
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 11 (2015) pp. 28555-28560

© Research India Publications

http://www.ripublication.com

Content Ranking Using Semantic Word Comparison And

Structural String Matching

R. R. Sathiya

Assistant Professor, Department of Computer Science and Engineering,

Amrita School of Engineering, Amrita Vishwa Vidyapeetham (University),

Coimbatore-641 112. rr_sathiya@cb.amrita.edu

Abstract

Search algorithms today focuses only on ranking based on user history,

preferences and traffic to the pages but not necessarily on the content itself.

Sometimes the site/page may not be famous as it would not appear in the first

set of results which makes users go through many results in order to get what

they were looking for since the Content on the site/page is more important

than it’s ranking. So, to make content appear as first class citizens on the

results of a search instead of sites/pages that might contain the query, we’re

proposing a solution to rank the content based on the query instead of rank

only sites/pages to improve the relevance of the results. This would also

improve the site/page visibility and increase productivity for users.

Keywords: content; search; ranking; algorithm; content-ranking, semantic-

search

Introduction
There are several word_based schematic search methods used such as plagiarism

software, content summarization, etc. But there is no such method that measures its

words either in a context of a sentence or word flow, word prediction, etc. Measuring

a word doesn’t mean only in number of letters used, differences in capitalization,

compound or complex words but also having to contrast a simple word to a simple

context i.e, usage of the word will also be measured.

 So lets begin with a question. How to measure a word? (Either within a context or

independent)? There are several ways (such as)

 Length

 Similar words

 Synonyms

 Antonyms

 Derivatives

28556 R. R. Sathiya

 The work has been divided into Query Processor, Search Service, Results

Aggregator and Presenter.

Related Works
The problem persists in classifying category based documents. There are many

approaches have been proposed to achieve this. Using text analysis method, the

terrorism related articles on the web can be detected. For this analysis Keselj’s context

weight is used [1]. Another approach uses keywords for retrieving relevant

documents. There are approaches where WUP uses the WordNet knowledge base to

get the semantic relationship between the words [2]. Some other approaches make use

of clustering of the retrieved search result records and query rewriting techniques for

categorization [3, 4].

Proposed Model
In this paper, we propose a method for comparing letters, words, sentences and

calculating their measures and using these measures to rank the results more relevant

to the user query.

Query Processor

In this section, a list of words including the query is generated which is to be

analyzed. The inputted query is first contextually mapped i.e, meanings and similar

words of the query are added to the list. Then alternatives to the query i.e, suggestions

or similar query’s are added to the list. At last the list is finalized by adding

grammatical information, contextual information and is ready to be processed.

Search Service

This section retrieves information from various domains like sports, entertainment,

news, history, etc and performs the letter comparison, word comparison and sentence

comparison between the generated query list and retrieved results.

Crawler

A list of URLs from each domain which are to be crawled are specified. Sub URLs

inside a URL are extracted by identifying “href ” tag and are added to the list of URLs

to be crawled. Each crawled URL with its content is indexed in a database. Here we

are using Raven Database which is a document database to handle large amount of

documents. And we are using Reddis Cache to have consistent connection to the

database. As the crawling goes on continuously and since there is a chance that the

same URL can be parsed again, an additional feature “Last visited ” is used to allow

an URL to be crawled after a specific time say 6 hrs.

Letter Comparison

The present std code page for computer symbols is Unicode (UTF-8, 16, 32) to

display and edit various human interaction language or script on the computer. So, we

Content Ranking Using Semantic Word Comparison And Structural String et. al. 28557

are using Unicode (Pr UTF-8/ANSI) and UTF-16, 32 for more advanced comparison

of letters. These are already present in .NET framework under System.Globalization,

System.Text, System.String, System.char. There are three types of letter comparisons

 Standard

 Ordinal

 Case Sensitive/Insensitive

 Standard is the default comparison for letters where it uses both ordinal and case

sensitive comparisons. Ordinal uses expanded unicode set where any compressed latin

or any other script can be expanded to simpler ones. Example: ᴂ = ae, ê = ei

 Case comparison uses case sensitive rules to compare.

 Example : A,a | Â,α

 In the case insensitive languages the service yields null or zero value since the

language doesn’t have casing rules.

 For now, the measure of a letter just yields the Unicode code-point value in the

UTF table for each bit type (8, 16, 32). Comparison of two chars yields the difference

between their measures. Advanced comparison options include phonetic comparison,

script comparison and origin language comparison.

