
International Journal of Applied Engineering Research 
ISSN 0973-4562 Volume 10, Number 11 (2015) pp. 28779-28795 
© Research India Publications 
http://www.ripublication.com 

 
 

Platform Independent Generic Compiler Design Using 
Reverse Engineering 

 
 

 Dr. Amit Verma 
Professor, CSE, Chandigarh University 
Mohali, India, amit.verma@cumail.in 

Er.Nikita Bakshi 
Research Scholar, CSE, Chandigarh University 

Mohali, India, bakshinikita24@gmail.com 
 

Abstract 
 

Computer has its influence in every sphere of human life whether it is 
education, medical science, social networking and so on. All computers 
perform their action on the basis of a program, which is a set of instruction in 
a high level language. This high level language is converted to machine 
language using compiler. Compiler is computer program which converts the 
high level programming language into machine language which is 
understandable by computer. The compilers till now are not generic they are 
language dependent. In this paper we intend to investigate compiler’s current 
state and further suggest future advancement of compiler. We further propose 
algorithms for designing language independent compiler. 
 
Keywords: Reverse Engineering, Compiler, Software, Programming 
Languages, Program, Legacy System. 

 
Introduction 
A computer is a general purpose device that can be programmed to perform a set of 
arithmetic or logical operations automatically. Sequence of operations can be easily 
changed in computer so it can solve more than one kind of problem like logical 
operations etc. Computer began appearing in the first century and later used in 
medieval era for astronomical calculations. In World War II computers were used for 
specialized medical applications. During this time first digital computer was 
developed .Initially the size of computer was equal to the room and it consumed 
power as much as several hundred modern personal computers[1] Modern computers 
are based on integrated circuits and they are more capable than the early machines. 
Modern computers are small enough to fit into mobile devices like laptops [2]. 
Modern computer have influenced various fields such as travel & tourism, social 
networking, education and research, whether forecasting, e-commerce and many 



28780  Amit Verma 

more. The feature of modern computer which distinguished them from all other 
machines is that they can be programmed to perform various operations/ tasks. 
Program is a kind of instruction given to the computer and then instructions are 
processed. Modern computer are based on von Neumann architecture have machine 
code in the form of an imperative programming language. Programming language is a 
group of grammatical rules which is used to instruct a computer to perform specified 
tasks. Programming Languages are further divided into two languages Low-Level 
programming language and High-Level programming language. Low-level 
programming language is a programming language that provides little or no 
abstraction of computer instructions. Generally this refers to either machine code or 
assembly language. High-level programming language is a programming language 
with strong abstraction. High-level languages are usually compiled into machine 
language (or sometimes into assembly language and then into machine language) with 
the help of another computer program called compiler. 

Compiler is a set of instruction that translate the source code into binary format 
usually known as object code. In the 1940’s ,programming language came into 
existence, they were machine dependent because assembly language was used to write 
the programs and that programs can only be run on a machine. Then, in 1952, Grace 
Hopper wrote the first compiler which was completed before 1957 and introduced at 
IBM by John Backers [28]. In 1960, COBOL became an early high-level 
programming to be compiled on different architectures. In 1962, the first self-hosting 
compiler was assigned for Lisp by Tim Hart and Mike Levis at MIT. 
A. Software  
Software is a computer program which provides set of step by step instructions that 
directs the computer what to do and how to do. Software is often divided into two 
types:  

a.) Application Software: Application Software is that computer software which is 
designed to perform singular or multiple related tasks. They act as guide to the 
hardware to perform specific tasks and an example of such application software 
includes compiler, office suites, media players, accounting and graphics software. 

b.) System Software: System software is an operating system that provides an 
effective program to control the computer resources. It is made to control the 
hardware of the computer and to provide platform for running application software. 
 

 
 
 
 
 
 
 
 
 

 
                                                         Figure 1: How Software Works [29] 

System Software 
Operating System, Utilities

Hardware 
CPU, Printer

Application Software 
Computer Games, Spreadsheets, Word processor, Databases 



Platform Independent Generic Compiler Design Using Reverse Engineering  28781 

 
B. Software Engineering 
Software Engineering is the application and study of engineering to development, 
design and maintenance of the software. More and more, society and individual rely 
on software systems we need to produce truth worthy and reliable system quickly and 
economically. Software engineering is further divided into two categories they are 
forward engineering and reverse engineering. 

