
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 11 (2015) pp. 29539-29554

© Research India Publications

http://www.ripublication.com

Adapting Map-Reduce Programming Model With

Container Based Virtualization For Self-Organizing

Networks

Premnath KN
1)

, Dr. Srinivasan R
2)

 and Dr. Elijah Blessing Rajsingh
3)

School of Computer Science and Engineering, Karunya University, Coimbatore,

Tamil Nadu, India
1)

premnathkn@gmail.com
2)

srini0402@gmail.com

and
3)

 elijahblessing@karunya.edu

Abstract

This paper presents and puts forward an execution technique that could

potentially address the need of Centralized Self-Organizing Networks (SON)

use cases, considering the high data load and quick processing need for

network wide data. Key challenges faced in Centralized SON use cases are to

do with processing Key Performance Indicators (KPIs) of the network quickly

and also to cater the need for evolving network topology. KPIs are generally

derived from network events, performance counters that are periodically

collected from the multi-technology, multi-vendor and multi-layer

Heterogeneous Network. The needs of the SON use cases are addressed by

applying well-known Map-Reduce [1] programming model with newly

emerging container based virtualization [2, 3] techniques. To demonstrate the

validity of proposed execution technique, performances of generic algorithms

used by SON use-cases are evaluated. Evaluation results illustrate that these

execution techniques can achieve significantly higher performance with

commodity hardware.

Introduction

About centralized SON and need of computing.

Centralized SON solution [4, 5] is becoming a de-facto method when network wide

data to be considered for SON use cases [6, 7]. Network wide KPIs are generally

collected by respective Element Management (EM) or Operations Support Systems

(OSS) software. OSS Software is generally provided by respective equipment

vendors. Periodicity, data format and KPIs also differ for each technology, though

they intend to provide the same high level meaning like network quality, capacity

utilization, energy consumption etc., With the introduction of Software Defined

29540 Premnath KN
1

Networks (SDN) [8] the network topology and flow control of the traffic is becoming

more dynamic than the traditional statically configured networks. Centralized SON

solution typically follows the cycle of “Collecting data” (both network Configuration

and KPIs), “Processing data” (based on measurements and performance counters,

KPIs) and performs network changes based on the algorithms of SON use cases [9].

Additionally SON use cases are addressed as part of “Self Configuration”, “Self

Optimization” and “Self-Healing” functionalities [6] which indicates the applicability

of SON use cases across all the phases of Network evolution (Network Planning,

Design, maintenance and Optimization). All SON use cases [7, 9] can be realized as

Centralized SON solution in Network Management System (NMS) level. Further in

the paper SON functionalities refers to “Self-Configuration”, “Self-Optimization” and

“Self-Healing”. SON use cases refer to the following mind map derived from 3GPP

and NGMN standards [5, 7].

Figure 1: SON Use-cases [5, 7]

 The key objective of Centralized SON during “Self Optimization” phase is to

continuously tune the network that runs in Optimized level according to the changing

network traffic. Some of the prominent SON use cases that require such immediate

adaptations are Coverage and Capacity Optimization (CCO), Load Balancing (LB)

and Dynamic Automatic Neighbour Relation (ANR). These use cases involves

processing large network events, KPIs for every cell and its interference level with

neighbouring cells. Current systems are not able to handle such high load quickly.

Sometimes the optimization takes more than 8 hours in worst case for technologies

like GSM frequency optimization cases. This leads to optimization of network with

past condition rather than current behaviour. The expected changes for CCO, LB and

ANR are less than 15 minutes. Or sometimes close to real time.

 To meet such objectives adapting efficient algorithms [9] is required.

 This paper proposes Map-Reduce programming model with container based

virtualization for Self-Organizing Networks.

 Further paper is organized as follows. Section 2 contains a detailed description of

execution technique of Map-Reduce programming model with container based

virtualization and additionally with the task distributing principles.

