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Abstract 
 

This paper presents and puts forward an execution technique that could 

potentially address the need of Centralized Self-Organizing Networks (SON) 

use cases, considering the high data load and quick processing need for 

network wide data. Key challenges faced in Centralized SON use cases are to 

do with processing Key Performance Indicators (KPIs) of the network quickly 

and also to cater the need for evolving network topology. KPIs are generally 

derived from network events, performance counters that are periodically 

collected from the multi-technology, multi-vendor and multi-layer 

Heterogeneous Network. The needs of the SON use cases are addressed by 

applying well-known Map-Reduce [1] programming model with newly 

emerging container based virtualization [2, 3] techniques. To demonstrate the 

validity of proposed execution technique, performances of generic algorithms 

used by SON use-cases are evaluated. Evaluation results illustrate that these 

execution techniques can achieve significantly higher performance with 

commodity hardware. 

 

 

Introduction 
 

About centralized SON and need of computing. 

Centralized SON solution [4, 5] is becoming a de-facto method when network wide 

data to be considered for SON use cases [6, 7]. Network wide KPIs are generally 

collected by respective Element Management (EM) or Operations Support Systems 

(OSS) software. OSS Software is generally provided by respective equipment 

vendors. Periodicity, data format and KPIs also differ for each technology, though 

they intend to provide the same high level meaning like network quality, capacity 

utilization, energy consumption etc., With the introduction of Software Defined 
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Networks (SDN) [8] the network topology and flow control of the traffic is becoming 

more dynamic than the traditional statically configured networks. Centralized SON 

solution typically follows the cycle of “Collecting data” (both network Configuration 

and KPIs), “Processing data” (based on measurements and performance counters, 

KPIs) and performs network changes based on the algorithms of SON use cases [9]. 

Additionally SON use cases are addressed as part of “Self Configuration”, “Self 

Optimization” and “Self-Healing” functionalities [6] which indicates the applicability 

of SON use cases across all the phases of Network evolution (Network Planning, 

Design, maintenance and Optimization). All SON use cases [7, 9] can be realized as 

Centralized SON solution in Network Management System (NMS) level. Further in 

the paper SON functionalities refers to “Self-Configuration”, “Self-Optimization” and 

“Self-Healing”. SON use cases refer to the following mind map derived from 3GPP 

and NGMN standards [5, 7]. 

 

 
 

Figure 1: SON Use-cases [5, 7] 

 

     The key objective of Centralized SON during “Self Optimization” phase is to 

continuously tune the network that runs in Optimized level according to the changing 

network traffic. Some of the prominent SON use cases that require such immediate 

adaptations are Coverage and Capacity Optimization (CCO), Load Balancing (LB) 

and Dynamic Automatic Neighbour Relation (ANR). These use cases involves 

processing large network events, KPIs for every cell and its interference level with 

neighbouring cells. Current systems are not able to handle such high load quickly. 

Sometimes the optimization takes more than 8 hours in worst case for technologies 

like GSM frequency optimization cases. This leads to optimization of network with 

past condition rather than current behaviour. The expected changes for CCO, LB and 

ANR are less than 15 minutes. Or sometimes close to real time.  

     To meet such objectives adapting efficient algorithms [9] is required.  

     This paper proposes Map-Reduce programming model with container based 

virtualization for Self-Organizing Networks. 

     Further paper is organized as follows. Section 2 contains a detailed description of 

execution technique of Map-Reduce programming model with container based 

virtualization and additionally with the task distributing principles. 

Section 3 Execution technique proposal for SON use cases. Section 4 Applying 

proposed execution techniques on SON ANR Use case Section 5Evaluation and 
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Analysis of proposed techniques on SON ANR uses case, and followed by a 

conclusion in Section 6. 

 

 

Proposed Execution Technique and Principles 
The key technical or non-functional requirements for addressing the needs of 

Centralized SON use cases are: 

1. Processing large data sets 

2. Parallel execution of algorithm for every intended network element across 

available resources. (Example: LTE cells, WCDMA cells etc.,) 

3. Resilient to failures (both hardware and software crashes) 

4. Efficient execution time 

5. Shared nothing architecture [10] 

6. Able to run according to the availability of resources (Example: Memory, 

CPU) 

7. No single point of failure 

     From the emerging architectural recommendation in analytics area, Map-Reduce 

[1] programming model as proposed by google engineers looks very promising in the 

addressing the above need from I to IV. 