1. Forward Engineering: Forward engineering is the process of building high-
level model by using lower level details. In forward engineering we move step by step 
and try to achieve the goal. Forward engineering plays a crucial role in IT sector 
because it represents the normal software development process.  

2. Reverse Engineering: Reverse Engineering is the process of analyzing the final 
product of a design to recreate it. Reverse Engineering is common in both software 
and hardware. Reverse Engineering is used for discovering the technological principle 
of object, device of system through analysis of operation, function and structure. It 
often analyze its components, disassembling something (electronic components, a 
mechanical matter, computer program, and organic matter, chemical or biological) 
and check working in detail, just to re create it.  

Reverse Engineering was firstly used for the analysis of military advantages and 
hardware for commercial use. The main purpose of doing reverse engineering is to 
reduce the design decision of the end product with no additional knowledge or little 
knowledge about the process involved in the original production. 

The same technique is being researched later for industry or legacy software 
system to protect the end application. Reverse Engineering is used for many purposes 
like as a teaching tool in a new way, to make compatible products or interoperate 
more effectively. It is also used to bride data between different operating system and 
databases; and to reveal the undocumented features of commercial products. 

Reverse Engineering is a technique to analyze the system at higher level of 
abstraction. It can also be seen as going backwards process of development cycle. 
Other use of reverse engineering include customization of embedded systems, 
consumer electronics, enabling of extra features on low cost, in house retrofits or 
repairs, even more relish to curiosity or security auditing. 

 



28782  Amit Verma 

 
Figure 2: Process of Reverse Engineering [3] 

 
Reverse engineering started with dirty source code. Dirty source code is restructure 

and clean source code is provided. The clean source provides the basis for all 
subsequent engineering activities and makes the source code easier to read. The core 
of reverse engineering activity is extract abstraction. The engineers check the previous 
program from the source code and fetch meaningful information, after that user 
interface is applied; database or program data structure is used. 
     a.) Reverse Engineering in Context to Software: Software Reverse Engineering is a 
program to retrieve the source code because the source code is lost, to refine the 
performance of the system, to fix errors, to identify virus or to modify a program 
written for work with one microprocessor or other. 

A famous example of reverse engineering is in 1980 San Jose based Phoenix 
Technologies Limited. He wanted to develop BIOS for PC’s that would be well 
matched with IBM PC’s. To save against the illegal copies of IBM’s BIOS he reverse 
engineered it which is known as clean room or Chinese wall approach. IBM uses two 
teams for this first team read the code of IBM BIOS and start doing their work 
without referring or using the original code. The second team has no information 
about the IBM BIOS and the code, the first team provides the functional requirements 
they work on it and wrote new BIOS that work as specified. 



Platform Independent Generic Compiler Design Using Reverse Engineering  28783 

b.) Reverse Engineering in Context to Software Engineering: In 1990 Chikosky 
and Cross in their paper describe reverse engineering as the process of analyzing a 
subject to check the system components and relationship between the components. 
Generate presentation of the system in another form or at higher level of abstraction. 
[4] 

3. Application of Reverse Engineering: Reverse engineering has so many 
applications as listed below: 

a.) Reverse Engineering of Military Aircraft Parts: The process of reverse 
engineering takes a structure or physical device, compute it and import all its parts 
and measure it into similar building software or into CAD software. Tool name 3D 
Laser Scanner take the photo of the device, CAD check the photo and do the reverse 
engineering. After making change in the product, new program is created. Sometime 
parts of the device are removed and shell of the device is scanned. Individual pieces 
are then scanned in the same way the entire device was. Best practices in large parts 
of helicopters including military aircrafts. New CAD patterns and prints are used by 
the Govt. suppliers for recreating every piece. 

b.) Window Reverse Engineering: In window reverse engineering we do reverse 
engineering by creating blue prints of windows that are not easily available. It will 
also provide benefits for hackers to create application coding and help developers to 
find new ways to protect the system. If we take the example of the USB screen drivers 
blue prints of the USB screen drivers are not easily available, by using software Soft 
ICE we are able to create the blue prints of window USB drivers. 
 
c.) Reverse Engineering of Database in Oracle: 
In this we do reverse engineering by converting the relational model in logical model 
by transforming the data from tables to class diagrams. 
 
d.) Reverse Engineering in Education: 
It plays a crucial role in education. It helps in self motivation and easy learning of the 
students. Applying reverse engineering process we get a very effective environment in 
which students can work. Some universities have already tried to integrate standard 
computer science courses with reverse engineering technique; an example of 
university is Missouri-Rolla. The result was inspiring 77% of the students indicates 
rein formant concept taught during the lectures. Moreover, 82% wanted it to be used 
in future courses, especially those students who wants to deal with design. 