Section 3 Execution technique proposal for SON use cases. Section 4 Applying

proposed execution techniques on SON ANR Use case Section 5Evaluation and

Adapting Map-Reduce Programming Model With Container Based et. al. 29541

Analysis of proposed techniques on SON ANR uses case, and followed by a

conclusion in Section 6.

Proposed Execution Technique and Principles
The key technical or non-functional requirements for addressing the needs of

Centralized SON use cases are:

1. Processing large data sets

2. Parallel execution of algorithm for every intended network element across

available resources. (Example: LTE cells, WCDMA cells etc.,)

3. Resilient to failures (both hardware and software crashes)

4. Efficient execution time

5. Shared nothing architecture [10]

6. Able to run according to the availability of resources (Example: Memory,

CPU)

7. No single point of failure

 From the emerging architectural recommendation in analytics area, Map-Reduce

[1] programming model as proposed by google engineers looks very promising in the

addressing the above need from I to IV.

 Recent advancement in cloud computing [11, 2 and3] looks very promising for the

above need from V to VII.

About Map-Reduce Programming Model

Map-Reduce is a programming model, with an associated implementation for

processing and generating large data sets [1]. As specified in the Map-Reduce paper

[1] many real world tasks are expressible in this model. Programs are specifically

written in a functional style. Hence they are automatically parallelized and executed

on a large cluster of commodity hardware.

 The computation takes a set of input key/value pairs, and produces a set of output

key/value pairs. The user of the Map-Reduce library expresses the computation as two

functions: Map and Reduce. Map, written by the user, takes an input pair and

produces a set of intermediate key/value pairs. The Map-Reduce library groups

together all intermediate values associated with the same intermediate key “K” and

passes them to the Reduce function. The Reduce function, also written by the user,

accepts an intermediate key “K” and a set of values for that key. It merges together

these values to form a possibly smaller set of values. Typically just zero or one output

value is produced per Reduce invocation. The intermediate values are supplied to the

user’s reduce function via an iterator. This allows us to handle lists of values that are

too large to fit in memory.[1]

29542 Premnath KN
1

Figure 2: Overall process of Map-Reduce

Figure 3: Execution Overview [1]

Figure 4: Execution Overview

 Due to the above distinct functional phases as in Figure [4], it is easy to run several

tasks in parallel.

1. Input files. These are normal static files stored across clusters (with

redundancy/backup), normally referred as HDFS (Hadoop Distributed File

System) or GFS (Google File System) in case of google. Instead of Input file

in our adaptation for SON we will send chunks of network elements that are

intended to be addressed by a SON function.

2. Map Phase/Mapping process. In this phase network element performs a

specific task. For example, identifying neighboring cells based on distance,

hand over statistics etc… For the key (“K”) “Cell1” the intended values are

neighbouring “Cell2” with distance value and so on. Mapping the

Output files
Reduce Phase

(Reducing
Process)

Intermediate
Phase (Shuffle

Process)

Map Phase
(Mapping
Process)

Input files

Inputs

• Input Data on
Node 1

• Input Data on
Node 2

• Input Data on
Node 3
• …

Mapping Process
(Map Phase)

• Key1 – Value 1
• Key2 – Value 1

• Key1 – Value 2

• ….

Shuffle Process
(Master Node)

• Key1 -
<Value1, Value

2…)
• Key2 -

<Value1, Value
2…)

Reducer Process

• Key1 - <Final
Value 1>

• Key2 - <Fianl
Value 2>

Output Data

• Applying final
steps on Key-
Value pairs

Adapting Map-Reduce Programming Model With Container Based et. al. 29543

neighbouring cell valueis written in Mapper function as part of SON algorithm

implementation.