 Example :

 A a ¥ Â

 |____| |______|

 ↓ ↓

 Same language, Same script, Same phonetic Different language, different script

Word Comparison

Measure between words like (Apple, apple), (Runtime, Run Time, Run-Time) have

been included.

1. Include/Ignore semantic capitalization

2. Increases the measure of the word by 1 unit (not necessarily equal to 1) 1 unit

= 1*Capitalization/Ordinal weight

3. Include/Ignore compound words. Include = (Run)+(Time), (Run)+(-)+(Time).

Ignore = Excludes the second word which leads to the same meaning as that of

the first word.

4. Parts of speech options - noun, verb, prefixes, prepositions.

 Other properties of that particular language - heteronym, homonym, Antonym.

Each property of any particular language has weight-age. Weight-age depends on the

number of properties associated with itself. For example, any word having 2-3

homonyms which in turn the homonyms have direct relationship with other

homonyms.

28558 R. R. Sathiya

hh4

↓

hh2 → h2

↑

h4 ← Word → homonym1

↓

hh1 → h3 ← hh2

↑

hh3

 So the measure of each property of a word in any language is equal to the weighted

average of all the child property that relates to the same property itself.

P1[W11,W12,W13]

↑

P4[W41,W42,W43] ← Word → P2[W21,W22,W23]

↓

P3[W31,W32,W33]

 W21 = P2[W0,W22,W23,W33,W32] Measure for -

 W32 = P3[W31,W33,W41,W42,W43] P1= Wavg[P1[W11,W12,W13]]

 W41 = P4[W42,W11,W12,W13,W0] P2 = Wavg[P2[W21,W22,W23]]

 P3 = Wavg[P3[W31,W32,W33]]

 P4 = Wavg[P4[W41,W42,W43]]

 Wn = Pn[Wn-1,Wn+1,Wn+2]

 For words with least or no dependency on properties, such as

P3[W31] ← [Word W-1] → P1[No Words]

↓

P2[W21,W22]

 P1 = Pw * Cv

 Pw = Property weightage

 Cv = Constant value

 Property weightage depends on the context. In searching, homonyms are more

important than synonyms. Property weightage is calculated based on context or

equivalency.

 PW = CW/TP

 CW : Context Weight

 TP : Equalency

Content Ranking Using Semantic Word Comparison And Structural String et. al. 28559

 CW = CP * CR

 CP : Total number of context properties

 CR : Context Rank

 1/CR = 1/R1 + 1/R2 + 1/R3 + + 1/Rn

 R1,R2 are ranks of each property

Sentence Comparison

 Semantic → Look for the meaning of the compared words with measure from their

synonyms.

 Contextual → Instead of using only synonyms, also use various properties in parts

of speech (Configurable).

 Grammatical → Same as contextual but usage information is also included

replacing contextual information.

 Ci = ((M(W1)p - M(W2)p)/M(P))*100

 C = Ʃ CiWi / Ʃ Wi

Results Aggregator

After classifying the retrieved results using the above measures, we will rank the

results so as to which one will be first displayed to the user, which one will be

displayed next and so on.

Presenter

In this section, we will generate search meta data to uniquely identify the search and

add or merge it to the generated list(mentioned in section 3.1) if possible. This is run

during search service. So here the search meta data and device meta data is obtained,

then UI specific transformation is applied and finally the data is presented to the user.

UI includes cards(Google Now), legacy(Bing), domain specific(Wikipedia) and field

specific(advanced).

Conclusion and Future Work
The proposed model for categorization of the documents as abusive or non-abusive,

we can apply the same for any domain. Since the retrieved results are in the

categorized form, it is highly useful to the user. The problem is with sub-categories

for each domain. Another field where this module exactly can be implemented is in

social networks, where all the abusive comments that is being given by the handler

can be denied from being broadcasted. This would help restrict those abusive content

from the view of the user.

References

[1] Choi, Dongjin, et al. "Text analysis for detecting terrorism-related articles

on the web."Journal of Network and Computer Applications 38 (2014):

16-21.

28560 R. R. Sathiya

[2] Babisaraswathi, R., N. Shanthi, and S. S. Kiruthika. "Categorizing Search

Result Records Using Word Sense Disambiguation."

[3] Hemayati, Reza Taghizadeh, Weiyi Meng, and Clement Yu. "Categorizing

Search Results Using WordNet and Wikipedia."Web-Age Information

Management. Springer Berlin Heidelberg, 2012. 185-197.

[4] Hemayati, Reza, Weiyi Meng, and Clement Yu. "Semantic-based grouping

of search engine results using WordNet."Advances in Data and Web

Management. Springer Berlin Heidelberg, 2007. 678-686.