This paper is organized as follows: Section II identifies the compiler and reverse 
engineering challenges. In Section III we briefly discussed the proposed work. 
Section IV provides work done to make generic compiler. Finally, Section V is the 
conclusion of this paper. 
 
Literature Survey  
Gerardo Canfora et al. [4] briefly provided an overview of existing work done in the 
field of software reverse engineering, discusses success stories, main achievement and 
gives a way for future development in the coming trends in software. Hannani Aman 
et al. [5] briefly presented the framework of reverse engineering from XML to UML 



28784  Amit Verma 

for creating software requirement specification. They also describe the related work of 
reverse engineering. This paper provides a method of research to expand the 
transformation of XML to UML. This type of transformation is called re engineering 
data. In present software development practices data re engineering is very important. 
Shivani Budkhar et al. [6] find need for realistic tools to provide support for reverse 
engineering activities. The capacities of reverse engineering tools are revised to 
produce class diagram from java source code. In this paper author provide four 
different reverse engineering tools that are used to generate class diagram from given 
source code. The purpose behind selecting these tools was to check different types of 
tools such as commercial, non-commercial, open source tools to support reverse 
engineering of java code. Tools chosen are Agro UML, Reverse, Enterprise 
Architecture, Rose. 

Amit Kumar Gautam et al. [7] presented an approach to recover design pattern that 
are used to achieve greater accuracy, better performance, characteristics 
representation such as behavioral, structure design pattern etc. All work is done by 
using the matrix and the weight concept to reduce anomalies and false negative rate. 
They also follow the taxonomy model for reverse engineering and after that apply 
matrix algorithm for calculating hollow and efficient storage. In it, they also apply the 
matrix algorithm in designing binary matrix and binary matrix pattern to produce the 
sources code. In the end they make the comparison with the pattern detection tools 
and other standard tools for efficiency and performance. Shikon Zhou et al. [8] 
provided their important contribution in the hierarchical systematic research to 
improve software metrics for reverse engineering. The fundamental component of the 
work is to develop a metrics for reverse engineering. Reverse engineering measures 
are organized into five categories, which included economic measures abstraction and 
reuse measure, measure of complexity, measure of orintedness. This paper describes 
the problems of developing software metrics for reverse engineering. A systematic 
approach is introduced to develop software metrics reverse engineering based on this 
approach. Yunsik Son et al. [9] provided a brief overview on symbol table. Symbol 
table is an essential module in compiler construction. It includes phases like lexical 
analysis, syntax analysis, semantic analysis, code generation. In this paper they deal 
with reverse technique for the verification of the symbol table in objective C 
compiler. They also discuss the design and implementation of a reverse translator that 
verifies and analyses the symbol table designed during the development stage of 
objective C compiler. Furthermore, based on the symbol table verification, a correct 
code can be generated by examining the use of identifiers and attribute in the code 
generation step. 

I. Budiselic et al. [10] discussed their experiences with the programming language 
instruction over the last three years, tool based assignment used before this and their 
quantitative differences in results. They also discuss the compiler design courses and 
provided an overview on compiler project at seven different computer science 
universities in Europe and US. He also provided an overview on programming 
language translation courses, organization of PTL courses and describes the evolution 
of programming from its initial stage to its current design. Two important 
classifications of compiler design project and courses are explained. They roughly 



Platform Independent Generic Compiler Design Using Reverse Engineering  28785 

divide compiler design into two courses front end heavy and back end heavy. Jean-
Luc Hainaut [11] provided a briefly description about database reverse engineering. 
Comparison of software reverse engineering and database reverse engineering was 
done. In this paper he defines that historically, we identify three periods in DBRE 
they are deepening, discovery and widening. He also discusses the main objectives of 
the second period for obtaining technique and recovering implicit construction to 
develop more flexible methods. The scopes of database reverse engineering and the 
supporting techniques in the present time. After that the future of database reverses 
engineering, challenges of database reverse engineering and provides contribution in 
their solving. In fact, the future of software engineering is to be dependent on these 
solutions. Keith Gallagher et al. [12] describe whether reverse engineering is legal or 
illegal, what law says about reverse engineering? Few years ago, courts refuse to do 
reverse engineering but from 2003 courts provide the permission for reverse 
engineering process. 