3. Intermediate Phase (Shuffle Process). In this process all the values of a

specific key “K” are grouped together in individual nodes. For a specific key

“K” Cell1 all its neighbours are shuffled and grouped together as “Value1,

Value2, Value3…”

4. Reducer Phase. In this process the final value forevery key is derived.

Example: Consolidating the required neighbours values for “K” “Cell1” based

on distance criteria. In Shuffle Process “K” “Cell1” could have 10 values. But

in the reducer phase among the 10 neighbours required neighbours are

identified based on criteria (ex: distance).

5. Output Phase. In this process the final steps for the SON function are applied

based on the intended algorithm for the SON use case.

About Container Based Virtualization
Cloud computing is an emerging domain with following key elements:

1. Software defined Environments (Infrastructure as a Service (IaaS))

2. Software defined Platforms (Platform as a Service (PaaS))

3. Software defined Networking and Storage (IaaS)

4. Orchestration of Cloud environment

 Majority of Open Source Cloud Operating systems like Open Stack [11] are

addressing the above key elements.

Figure 5: Transition of Software model from “Traditional IT” to “Software as a

Service” cloud computing [13]

 Hypervisors [12] are the key fundamental invention happened in the past two

decades paying a path for virtualization and cloud computing (managing virtualized

environment with storage and networking). Virtualization includes all the facets of the

hardware like compute node, network and storage.

29544 Premnath KN
1

Figure 6: Open Stack cloud computing layers [11]

Open Stack simply follows the following design principles:

 Scalability & Elasticity

 Everything should be Asynchronous

 All required components should be horizontally scalable

 Always use shared nothing architecture (SN) or sharding

 Distribute everything (move logic to where state naturally exists)

 Accept eventual consistency and use it where it is appropriate

 Requires Test with submitted code

 Along with the virtualization evolution, container based virtualization also started

emerging. The first successful container from Linux foundation referred as “Linux

Container” (LXC& LXD) [2] moved the virtualization to next step. LXC was the first

successful container based virtualization that met the key manifesto addressing the

isolation of only dependent software for execution. But was complex enough to

orchestrate multiple layers within the containers. The challenge related to building,

shipping and running these containers was addressed by Docker [3]. Docker is an

extension of LXC. Other emerging containers are Rocket[14] and LXD [2] (command

line tool for LXC)are being explored by open source projects during later 2014. The

challenge related to orchestrating these LXC containers was addressed by google

kubernetes [15]open source project. It’s becoming clear the next wave of container

based virtualization is fast evolving.

 Hypervisors emulate hardware and they are referred as Virtual Machines (VM).

While they emulate hardware they also have the complete operating system running

as part of virtual machines.

 Containers are based on shared operating systems and specifically rest on single

Linux instance (for running the Docker or LXC instances on windows machine, Linux

instance could be an emulated instance using QEMU or windows supported

hypervisors). They are much thinner than fat virtual machines. Fundamentally this

Adapting Map-Reduce Programming Model With Container Based et. al. 29545

means majority of VM size is reduced and container has only a neat capsule with

small required dependent software for the application that we run in the container.

Figure 7: Difference between “Virtual Machine” and “Container based

Virtualization” [16]

 Guest Operating Systems are in GBs, though the Application could be few MBs. In

case of LXC based Docker container would comprise Application and its

dependencies. This key difference brings down the overall resource (memory, CPU)

consumption of the hardware. Additionally Docker and LXD based utilities are

available to retain the container process for longer time, spawn based on available

resources or destroy once the task is done.

 Adaptation of container brings in our key non-functional requirement “Able to run

according to the availability of resources (example: Memory, CPU)”.

Proposed Execution Technique For SON Use Cases
By combining the benefits of “Map-Reduce programming model” and “Container

based virtualization” we are able to address all the identified non-functional

requirements of SON functionalities and use cases as mentioned in Section 2.

Figure 8: Execution Technique For SON Use Cases

29546 Premnath KN
1

 Execution technique proposed in Figure [8] has two key elements, “SON Job

Executor” and container virtual instances (includes “LXC based Containers” or virtual

machines).