     Recent advancement in cloud computing [11, 2 and3] looks very promising for the 

above need from V to VII.  

 

About Map-Reduce Programming Model 

Map-Reduce is a programming model, with an associated implementation for 

processing and generating large data sets [1]. As specified in the Map-Reduce paper 

[1] many real world tasks are expressible in this model. Programs are specifically 

written in a functional style. Hence they are automatically parallelized and executed 

on a large cluster of commodity hardware.  

     The computation takes a set of input key/value pairs, and produces a set of output 

key/value pairs. The user of the Map-Reduce library expresses the computation as two 

functions: Map and Reduce. Map, written by the user, takes an input pair and 

produces a set of intermediate key/value pairs. The Map-Reduce library groups 

together all intermediate values associated with the same intermediate key “K” and 

passes them to the Reduce function. The Reduce function, also written by the user, 

accepts an intermediate key “K” and a set of values for that key. It merges together 

these values to form a possibly smaller set of values. Typically just zero or one output 

value is produced per Reduce invocation. The intermediate values are supplied to the 

user’s reduce function via an iterator. This allows us to handle lists of values that are 

too large to fit in memory.[1] 
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Figure 2: Overall process of Map-Reduce 

 

 
 

Figure 3: Execution Overview [1] 

 

 
Figure 4: Execution Overview 

 

     Due to the above distinct functional phases as in Figure [4], it is easy to run several 

tasks in parallel. 

1. Input files. These are normal static files stored across clusters (with 

redundancy/backup), normally referred as HDFS (Hadoop Distributed File 

System) or GFS (Google File System) in case of google. Instead of Input file 

in our adaptation for SON we will send chunks of network elements that are 

intended to be addressed by a SON function.  

2. Map Phase/Mapping process. In this phase network element performs a 

specific task. For example, identifying neighboring cells based on distance, 

hand over statistics etc… For the key (“K”) “Cell1” the intended values are 

neighbouring “Cell2” with distance value and so on. Mapping the 
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neighbouring cell valueis written in Mapper function as part of SON algorithm 

implementation. 

3. Intermediate Phase (Shuffle Process). In this process all the values of a 

specific key “K” are grouped together in individual nodes. For a specific key 

“K” Cell1 all its neighbours are shuffled and grouped together as “Value1, 

Value2, Value3…” 

4. Reducer Phase. In this process the final value forevery key is derived. 

Example: Consolidating the required neighbours values for “K” “Cell1” based 

on distance criteria. In Shuffle Process “K” “Cell1” could have 10 values. But 

in the reducer phase among the 10 neighbours required neighbours are 

identified based on criteria (ex: distance).  

5. Output Phase. In this process the final steps for the SON function are applied 

based on the intended algorithm for the SON use case. 

 

About Container Based Virtualization 
Cloud computing is an emerging domain with following key elements: 

1. Software defined Environments (Infrastructure as a Service (IaaS)) 

2. Software defined Platforms (Platform as a Service (PaaS)) 

3. Software defined Networking and Storage (IaaS) 

4. Orchestration of Cloud environment 

     Majority of Open Source Cloud Operating systems like Open Stack [11] are 

addressing the above key elements.  

 

 
 

Figure 5: Transition of Software model from “Traditional IT” to “Software as a 

Service” cloud computing [13] 

 

     Hypervisors [12] are the key fundamental invention happened in the past two 

decades paying a path for virtualization and cloud computing (managing virtualized 

environment with storage and networking). Virtualization includes all the facets of the 

hardware like compute node, network and storage.  
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Figure 6: Open Stack cloud computing layers [11] 

 

Open Stack simply follows the following design principles: 

 Scalability & Elasticity 

 Everything should be Asynchronous 

 All required components should be horizontally scalable 

 Always use shared nothing architecture (SN) or sharding 

 Distribute everything (move logic to where state naturally exists) 

 Accept eventual consistency and use it where it is appropriate 

 Requires Test with submitted code 

     Along with the virtualization evolution, container based virtualization also started 

emerging. The first successful container from Linux foundation referred as “Linux 

Container” (LXC& LXD) [2] moved the virtualization to next step. LXC was the first 

successful container based virtualization that met the key manifesto addressing the 

isolation of only dependent software for execution. But was complex enough to 

orchestrate multiple layers within the containers. The challenge related to building, 

shipping and running these containers was addressed by Docker [3]. Docker is an 

extension of LXC. Other emerging containers are Rocket[14] and LXD [2] (command 

line tool for LXC)are being explored by open source projects during later 2014. The 

challenge related to orchestrating these LXC containers was addressed by google 

kubernetes [15]open source project. It’s becoming clear the next wave of container 

based virtualization is fast evolving.  