Hankjin Lee et al. [13] provided a well established algorithm more over a 
methodology that is used for detection of design patter. In this paper reclassification 
of GoF pattern takes place. Gang of Four (GoF) is known to be very useful for the 
detection of projects with reverse engineering methods. He also proposed GoF pattern 
detection technique. After that evaluation of new technique is done and paper is 
concluded with the pros and cons of new approach, what other work is to be done in 
terms of future research. Ivan Keimek et al. [14] provided a brief description that 
reverse engineering is used in many fields of IT every day like binary code patching, 
legacy compatibility, network protocol analysis, malware analysis, rapid prototyping 
or in debugging. Despite its widespread use, reverse engineering is not actively taught 
as part of computer courses. This paper attempts to provide an overview of real life 
scenario of reverse engineering. Analysis of skills, ways of thinking that can be 
developed by reverse engineering and provides example that you can teach reverse 
engineering by resolution of practical problems. They also focus on the importance of 
reverse engineering as a tool to turn the self motivation in students and systematically 
build your logical thinking skills and analytical skills. Chengyong Wu et al. [15] 
presented an overview of the design of the main components of ORC, especially new 
features in the code generator. The Open Research Compiler (ORC), jointly 
developed by the Intel Microprocessor Laboratory of Technology and the Institute of 
Computer Technical 

Academy of Science of China. It has become the leading open source compiler in 
processor family Itanium TM. ORC development methodology is important for 
achieving the objectives. Performance comparison with other IPF compiler and a brief 
summary of research based on ORC are also presented. 

John S. Mallozzi et al. [16] talked about one semester course in compiler design 
presents difficulties to an instructor who want to assign a project in which object 
oriented techniques are used. This paper describe a method that uses the tool 
developed by the author to generate a parser that encourages an object-oriented 
approach, clearly related code written by the student which automatically generate 
code with intended students to increase understanding. Miodrag Djukic et al. [17] 
described a technique in which significance of controllability and speed is placed 



28786  Amit Verma 

upward. Many simulation instructional approaches places the retarget ability and 
cycle precision as the key functions to facilitate the exploration and performance of 
architecture and also estimate early in the development phase of hardware. The 
retarget ability and cycle-accuracy to provide a better platform for software 
development. The main idea of this work is to associate the simulator effort compiled 
with the development of C and build target language compiler for the processor, using 
knowledge related to compiler and reusing some common software elements. Mirko 
Viroli [18] provided a brief description about EGO compiler (Extract Generic On-
Demand). EGO is result of a project developed in partnership with Sun Microsystems 
in order to evaluate a smooth support for generic time function, which does not 
require changes in the JVM or any other component of the Java Runtime 
Environment. In this paper they develop solution for sophisticated translation based 
on the type style step also known as reification. The main aspects of development are 
presented, from the basic design to implementation and deployment issues. 

Johghee M. Youn et al. [19] presented a new coding scheme and instructions are 
based on the dynamic implied addressing mode (DIAM) to solve the limited space 
coding and side effects by trimming. They also suggest a generation of code algorithm 
to fully utilize DIAM. In their work architecture with DIAM exhibition show code 
size reduction up to 8% and 18% on average, speed compared with the basic 
architecture without DIAM. Mathieu Acher et al. [20] presented a comprehensive 
process, compatible architecture FMs tool for reverse engineering. They developed 
automated technique to extract and combine different descriptions of variability in 
architecture. Then, alignment techniques and reasoning are applied to integrate 
knowledge and strengthen architect FM. Cristina Cifuentes et al. [26] presented 
different type of reverse engineering based on level of code abstraction, which was 
used to reengineer assembly code, CASE code, machine code and source code. In this 
paper they elaborate various type of reverse engineering and protection for copyright 
software. Common uses of reverse engineering were explained. Comparative 
overview of the legal standing reverse engineering are provided. They also propose 
the existing and future challenges of the global electronic community for the 
protection of digital works. Alexandru Telea et al. [22] presented an open architecture 
that allows easy prototyping exploration and visualization of data reverse engineering 
scenarios for a wide range of models. They pay special attention to visual and 
interactive requirements of reverse engineering process. They also compare tool box 
with an existing visual tools and describe the differences. 