 Pool of SON Job Executor and Containers provide the platform for parallel task

execution. Job executors are inspired from Map-Reduce[1] Master nodes and

“Worker Nodes” Containers are inspired from Map-Reduce Worker nodes. Both

Master nodes and Worker nodes are resilient to failures. The method proposed in

Map-Reduce[1] for Master and Worker nodes are applicable for “SON Job Executor”

and “Worker Nodes”.

 SON Algorithms involves several granular steps in achieving a result for the SON

use case. The key challenge is executing those steps in a stateless fashion where the

model is complying with shared nothing architecture [10]. When we are able to design

a SON algorithm in a stateless way, it becomes easy to run the algorithm in parallel

on smaller worker threads. In our execution technique “Worker nodes” acts as smaller

worker threads and “SON Job Executor” executes the algorithm either in parallel or

fetches the required data from state full nodes. Some of the “Worker nodes” could be

state full nodes for caching network centric configuration information (could be for

unavoidable reasons until that part of the algorithms is able to evolve to stateless

maturity).

Applying Proposed Execution Techniqueson SON Use Cases

Automatic Neighbour Relation (ANR) [5, 7 and 9]

Neighbour Relation plays a crucial role in mobility of user equipment between

cellular cells. ANR addresses the key aspect of creating optimized neighbour relations

for every cell in the cellular network. Neighbour relation could be Intra-Radio Access

Technology (RAT) (eg: within WCDMA across frequencies) or Inter-Radio access

technology (eg: between LTE and WCDMA). There are technology specific (LTE,

WCDMA, GSM) restriction about how many neighbour relations each cell could

potentially have for both Intra and Inter RAT relations. This leads to a situation where

a generic ANR SON Algorithm could potentially create optimized number of

neighbour relations based on key handover criteria’s and allowed number of relations.

ANR is part of “Self Configuration” function.

 Further in this section we discuss about applying Magnetic Field Model (MFM) [9,

17] based on ANR algorithm.

 The Magnetic Field Model (MFM) [17] is inspired and derived from the basic

behaviour and specification of magnets, in particular, based on their magnitude

(magnetic field strength) and direction (magnetic poles). An electromagnet is a type

of magnet in which the magnetic field is generated by the flow of Electric Current

(EC). The strength of the magnetic field (B) is directly proportional to the strength of

the EC (I). Thus, by increasing the magnitude of the electric current, them agnitude of

the magnetic field increases and thereby influences the magnetic field for larger

distances. In the MFM, each cell is considered as an electromagnet.

Adapting Map-Reduce Programming Model With Container Based et. al. 29547

 Detailed steps of the algorithms are as follows:

Step 1) Identify the cells for which ANR to be applied (could be subset of the

cells within the network or the whole network) based on any specific or

generic criteria.

Step 2) For each cell perform the steps as mentioned below:

a) Create cell-pair with other cells in the network.

b) Find MFM, Repulsion factor “α Tesla”and Attraction factor “βTesla”

between the cell pairs based on distance and frequency attributes

(frequency attributes are for Inter and Intra Neighbour relations).

 Consideration of cell pair distance could bebased on basic user parameter

(example: < 2 Km) (or)based on empirical path loss models[18] widely used in

wireless network:

 Calculate the distance between call-pairs and apply the distance with appropriate

empirical propagation model and calculate the propagation loss. If the calculated

propagation loss is within the acceptable range of propagation Repulsion factor α

Tesla will be higher and Attraction factor β Tesla will lower proportionally. Value of

α Tesla and β Tesla can be based on calculated propagation loss.

Okumura’s Hata Urban Propagation Model [18]

This model is intended for large cells with base station being placed higher than the

surrounding rooftops and meant for 150 to 1500 MHz.

 PL, urban(d) dB = 69.55 + 2.16 log10(fc)-13.82log10(ht)-a(hr)

 +(44.9-6.55log10(ht))log10(d)

 Here, fc is the carrier frequency, ht is the height of the transmitting (base station)

antenna, hr is the height of the receiving (mobile) antenna, and a(hr) is a correction

factor for the mobile antenna height based on the size of the coverage area.