     Hypervisors emulate hardware and they are referred as Virtual Machines (VM). 

While they emulate hardware they also have the complete operating system running 

as part of virtual machines. 

    Containers are based on shared operating systems and specifically rest on single 

Linux instance (for running the Docker or LXC instances on windows machine, Linux 

instance could be an emulated instance using QEMU or windows supported 

hypervisors). They are much thinner than fat virtual machines. Fundamentally this 
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means majority of VM size is reduced and container has only a neat capsule with 

small required dependent software for the application that we run in the container. 

 

 
 

Figure 7: Difference between “Virtual Machine” and “Container based 

Virtualization” [16] 

 

    Guest Operating Systems are in GBs, though the Application could be few MBs. In 

case of LXC based Docker container would comprise Application and its 

dependencies. This key difference brings down the overall resource (memory, CPU) 

consumption of the hardware. Additionally Docker and LXD based utilities are 

available to retain the container process for longer time, spawn based on available 

resources or destroy once the task is done. 

    Adaptation of container brings in our key non-functional requirement “Able to run 

according to the availability of resources (example: Memory, CPU)”.  

 

 

Proposed Execution Technique For SON Use Cases 
By combining the benefits of “Map-Reduce programming model” and “Container 

based virtualization” we are able to address all the identified non-functional 

requirements of SON functionalities and use cases as mentioned in Section 2.  

 

 
 

Figure 8: Execution Technique For SON Use Cases 
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    Execution technique proposed in Figure [8] has two key elements, “SON Job 

Executor” and container virtual instances (includes “LXC based Containers” or virtual 

machines).  

    Pool of SON Job Executor and Containers provide the platform for parallel task 

execution. Job executors are inspired from Map-Reduce[1] Master nodes and 

“Worker Nodes” Containers are inspired from Map-Reduce Worker nodes. Both 

Master nodes and Worker nodes are resilient to failures. The method proposed in 

Map-Reduce[1] for Master and Worker nodes are applicable for “SON Job Executor” 

and “Worker Nodes”. 

    SON Algorithms involves several granular steps in achieving a result for the SON 

use case. The key challenge is executing those steps in a stateless fashion where the 

model is complying with shared nothing architecture [10]. When we are able to design 

a SON algorithm in a stateless way, it becomes easy to run the algorithm in parallel 

on smaller worker threads. In our execution technique “Worker nodes” acts as smaller 

worker threads and “SON Job Executor” executes the algorithm either in parallel or 

fetches the required data from state full nodes. Some of the “Worker nodes” could be 

state full nodes for caching network centric configuration information (could be for 

unavoidable reasons until that part of the algorithms is able to evolve to stateless 

maturity). 

 

 

Applying Proposed Execution Techniqueson SON Use Cases 
 

Automatic Neighbour Relation (ANR) [5, 7 and 9] 

Neighbour Relation plays a crucial role in mobility of user equipment between 

cellular cells. ANR addresses the key aspect of creating optimized neighbour relations 

for every cell in the cellular network. Neighbour relation could be Intra-Radio Access 

Technology (RAT) (eg: within WCDMA across frequencies) or Inter-Radio access 

technology (eg: between LTE and WCDMA). There are technology specific (LTE, 

WCDMA, GSM) restriction about how many neighbour relations each cell could 

potentially have for both Intra and Inter RAT relations. This leads to a situation where 

a generic ANR SON Algorithm could potentially create optimized number of 

neighbour relations based on key handover criteria’s and allowed number of relations. 

ANR is part of “Self Configuration” function. 

    Further in this section we discuss about applying Magnetic Field Model (MFM) [9, 

17] based on ANR algorithm.  

    The Magnetic Field Model (MFM) [17] is inspired and derived from the basic 

behaviour and specification of magnets, in particular, based on their magnitude 

(magnetic field strength) and direction (magnetic poles). An electromagnet is a type 

of magnet in which the magnetic field is generated by the flow of Electric Current 

(EC). The strength of the magnetic field (B) is directly proportional to the strength of 

the EC (I). Thus, by increasing the magnitude of the electric current, them agnitude of 

the magnetic field increases and thereby influences the magnetic field for larger 

distances. In the MFM, each cell is considered as an electromagnet. 
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    Detailed steps of the algorithms are as follows: 

Step 1) Identify the cells for which ANR to be applied (could be subset of the 

cells within the network or the whole network) based on any specific or 

generic criteria. 