From the literature survey we concluded that Reverse Engineering is done for 
Program Analysis, Design Recovery, and Software Visualization in limited fashion. 
We also analyzed that the role of reverse engineering would be to extract information 
needed to enable features such as automatic discovery and compositions of design 
pattern if we use neural network or automation to make reverse engineering concept 
completely platform independent. Moreover, software transformations are necessary 
to make existing systems self healing and automatically reconfigurable. Compiler is a 
set of program that transforms source code into target code, often having a binary 
form known as object code. Compiler design proposed so far has two limitations. 
First, they generate target code for specific languages; hence they are not generic and 



Platform Independent Generic Compiler Design Using Reverse Engineering  28787 

most of the compiler generates the target code which is not platform independent. 
With the advancement of technology, different languages are needed to generate 
desired results and hence different compilers. These compilers are generate either 
machine independent on the dependent code depending on the requirements and 
application i.e. whether you need your application for a specific system or for 
distributed system. The purpose of our work, we are making generic compiler for 
object oriented languages that has not been developed yet. Therefore, we propose to 
develop a platform independent generic compiler design using reverse engineering. 

 
Workdone 
Forward engineering is the traditional process of moving from high-level abstractions 
and logical designs to the physical implementation of a system whereas the process of 
duplicating an existing component, subassembly, or product, without the aid of 
drawings, documentation, or computer model is known as reverse engineering. The 
reverse compiler that we have proposed here will work at the implementation phase of 
any project. Any software which will be written in C++ /any object oriented language 
have to follow forward engineering steps which include requirement specification 
step, design phase , implementation phase, testing phase and finally maintaining 
phase. In our case, the input to reverse compiler will be provided after implementation 
phase which will be processed and generates its corresponding java code after 
extracting its design from the code. Then the generated java code will be passed to 
testing phase and then to maintenance phase and follow the normal software testing 
phase. 

 
A. Proposed Work 
 
Algorithm1- Generalized Pseudo Code for converting C++ Source Code to Java 
Code 

Begin 
Read C++ Source Code Maintain Symbol table ST 
L  Generates tokens from source program 
Convert C++ tokens into corresponding java tokens 
Err  Check syntax for generated tokens 
if (length (Err)> 0) return error 
else 
B Generate Byte code using javac compiler 
Return (B) 
End if End 
 
The above pseudo-code is the generalized pseudo-code for converting C++ source 

code into java source code. It simply takes code written in C++ language and 
generates its token and maintains symbol table for future references. Along with that 
it checks for the syntax of the language and if any error exits it will generate the error 
report, else it will produce corresponding java code and it’s Bytecode. 

 



28788  Amit Verma 

Algorithm 2 - Pseudo Code for generating java code for pointers in C 
Begin 
Read Specified C++ source code (containing pointer) 
L Breaks source code into tokens For k=1: length (L) 
If (Lk is detected as pointer) update and convert detected 
tokens into simple 
variable of specified data type 
else 
no change end if 
end for k 
Err Check syntax for updated L if (length(Err)>0) // error exit 
return Err 
else 
B  Generates byte code for updated token using javac compiler 
Return B 
End if End 
 
The above pseudo code generates the java code for provided C++ code as 

mentioned in the generalized pseudo code. It takes the same C++ code containing 
pointer in it and generates its java code. Again, initially it read the C++ code and 
breaks it into tokens which will be used for generating java code. First it identifies the 
pointer and its data type and after successful completion of syntax phase of compiler 
it simply converts the pointer to variable of same data type. Later on it generates its 
corresponding java code as done by the earlier mentioned pseudo-code. 

 
Results and Discussions 
Based on the proposed work, experiment is conducted for platform independent 
generic compiler. We use notepad++ editor; we also use net beans IDE. Results are 
discussed along with its descriptions. In the end over all description of the results are 
provided. 

We start our first experiment by checking the keywords. All the keywords of C++ 
and java are checked. In second experiment we check whether the input data is string 
or operator and in third experiment code for pointers are generated for java. 

 
 
 
 
 
 
 

                                                                       
                                                (a)                             (b) 

 
Figure 4 (a): Tokenization of keywords (b): Tokenization of Keywords with Line 

no. 