 For ANR case assume hris neighbouring cell.

Cost 231 Extension to Hata Model [18]

The European Cooperative for Scientific and Technical (COST) research extended the

Hata model to 2 GHz as follows:

 PL, urban(d) dB = 69.55 + 2.16 log10(fc)-13.82 log10(ht) - a(hr)

 +(44.9 - 6.55 log10(ht)) log10(d) + CM

 CM is 0 dB for medium sized cities and suburbs and is 3 dB for metropolitan areas.

The remaining parameters are same as (i).

ERCEG Model [18]

Erceg model is based on 1.9GHz macro cells based on experimental data collected by

AT&T. The terrains are classified in three categories. Category A is hilly terrain with

moderate-to-heave tree density and has high path loss. Category B is hilly terrain with

light tree density or flat terrain with moderate-to-heavy tree density and intermediate

path loos. Category C is flat terrain with light tree density and has a low path loss.

 The median path loss at distance d > d0 is given by:

 PLdB = 20 log 10(4π d0/λ) + 10ϒ log 10(d/d0) + s, for d > d0

 Here, λ is the wavelength in metres, ϒ is the path-loss exponent with:

29548 Premnath KN
1

 ϒ= a - bhb + d/hb

 hbis the height of the base station in metres (between 10m and 80m), d0= 100 m,

and a,b,c are constant dependent on the terrain category. These parameters are listed

in the table below.

Table 1: Parameter Values Based on Terrain

Model Parameter Terrain Type A Terrain Type B Terrain Type C

a 4.6 4 3.6

b 0.0075 0.0065 0.005

c 12.6 17.1 20

 Model is valid for frequencies close to 2 GHz and for receive antenna heights close

to 2 m.

 For other frequencies and antenna heights (between 2 m and 10 m), the following

correction terms are recommended

 PLmodified = PL + ΔPLf + ΔPLh

 Here, PL, is the path loss given earlier, ΔPLf is the frequency term, and ΔPLh is the

receive antenna height correction terms given as follows:

 ΔPLf = 6 log10(f/2000)

 ΔPLh = -10.8 log10(h/2) for Categories A and B

 ΔPLh = -20 log10(h/2) for Category C

 For ANR distance “d” is the calculated distance between cell pairs.

a) Identify top neighbour relations based on α Tesla and β Tesla values by sorting

them appropriately.

Applying the above steps on proposed execution technique for ANR

Figure 9:

 1) Identifying the cells for which SON ANR use case to be applied. Since this is

not more than a query or getting the list of available Cells, SON Job Executor could

Adapting Map-Reduce Programming Model With Container Based et. al. 29549

delegate this task to one of the Worker Node and fetch the details or directly get the

list of cells from one of the Virtual Machine Worker node that potentially has the

information of the network topology always cached. In the above Figure 9 “SON Job

Executor 1” use either “Worker N2-1” for fetching the details or uses “Worker VM4”

for getting the list from the network topology cache.

Figure 10:

 2) SON Job Executor has information about available Worker Nodes. From the list

of cells “SON Job Executor” delegates cell by cell to “Worker Nodes” for parallel

execution of identifying neighbour relation. Once the worker node successfully

completes all the sub-steps of step 2, provides the neighbour list back to “SON Job

Executor”. As in Figure 10“SON Job Executor1” delegates cell by cell to all the

containers and VMs on Node 1, Node 2, Node 3 and Node 5.

 Note: Key advantage in such parallel execution is we are able to horizontally scale

the configuration than traditional vertically scaled nodes. Also, additionally in case of

failures the method is more resilient than vertically scaled node clusters. Also, the

horizontally scaled nodes could be cheap commodity hardware rather than expensive

server grade clusters.