Step 2) For each cell perform the steps as mentioned below: 

a) Create cell-pair with other cells in the network. 

b) Find MFM, Repulsion factor “α Tesla”and Attraction factor “βTesla” 

between the cell pairs based on distance and frequency attributes 

(frequency attributes are for Inter and Intra Neighbour relations). 

     Consideration of cell pair distance could bebased on basic user parameter 

(example: < 2 Km) (or)based on empirical path loss models[18] widely used in 

wireless network: 

     Calculate the distance between call-pairs and apply the distance with appropriate 

empirical propagation model and calculate the propagation loss. If the calculated 

propagation loss is within the acceptable range of propagation Repulsion factor α 

Tesla will be higher and Attraction factor β Tesla will lower proportionally. Value of 

α Tesla and β Tesla can be based on calculated propagation loss. 

 

Okumura’s Hata Urban Propagation Model [18] 

This model is intended for large cells with base station being placed higher than the 

surrounding rooftops and meant for 150 to 1500 MHz. 

     PL, urban(d) dB = 69.55 + 2.16 log10(fc)-13.82log10(ht)-a(hr) 

     +(44.9-6.55log10(ht))log10(d) 

     Here, fc is the carrier frequency, ht is the height of the transmitting (base station) 

antenna, hr is the height of the receiving (mobile) antenna, and a(hr) is a correction 

factor for the mobile antenna height based on the size of the coverage area. 

     For ANR case assume hris neighbouring cell. 

 

Cost 231 Extension to Hata Model [18] 

The European Cooperative for Scientific and Technical (COST) research extended the 

Hata model to 2 GHz as follows: 

     PL, urban(d) dB = 69.55 + 2.16 log10(fc)-13.82 log10(ht) - a(hr) 

     +(44.9 - 6.55 log10(ht)) log10(d) + CM 

     CM is 0 dB for medium sized cities and suburbs and is 3 dB for metropolitan areas. 

The remaining parameters are same as (i). 

 

ERCEG Model [18] 

Erceg model is based on 1.9GHz macro cells based on experimental data collected by 

AT&T. The terrains are classified in three categories. Category A is hilly terrain with 

moderate-to-heave tree density and has high path loss. Category B is hilly terrain with 

light tree density or flat terrain with moderate-to-heavy tree density and intermediate 

path loos. Category C is flat terrain with light tree density and has a low path loss. 

     The median path loss at distance d > d0 is given by: 

     PLdB = 20 log 10(4π d0/λ) + 10ϒ log 10(d/d0) + s, for d > d0 

        Here, λ is the wavelength in metres, ϒ is the path-loss exponent with: 
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     ϒ= a - bhb + d/hb 

     hbis the height of the base station in metres (between 10m and 80m), d0= 100 m, 

and a,b,c are constant dependent on the terrain category. These parameters are listed 

in the table below. 

 

Table 1: Parameter Values Based on Terrain 

 

Model Parameter  Terrain Type A Terrain Type B Terrain Type C 

a 4.6 4 3.6 

b 0.0075 0.0065 0.005 

c 12.6 17.1 20 

 

     Model is valid for frequencies close to 2 GHz and for receive antenna heights close 

to 2 m.  

     For other frequencies and antenna heights (between 2 m and 10 m), the following 

correction terms are recommended  

     PLmodified = PL + ΔPLf + ΔPLh 

     Here, PL, is the path loss given earlier, ΔPLf is the frequency term, and ΔPLh is the 

receive antenna height correction terms given as follows:  

     ΔPLf = 6 log10(f/2000)  

     ΔPLh = -10.8 log10(h/2) for Categories A and B 

     ΔPLh = -20 log10(h/2) for Category C 

     For ANR distance “d” is the calculated distance between cell pairs. 

 

a) Identify top neighbour relations based on α Tesla and β Tesla values by sorting 

them appropriately.  