Platform Independent Generic Compiler Design Using Reverse Engineering  28789 

 
In this part of the compiler design, Lexical phase of it has been implemented which 

takes input as C++ language and tokenize the whole programs after which it matches 
the keywords listed in Keyword.txt file. This part of program also maintains the table 
for generating any error report if exists. It maintains the line number corresponding to 
the every token and hence able to generate the report of error with line numbers. 

 
 
 
 
 
 
 

(c)                         (d) 
 
Figure 4 (c): Result of String & Operator in cmd prompt, (d): File generate after 

compiling Read_document 
 

     In this part, compiler takes input as a file (output of another program as a text file) 
and passes the file to Read_document.java . It then process that file and separates the 
line based on the type whether it is string or an arithmetic operation. Depending on 
whether the processed line is string or mathematical operation it generates the 
corresponding code in java language for that line. 

 
 
 
 
 
 
 

 
Figure 4 (e): Pointer program in c++, (f): Pointer Code generated in java after 

compiling 
 
In this we passed program written in C++ language containing pointers 
(FirstProgram.cpp) to ReadAndWriteCode.java, which generates the java code having 
main class with the name of the file which had been passed to the program. It read 
the.cpp file and tokenizes the keyword and variable used in the program, if the pointer 
is found in the program it convert that pointer variable to normal variable according to 
java syntax and generates the code corresponding to the file input to the java program. 

Implementation of compiler which converts independent java/C++ language code 
into platform independent byte code which runs on JVM has been implemented. It 
takes java/C++ code as an input and generates its corresponding byte code. Inside the 
program it first tokenize the code into “integer”, “identifier”, “variables”, etc. and 
checks it for syntax through syntax analyzer. If it passes the phase of syntax analyzer 



28790  Amit Verma 

then it passes the code to semantic analyzer and then to code generator. Finally if all 
phases passes that code successfully it will generate the optimized byte-code which 
runs only on JVM and hence becoming platform independent as well as language 
independent code. 
 
 
Experiment Result and Comparison 
By thorough analysis of compiler design and reverse engineering we came into 
conclusion. The comparison results are shown in the below given tables. 
 

Table 6.1: C++ Compiler 
 

S. NO. Keywords used in C++ Keywords used in Java   Errors 

1 Int Int Error Free 
2 For For Error Free 
3 Finally Finally Error Free 
4 If If Error Free 
5 While While Error Free 
6 Napp Static Error 
7 Napp Args Error 
8 Napp Out Error 
9 Napp Println Error 

 
C++ as premeditated for application and system programming enlarge C 

programming language. C++ compiler added standard library to execute program 
efficiently. Few examples of keywords used by C++ compiler are int, for, while etc. If 
we add keywords like static, args, out, println c++ compiler give error. These 
keywords are not in the standard libraries of c++. 

 
 
 



Platform Independent Generic Compiler Design Using Reverse Engineering  28791 

Table 6.2: Java Compiler 
 

S. No. Keywords used in java  Keywords used in C++ Errors 
1 System Napp Error 
2 Out Napp Error 
3 Println Napp Error 
4 In Napp Error 
5 Args Napp Error 
6 For For Error Free 
7 If If Error Free 
8 While While Error Free 
9 Napp Cout Error 
10 Napp Cin Error 

 
Java is a general purpose, class based, concurrent and object oriented programming 

language that is designed to have accomplishment dependences as possible. Java 
hinges on JVM to be extremely portable and secure. Java also provide standard library 
to execute program accurately. Few examples of keywords used in java libraries are 
for, if, while, println etc. If we add keywords like cout, cin while running java 
program they provide errors. 
 

Table 6.3: C++ and Java Keyword in Generic Compiler 
 

S. No. Keywords of C++ Keywords of Java Error 
1 Int Int Error Free 
2  For For Error Free 
3 Finally Finally Error Free 
4 Napp Static Error Free 
5 Cout Napp Error Free 
6 If  If Error Free 
7 While While Error Free 
8 Napp Args Error Free 
9 Napp Println Error Free 
10 Cin Napp Error Free 

 
The reason of generic compiler is to offer a language independent method of 

representing a complete program. In this we construct a standard library in which both 
C++ and java keywords are specified. Compiler starts toning the keywords with 
libraries and provides error free results. 