 3) SON Job Executor receives the “identified neighbour list” and delegates to

another “Worker” for provisioning the same on the cell. This way the execution

remains stateless and possibility of re-doing the sub step is highly possible for

resilient cases.

 4) If “Worker” does not respond or fails for “SON Job Executors” heart beat

check, “SON Job Executor” re-delegates the same to another “Worker” container.

Neighbour List Optimization (NLO)

Optimization of neighbour list is part of “Self Optimization” function of SON. It

almost follows the algorithm as specified in Section [4.1]. Only key difference is in

sub-step of overall Step 2) where α Tesla and β Tesla values are derived based HO

success ratio. At the end of overall step 2) neighbour lists are sorted based for α Tesla

and β Tesla values for Inter and Intra NLO respectively.

29550 Premnath KN
1

Basic Uplink and Downlink Parameter Optimization

Physical Cell-ID (PCI) [17] and Physical Random access channel (PRACH) [17] are

basic parameter configuration for LTE downlink and uplink parameters. MFM

technique [17] can be applied with proposed execution technique for quick allocation.

Evaluations and Analysis
In this section we evaluate and analyse the effect of proposed execution technique

pertaining to Execution time for different data sets and expressing them with Big-O

notation. Also, evaluating and analysing the impact on Memory, Resilience behaviour

of the proposed execution technique. Finally we are able to clearly conclude that there

is definitely a trade-off between Execution time, memory and Resilience behaviour.

Execution Time Based on Rate of Growth

Asymptotic analysis of each step specified in the SON ANR algorithm used in

Section [4.1] is as follows:

Table 2: Big-O Asymptotic Analysis of proposed SON ANR algorithm

Step Total Time Big O

notation

Step 1) Identify cells for which

neighbour relations to be

defined.

A constant time “c” * “n” number of

cells in the network. (cn)

O(n)

Step 2 a) Create cell-pair with

other cells in the network.

A constant time “c” *number of cells in

network “n” *number of other cells in

the network “n-1” = “c” * “n” * (n-1) =

cn
2
–cn

O(n
2
)

Step 2 b) Find MFM α Tesla

(Repulsion factor) and β Tesla

(Attraction factor)

α Tesla = cn
2

β Tesla = cn
2

O(2n
2
)

Step 2 c) Sort the identified

neighbour relations based on α

Tesla (Repulsion factor) and β

Tesla (Attraction factor) values.

Bubble sort [22]:

α Tesla = cn
2

β Tesla = cn
2

O(2n
2
)

Step 2) Repeat Step 2 for each

cell from the list of identified

cells in Step 1.

Total time of Step 2 a) to Step 2 c)

For sequential case:

cells in network “n” *(2a + 2b + 2c) = “n” *

((cn
2
 – cn) + (2cn

2
) + (2cn

2
)) = 5cn

3
-cn

2

O(5n
3
)

Step 2) Repeat Step 2 for each

cell from the list of identified

cells in Step 1.

Total time of Step 2 a) to Step 2 c)

For Parallel case (Proposed technique

in this paper):

 (2a + 2b + 2c) = 5cn
2
-cn

O(5n
2
)

 Let f(n) be the function which represents the given algorithm (SON ANR

algorithm in sequential case).

Adapting Map-Reduce Programming Model With Container Based et. al. 29551

 f(n) = Step 1 (n) + Step 2 (5cn
3
- cn

2
)

 “a posteriori” for f(n) from the above table is:

 f(n) = 5cn
3
- cn

2
+n

 Big-O Notation => O(f(n)) = 5n
3

 Let p(n) be the function which represents the given algorithm (SON ANR

algorithm in parallel case).

 p(n) = Step 1 (n) + Step 2 (5cn
2
- cn)

 “a posteriori” for p(n) from the above table is:

 p(n) = 5cn
2
- cn+n

 Since the proposed architecture is primarily inspired from Map-Reduce

programming model, let m(n) be the Map-Reduce asymptotic function. (Empty

implementation in Map & Reduce interface for overhead calculation)

 “a priori” of such MapReduce function is:

 m(n) = n log n * total_nodes * (1/communication_time_between_nodes) where n

is number of items. communication_time_between_nodes could be a basic ping as

well.