Applying the above steps on proposed execution technique for ANR 

 

 
 

Figure 9: 

 

     1) Identifying the cells for which SON ANR use case to be applied. Since this is 

not more than a query or getting the list of available Cells, SON Job Executor could 
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delegate this task to one of the Worker Node and fetch the details or directly get the 

list of cells from one of the Virtual Machine Worker node that potentially has the 

information of the network topology always cached. In the above Figure 9 “SON Job 

Executor 1” use either “Worker N2-1” for fetching the details or uses “Worker VM4” 

for getting the list from the network topology cache. 

 

 
 

Figure 10: 

 

     2) SON Job Executor has information about available Worker Nodes. From the list 

of cells “SON Job Executor” delegates cell by cell to “Worker Nodes” for parallel 

execution of identifying neighbour relation. Once the worker node successfully 

completes all the sub-steps of step 2, provides the neighbour list back to “SON Job 

Executor”. As in Figure 10“SON Job Executor1” delegates cell by cell to all the 

containers and VMs on Node 1, Node 2, Node 3 and Node 5. 

     Note: Key advantage in such parallel execution is we are able to horizontally scale 

the configuration than traditional vertically scaled nodes. Also, additionally in case of 

failures the method is more resilient than vertically scaled node clusters. Also, the 

horizontally scaled nodes could be cheap commodity hardware rather than expensive 

server grade clusters. 

     3) SON Job Executor receives the “identified neighbour list” and delegates to 

another “Worker” for provisioning the same on the cell. This way the execution 

remains stateless and possibility of re-doing the sub step is highly possible for 

resilient cases. 

     4) If “Worker” does not respond or fails for “SON Job Executors” heart beat 

check, “SON Job Executor” re-delegates the same to another “Worker” container.  

 

Neighbour List Optimization (NLO) 

Optimization of neighbour list is part of “Self Optimization” function of SON. It 

almost follows the algorithm as specified in Section [4.1]. Only key difference is in 

sub-step of overall Step 2) where α Tesla and β Tesla values are derived based HO 

success ratio. At the end of overall step 2) neighbour lists are sorted based for α Tesla 

and β Tesla values for Inter and Intra NLO respectively. 
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Basic Uplink and Downlink Parameter Optimization 

Physical Cell-ID (PCI) [17] and Physical Random access channel (PRACH) [17] are 

basic parameter configuration for LTE downlink and uplink parameters. MFM 

technique [17] can be applied with proposed execution technique for quick allocation. 

 

 

Evaluations and Analysis 
In this section we evaluate and analyse the effect of proposed execution technique 

pertaining to Execution time for different data sets and expressing them with Big-O 

notation. Also, evaluating and analysing the impact on Memory, Resilience behaviour 

of the proposed execution technique. Finally we are able to clearly conclude that there 

is definitely a trade-off between Execution time, memory and Resilience behaviour.  

 

Execution Time Based on Rate of Growth 

Asymptotic analysis of each step specified in the SON ANR algorithm used in 

Section [4.1] is as follows: 

 

Table 2: Big-O Asymptotic Analysis of proposed SON ANR algorithm 

 

Step Total Time Big O 

notation 

Step 1) Identify cells for which 

neighbour relations to be 

defined. 

A constant time “c” * “n” number of 

cells in the network. (cn) 

O(n) 

Step 2 a) Create cell-pair with 

other cells in the network. 

A constant time “c” *number of cells in 

network “n” *number of other cells in 

the network “n-1” = “c” * “n” * (n-1) = 

cn
2
–cn 

O(n
2
) 

Step 2 b) Find MFM α Tesla 

(Repulsion factor) and β Tesla 

(Attraction factor) 

α Tesla = cn
2 

β Tesla = cn
2
 

O(2n
2
) 

Step 2 c) Sort the identified 

neighbour relations based on α 

Tesla (Repulsion factor) and β 

Tesla (Attraction factor) values. 

Bubble sort [22]: 

α Tesla = cn
2 

β Tesla = cn
2
 

O(2n
2
) 

Step 2) Repeat Step 2 for each 

cell from the list of identified 

cells in Step 1. 

Total time of Step 2 a) to Step 2 c)  

For sequential case: 

cells in network “n” *( 2a + 2b + 2c) = “n” * 

((cn
2
 – cn) + (2cn

2
) + (2cn

2
)) = 5cn

3
-cn

2
 

O(5n
3
) 

Step 2) Repeat Step 2 for each 

cell from the list of identified 

cells in Step 1. 

