design of FIR filter is 

given in the figure below. And also the table shown in Table 4.2 presents the 

comparison of delay and power consumed values for the FIR filter design using 

different multipliers. 

 

Logic Utilization Used Available % Utilization 

Number of Slice Flip Flops 151 4,896 3% 

Number of 4 input LUTs 4,047 4,896 82% 

Number of occupied Slices 2,274 2,448 92% 

Number of Slices containing only related logic 2,274 2,274 100% 

Number of Slices containing unrelated logic 0 2,274 0% 

Total Number of 4 input LUTs 4,197 4,896 85% 

Number of bonded IOBs 26 172 15% 

Number of BUFGMUXs 1 24 4% 

 

Table 4.1 Area Utilization of FIR filter 

../../project1/Booth_Mul_Carry_Skip_Add_Top_map.xrpt
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Method Delay(ns) Power(mW) 

Shift Add multiplier 7.7 923 

MCM Multiplier 12 1023 

Booth Multiplier 3.42 52.27 

 

Table 4.2 Comparison 

 

 

V.  CONCLUSION 

In this project the Booth Multiplier and   carry skip adder have been considered and 

are combined in the design of FIR filter. They occupy less amount of space when 

compared with the normal multiplier. This criterion is very important in the 

fabrication of the chips and the high performance system requires components which 

are as small as possible. Once all the combination of multiplier and adders has been 

done in the design of the FIR filter then a comparison is to be made to say which 

combination of multiplier and adders will be the best in terms of delay, power, area 

and memory. The synthesis and simulation is carried out using XILINX ISE 13.1 

version software. The Total memory usage is 168036 kilobytes. The functionality is 

verified successfully. 
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