 Combining “a priori” m(n) with “a posteriori” p(n)which indicates proposed

technique function:

 pm(n) = n log n * total_nodes * (1/communication_time_between_nodes) + 5cn
2
-

cn+n, where n is “number of cells” based on SON ANR algorithm, positive constant c

such that

 0 ≤p(n) ≤ c * O(pm(n))

 Big-O Notation => O(pm(n)) = 5n
2

 Finally,Equation to compare isas follows:

 f(n) = 5cn
3
- cn

2
+n, where 0 ≤ f(n) ≤ c * O(f(n)) Equation 1

 pm(n) = 5cn
2

- cn+n +(nlog(n)*total_nodes*(1/communication_time_

between_nodes)) Equation 2

 Equation 1 denotes the rate of growth when “n” (number of cell) increases.

 Equation 2 denotes the rate of growth when “n” (number of cell) increases.

Figure 11: “Rate of Growth” of f(n) and pm(n) over the Input Size “n”

0

200000

400000

600000

800000

1000000

1200000

1 10 20 30 40 50 60

R
at

e
 o

f
G

ro
w

th

Input Size

Overall Exeution Factor

pm(n)

f(n)

29552 Premnath KN
1

Table 3: Sample Data Representing “Rate of Growth”

n n log n log n 5n3 n2 5n2

Total

Nodes pm(n) f(n)

1 0 0 5 1 5 15 5 5

10 10 1 5000 100 500 15 650 4910

20 26.0206 1.30103 40000 400 2000 15 2390 39620

30 44.31364 1.477121 135000 900 4500 15 5165 134130

40 64.0824 1.60206 320000 1600 8000 15 8961 318440

50 84.9485 1.69897 625000 2500 12500 15 13774 622550

60 106.6891 1.778151 1080000 3600 18000 15 19600 1076460

 We could see when “n” (number of cells) increases for SON ANR pm(n)

(proposed technique) performs significantly better than sequential execution f(n).

Resilience or Single Point of Failure

Map-Reduce programming model is very resilient compared to sequential execution

model. In the proposed technique “SON Job Executor” is capable of re-spawning the

worker containers in case of failures (due to communication or software un-

responsiveness).

Memory

There is no significant difference in memory difference between sequential execution

model and proposed technique. Proposed technique has memory overhead of

container software that is significantly less when compared to vertically scaled

systems (with dedicated operating systems). LXC based containers do consume

memory overhead when number of LXC container increase. But, that overhead is

significantly less when compared to the trade-off with “Execution time” and

resilience nature of the proposed algorithm.

Conclusions
The proposed technique “Adopting Map-Reduce programming model with container

based virtualization for Self-Organizing Networks” clearly shows significant

advantage pertaining to “Execution Time” and “Resilience” (no single point of

failure). Hence we could clearly see the key expectation of Centralized SON is met in

the proposed technique. Further the paper could be extended for other Centralized

SON use cases in detail.

 Container based virtualization techniques helps in realizing the heterogeneous

needs of the SON use cases with Map-Reduce programming model.

Appendix
The containers used for evaluating the effectiveness of the proposed technique are

available at Docker repository[19] with container named “mfm” container. Use

Adapting Map-Reduce Programming Model With Container Based et. al. 29553

“docker pull premnathkn/mfm” command to pull the repository into your local

container.

 The MFM codebase is available as open source in public repository [20, 21] for

further reference.

Acknowledgements
The authors would like to thank Department of computer science, Karunya University

for the facilities, guidance and support provided for performing research. Additionally

authors would like to thank their work affiliations for encouraging employees to

perform research that would benefit the “Information and Communication

Technology” industry.