Total time of Step 2 a) to Step 2 c)  

For Parallel case (Proposed technique 

in this paper): 

 ( 2a + 2b + 2c) = 5cn
2
-cn 

O(5n
2
) 

     Let f(n) be the function which represents the given algorithm (SON ANR 

algorithm in sequential case).  
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     f(n) = Step 1 (n) + Step 2 (5cn
3
- cn

2
) 

      “a posteriori” for f(n) from the above table is: 

     f(n) = 5cn
3
- cn

2
+n 

     Big-O Notation => O(f(n)) = 5n
3 

     Let p(n) be the function which represents the given algorithm (SON ANR 

algorithm in parallel case). 

     p(n) = Step 1 (n) + Step 2 (5cn
2 
- cn) 

      “a posteriori” for p(n) from the above table is: 

     p(n) = 5cn
2 
- cn+n 

     Since the proposed architecture is primarily inspired from Map-Reduce 

programming model, let m(n) be the Map-Reduce asymptotic function. (Empty 

implementation in Map & Reduce interface for overhead calculation)  

      “a priori” of such MapReduce function is: 

     m(n) = n log n * total_nodes * (1/communication_time_between_nodes) where n 

is number of items. communication_time_between_nodes could be a basic ping as 

well. 

     Combining “a priori” m(n) with “a posteriori” p(n)which indicates proposed 

technique function: 

     pm(n) = n log n * total_nodes * (1/communication_time_between_nodes) + 5cn
2
- 

cn+n, where n is “number of cells” based on SON ANR algorithm, positive constant c 

such that  

     0 ≤p(n) ≤ c * O(pm(n)) 

     Big-O Notation => O(pm(n)) = 5n
2 

     Finally,Equation to compare isas follows: 

     f(n) = 5cn
3
- cn

2
+n, where 0 ≤ f(n) ≤ c * O(f(n)) Equation 1 

     pm(n) = 5cn
2 

- cn+n +(nlog(n)*total_nodes*(1/communication_time_ 

between_nodes)) Equation 2 

     Equation 1 denotes the rate of growth when “n” (number of cell) increases.  

     Equation 2 denotes the rate of growth when “n” (number of cell) increases.  

 

 
 

Figure 11: “Rate of Growth” of f(n) and pm(n) over the Input Size “n” 
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Table 3: Sample Data Representing “Rate of Growth” 

 

n n log n log n 5n3 n2 5n2 

Total 

Nodes pm(n) f(n) 

1 0 0 5 1 5 15 5 5 

10 10 1 5000 100 500 15 650 4910 

20 26.0206 1.30103 40000 400 2000 15 2390 39620 

30 44.31364 1.477121 135000 900 4500 15 5165 134130 

40 64.0824 1.60206 320000 1600 8000 15 8961 318440 

50 84.9485 1.69897 625000 2500 12500 15 13774 622550 

60 106.6891 1.778151 1080000 3600 18000 15 19600 1076460 

     We could see when “n” (number of cells) increases for SON ANR pm(n) 

(proposed technique) performs significantly better than sequential execution f(n).  

 

Resilience or Single Point of Failure 

Map-Reduce programming model is very resilient compared to sequential execution 

model. In the proposed technique “SON Job Executor” is capable of re-spawning the 

worker containers in case of failures (due to communication or software un-

responsiveness). 

 

Memory 

There is no significant difference in memory difference between sequential execution 

model and proposed technique. Proposed technique has memory overhead of 

container software that is significantly less when compared to vertically scaled 

systems (with dedicated operating systems). LXC based containers do consume 

memory overhead when number of LXC container increase. But, that overhead is 

significantly less when compared to the trade-off with “Execution time” and 

resilience nature of the proposed algorithm. 

 

 

Conclusions 
The proposed technique “Adopting Map-Reduce programming model with container 

based virtualization for Self-Organizing Networks” clearly shows significant 

advantage pertaining to “Execution Time” and “Resilience” (no single point of 

failure). Hence we could clearly see the key expectation of Centralized SON is met in 

the proposed technique. Further the paper could be extended for other Centralized 

SON use cases in detail. 

     Container based virtualization techniques helps in realizing the heterogeneous 

needs of the SON use cases with Map-Reduce programming model. 

 

 

Appendix 
The containers used for evaluating the effectiveness of the proposed technique are 

available at Docker repository[19] with container named “mfm” container. Use 
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“docker pull premnathkn/mfm” command to pull the repository into your local 

container. 

     The MFM codebase is available as open source in public repository [20, 21] for 

further reference. 
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