 



28792  Amit Verma 

Table 6.4: Pointer in C++ 
 

S. No. Pointers in C++ Error 
1 Pointer Error Free 
A pointer is a variable whose importance is the address of a new variable. Pointer 

provides direct address to the memory position. Like any constant or variable, must 
declare a pointer before you can apply it to store any variable address. If we employ 
pointer in C++ it does not show any error. 

 
Table 6.5: Pointer in Java 

 
S. No. Pointers in Java Error 
1 Pointer Error  

 
 
Java array and classes are reference type. It provides reference to array and object 

as C++ pointer in C++. Unlike C++ pointer though, references in java are completely 
obscure. There is no technique to change a reference to primitive type and a reference 
cannot be decrement or increment. They are no size of operator or address of 
operators like *.  
 

Table 6.6: Pointer in Generic Compiler 
 

S. No. Pointer in C++ Pointer in Java Error 
1 Applicable Applicable Error Free 
    

 
Generic compiler read tokenizes keyword and variable used in the program, if the 

pointer is found in the program it convert that pointer variable to normal variable 
according to java syntax and generates the code corresponding to the file input to the 
java program. In this way we also apply pointer concept in our work to make our 
generic compiler independently work on every platform. 

Since, the renovation has undergo an exhaustive research, extending compiler 
design(language independent to platform independent) will be beneficial to project 
development activity in modern methodology. So, we try to provide a generic 
compiler in which all object oriented programming languages can work in a particular 
environment. The reason of generic compiler is simply to give a language-
independent technique of presenting a complete function. Generics compiler 
was instigate to the Java programming language to give tighter checks at compile time 
and to succor generic programming. This platform independent generic compiler is 
used to make a bridge between different object oriented languages i.e C++, java to 
give extended generic types. 
 
 



Platform Independent Generic Compiler Design Using Reverse Engineering  28793 

Conclusion & Future Scope  
Compiler is the set of instruction which translates the source code in to the target 
code. In this paper, the source code is C++ language and target code is the byte-code 
which is generated by java code acting as the semi-target for our compiler. Here we 
had focused on converting the code written in one language to the target code 
generated by other language. The source code that had been taken comes from the 
implementation phase of the process of software development cycle then revert back 
to design then again to implementation phase which will be in java language and 
hence doing the reverse engineering. Since, the transformation has undergo an 
intensive research, extending compiler design(language independent to platform 
independent) will be beneficial to project development activity in modern 
methodology. For future work this task can be taken to distributed system where such 
compiler are needed since C++ language are dedicated to only machine and cannot be 
used for distributed systems whereas java can be used for such problems. 
 
 
References 
 

[1]  Kamthane, Ashok N., and Raj Kamal, “Computer Programming and IT: 
For RTU”, Pearson Education India, 2011. 

[2]  Carl, Daniel H., “How To Use Computer Safely: Data Secuarity and 
Optimization”, Explore Technology, 2015.  

[3]  Pressman, Roger S., “Software engineering: a practitioner's approach”, 
Palgrave Macmillan, 2005.  

[4]  Gerardo Canfora and Massimiliano Di Penta, “New Frontiers of Reverse 
Engineering”, RCOSI University of Sannio, Benevento, Italy, IEEE, 2007.  

[5]  Hannauni Aman, Rosziati Ibrahim, “Reverse Engineering: From Xml to 
Uml for Generation of Software Requirement Specification” 8th 
International Conference on Information Technology in Asia (CITA), 
2013.  

[6]  Shivani Budhkar, Dr. Arpit Gopal, “Reverse Engineering Java Code to 
Class Diagram: An Experimental Report International Journal of 
Computer Application, vol-29, pp. 36-43, September 2011.  

[7]  Amit Kumar Gautam, Saurabh Diwaker, “Automatic Detection of 
Software Design Pattern from Reverse Engineering” Special Issue of 
International Journal of Computer Applicationson Issues and Challenges in 
Networking, Intelligence and Computing Technologies, pp.17-22, 
November 2012. 

[8]  Shikun Zhou, Hongji Yang and Paul Luker, Xudong He, “A Useful 
Approach to Developing Reverse Engineering Metrics”, IEEE 1999. 

[9]  Son, Yunsik, Seman Oh, and Yangsun Lee, "A Reversing Technique for 
Symbol Table Verification on Compiler Constructions" 2014.  