References

[1] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters”, Google Inc., OSDI 2004, Paper available at

http://static.googleusercontent.com/media/research.google.com/en//archive

/mapreduce-osdi04.pdf

[2] Linux Container, https://linuxcontainers.org/

[3] Docker, https://www.docker.com/

[4] Premnath, K N and Dr. Srinivas R, “Challenges in Self Organizing

Networks for Wireless Telecommunications”, ICRTIT 2011, IEEE

Chennai, Paper available at http://ieeexplore.ieee.org/search/frees

rchabstract.jsp?reload=true&navigation=no&arnumber=5972332

[5] 3GPP TR 36.902, V9.3.1, “Self-configuring and self-optimizing network

(SON) use cases and solutions,” December 2011.

[6] NGMN, “NGMN Releases Requirements on Self-Optimising Networks”,

January 2009. Available at http://www.ngmn.org/news/ngmnnews/

newssingle2/article/ngmn-releases-requirements-on-self-optimising-

networks-248.html

[7] NGMN, “NGMN Recommendation on SON and O&M Requirements”,

December 2008. Available at

http://www.ngmn.org/uploads/media/NGMN_Recommendation_on_SON

_and_O_M_Requirements.pdf

[8] SDN, “Software-Defined Networking(SDN) Definition”, Available at

https://www.opennetworking.org/sdn-resources/sdn-definition

[9] Premnath K N, Dr. Rajavelu Srinivasan and Dr. Elijah Blessing Rajsingh,

“Magnetic Field Model (MFM) in Soft Computing and parallelization

techniques for Self Organizing Networks (SON) in Telecommunications”,

October 2014, Available at http://www.igi-global.com/article/magnetic-

field-model-mfm-in-soft-computing-and- parallelization-techniques-for-

self-organizing-networks-son-in-telecommunications/118205

29554 Premnath KN
1

[10] Shared Nothing Architecture, “Definition at Sprinter”, Available at

http://link.springer.com/referenceworkentry/10.1007%2F978-0-387-

39940-9_1512

[11] Open Stack, “Open source software for creating private and public

clouds”, Available athttp://www.openstack.org/

[12] Hypervisor, “A hypervisor or virtual machine monitor (VMM) is a piece

of computer software, firmware or hardware that creates and runs virtual

machines”, Available at http://en.wikipedia.org/wiki/Hypervisor

[13] Cloud 101, “What IaaS, PaaS and SaaS companies do”, Available at,

http://venturebeat.com/2011/11/14/cloud-iaas-paas-saas/

[14] Rocket, “Core OS is building a container runtime, Rocket”, Available at

https://coreos.com/blog/rocket/

[15] Kubernetes, “Kubernetes is an open source system for managing

containerized applications across multiple hosts”, Available at https:

//github.com/googlecloudplatform/kubernetes

[16] Virtualization Info, “Difference between VM and Container”, Available at

http://virtualization.info/en/

[17] Premnath K N, Pankajkumar Pradhan, Darshan R and Lars Christoph,

“Self-configuration of basic LTE radio parameters using Magnetic Field

Model”, IWSON2 Paris, Available athttp://ieeexplore.ieee.org/

xpl/articleDetails.jsp?reload=true&navigation=no&arnumber=6328325

[18] Raj Jain, “Channle Models A Tutorial”, Available at http://www.cse.

wustl.edu/~jain/cse574-08/ftp/channel_model_tutorial.pdf

[19] MFM Container, “At Docker Hub”, Available at https://hub.docker.

com/u/premnathkn/mfm

[20] MFM Codebase, “At google code”, Available at https://code.google.

com/p/mfm-simulation/

[21] MFM Codebase, “At Git Hub”, Available at https://github.com/

premnathkn/trunk.git

[22] Narasimha Karumanchi, “Data Structures and Algorithms Made Easy”,

ISBN 978-0-615-45981-3”