[10]  Budiselic, I., D. Skvorc, and S. Srbljic, "Designing the programming 
assignment for a university compiler design course", 37th International 



28794  Amit Verma 

Convention on Information and Communication Technology, Electronics 
and Microelectronics (MIPRO), IEEE, 2014.  

[11]  Jean-Luc Hainaut,  “Legacy and Future of Data Reverse Engineering”, 
16th Working Conference on Reverse Engineering, pp.4, IEEE2009  

[12]  Keith Gallagher, Cem Kaner JD & Jenifer Deign, “The Law and Reverse 
Engineering” 19th Working Conference on Reverse Engineering, pp.3-6, 
2012.  

[13]  Lee, Hakjin, Hyunsang Youn, and Seunghwa Lee , "Automatic detection 
of design pattern for reverse engineering", 5th ACIS International 
Conference on Software Engineering Research, Management & 
Applications, IEEE, 2007.  

[14]  Ivan Klimek, Marián Keltika and František Jakab, “Reverse Engineering 
as an Education Tool in Computer Science” 9th IEEE International 
Conference on Emerging eLearning Technologies and Applications, pp. 
123-126, IEEE2007.  

[15]  Wu, Chengyong, et al. "An overview of the open research compiler", 
Languages and Compilers for High Performance Computing Springer 
Berlin Heidelberg, pp. 17-31, 2005.  

[16]  Mallozzi, John S.,  "Thoughts on and tools for teaching compiler design" 
Journal of Computing Sciences in Colleges, vol-21.2, pp. 177-184, 
Springer 2005  

[17]  Djukic, Miodrag, et al. "An Approach to Instruction Set Compiled 
Simulator Development Based on a Target Processor C Compiler Back-
End Design", First IEEE Eastern European Conference, IEEE, 2009.  

[18]  Mirko Viroli, "Effective and efficient compilation of run-time generics in 
Java" Electronic Notes in Theoretical Computer Science, vol-2, pp. 95-
116, 2005.  

[19]  Youn, Jonghee M., et al.  "Two versions of architectures for dynamic 
implied addressing mode" Journal of Systems Architecture, vol-8, pp. 368-
383, 2010.  

[20]  Acher, Mathieu, et al. "Reverse engineering architectural feature models", 
Software Architecture. Springer Berlin Heidelberg, pp. 220-235, Springer, 
2011.  

[21]  Cifuentes, Cristina, and Anne Fitzgerald, "The legal status of reverse 
engineering of computer software" vol-2, pp. 337-351,Springer, 2000.  

[22]  Aarne Ranta, “Implementing Programming Languages: An introduction to 
Compiler and Interpreters”, College Publications, May9, 2012.  

[23]  Stromia, et al. “Reverse Engineering Legacy Interfaces: An Interaction 
Driven Approach” 6th Working Conference on Reverse Engineering, 
IEEE1999.  

[24]  Di Lucca G. A., Fasolino A.R., De Carlini U., Pace F.,Tramontana P.,  
“WARE: a tool for the Reverse Engineering of Web Applications”, 6th 
European Conference on Software Maintenance and Reengineering, 
IEEE,2002  



Platform Independent Generic Compiler Design Using Reverse Engineering  28795 

[25]  G. A. Di Lucca, M. Di Penta, G. Antoniol, G. Casazza, “An approach for 
reverse engineering of web-based applications”, 8th Working Conference 
on Reverse Engineering, IEEE Computer Society Press, Los Alamitos, 
CA, 2001.  

[26]  Leupers, Rainer, "Compiler design issues for embedded processors", 
Design & Test of Computers, vol-4, pp 51-58, IEEE, 2002  

[27]  Margaret Rouse, “Computer Definition” Retrival 4/15/2015, http://www. 
techtarget.com/contributor/Margaret-Rouse.  

[28]  Terry, Rhodes, “Compilers and Compiler Generators: an introduction with 
C++." (2014).  

[29]  Chetan Birla, Mohit Singh, Bhupendra Yadav, Parth Nagar, Bhurhan 2013 
“System & Application Software, compiler, interpreter, assembler” 
Retrival 4/18/2015, http://www.slideshare.net/chetanbirla/it-chetan  

[30]  Nikita Bakshi, Shruti Gujral, “Reverse Engineering And Its Realistic 
Applications”, ISSN 0975-5462, vol-6, pp. 370-372, International Journal 
of Engineering Science and Technology, June 2014.  

 
 



28796  Amit Verma 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


