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Abstract 
 

Natural convection heat transfer in enclosures find many applications such as 
heating and cooling of buildings, solar energy utilization, thermal energy 
storage, cooling of electrical and electronic components etc.   In the present 
study, Numerical Investigation is conducted in a square cavity with one 
vertical wall maintained at a constant temperature and varying temperature in 
the opposing vertical wall. The governing vorticity and energy equations are 
solved by finite difference methods including Alternating Direction Implicit 
(ADI) and Successive Over Relaxation (SOR) techniques with C coding. 
Steady state isotherms and streamlines are obtained for Prandtl numbers 
0.7(air) and 10.0(water). The contours of streamlines and isothermal lines are 
presented for all the range of temperatures investigated. Changes in the 
streamline and isothermal line patterns are observed with the change in Prandtl 
numbers and temperature values. The results obtained in this study are useful 
for the design of devices with enclosures subjected to temperature differences. 
 
Keywords: Natural convection, ADI, SOR, Prandtl number, Grashof number.    

  
 
Introduction 
Natural convection heat transfer in enclosures has been extensively studied by 
researchers, because of its practical significance in science and technology. 
Applications include heating and cooling of buildings, solar energy collectors, heat 
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exchangers and effective cooling of electronic components and machinery. The fluid 
flow and heat transfer behavior of such systems are analysed numerically and 
experimentally by a number of researchers with different boundary conditions.   

An effective algorithm for the analysis of unsteady thermo capillary convection in 
a rectangular cavity was developed by Hamed and Folryan [1].Applying sudden 
heating along the free surface, by suddenly imposing known gas temperature variation 
across the cavity causes the unsteady liquid motion in the cavity with a passive gas 
over the surface. A coordinate transformation method is used to map the irregular 
computational domain and is then solved by the difference method. The field 
variables and unknown mapping functions are determined simultaneously using a 
picard- type iterative procedure. The algorithm is capable of very large time 
independent deformations of the liquid gas surface. Kazmierezak and Chinoda [2] 
investigated numerically the problem of laminar buoyancy driven flow of a fluid in a 
square cavity driven by a warm vertical wall having a uniform surface temperature 
whose magnitude is periodically changing. The effect of the periodically changing 
wall temperature is felt only partially into the enclosure and overall; the time-
averaged heat transfer across the enclosure is rather insensitive to the time-dependent 
boundary condition. Schaldow et al [3] performed an additional run in which they 
ramped the driving wall temperature in a linear fashion over a five second interval 
equal in magnitude to the step change.  Vasseur and Robillard [4] investigated the 
case of transient convective coding of a rectangular enclosure with end walls that 
continually decreased in temperature at a constant rate. Wilkes and Churchill [5] used 
an implicit-alternating direction finite difference method to study numerically the 
natural convection of a fluid contained in a long horizontal rectangular enclosure with 
vertical wall temperature for different Grashof number and aspect ratios. The natural 
convection in the presence of a magnetic field in a rectangular enclosure is studied by 
Rudhraiah et al [6] who established that the magnetic field dampens the rate of heat 
transfer and velocity profiles. Also the influence of magnetic field on the combined 
mechanism in a low Prandtl number fluid was studied.  Kandaswamy et al [7] studied 
the natural convection heat transfer in a cavity with a variable viscosity fluid applying 
ADI method coupled with SOR technique in which the heat transfer rate is found to 
increase with an increase in viscosity of the fluid, where in they have chosen various 
Prandtl numbers like 0.05 (liquid metal),  0.7 (air) and 10 (water).  

The objective of the present study is to numerically investigate in detail the natural 
convection in a two dimensional square cavity in which momentum transfer is 
significant. The details of geometry, numerical method applied and the results 
obtained are described in the following chapters. 

 
 
Mathematical Formulation 
A square cavity with different wall boundary conditions within which the fluid 
enclosed is considered for analysis. The geometry and temperature boundary 
conditions are shown in figure 1. Two of the opposing vertical walls are maintained at 
different temperatures. The horizontal walls are insulated from the surroundings. 
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When a fluid is enclosed within the cavity, it starts to circulate within the cavity and 
the heat transfers by natural convection from the hot wall to the cold wall.     

               

 
 

Figure 1: Schematic of the square enclosure 
 

Governing Equations 
The two-dimensional governing equations are 
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Boundary Conditions 
The initial and boundary conditions are, 
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Discretization of the governing equations 

At any grid point, the term  Y
T

∂
∂

 in the energy equation, after nondimensionalising 

and the co-efficient velocities U & V are treated as constants over a time step. All 
space derivatives are given centered difference representations. The relevant finite-
difference approximations to the energy equations, to be used consecutively over two 
half time steps, each of duration 2

τΔ  is,  
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For X-direction,    
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Similar approximations also hold for the vorticity equation which precedes the 
stream function across a time step. 

 
 
Method of Solution 
The governing equations- energy, vorticity and stream function are solved via a finite 
difference technique consisting of Alternating Direction Implicit (ADI) and 
Successive Over Relaxation (SOR) methods. The added advantage of using this 
unconditionally stable numerical scheme is that larger time increments may be used 
without loss of stability. The vorticity and temperature equations are parabolic, while 
the stream function equation is elliptic. The resulting stream function values are then 
used to determine the velocity components and the boundary values of the vorticity. 
Thus the sequence beginning with the solution of the energy equation is applied 
repeatedly until the desired results are obtained. The convergence criterion used for 
the field variables φ  is 

( ) ( )
( )

5

1

1 10
,

,, −

+

+ ≤
−

ji
jiji

n

nn

φ
φφ

 

In the above expression the subscript n refers to appropriate time level and φ  

represents ψς andT , . The mesh 51 x 51 was opted as the ideal one with a suitable 
time increment. In this study a computational code, using ‘C’ language is developed 
to obtain the finite difference solution implementing Alternating Direct Implicit (ADI) 
and Successive Over Relaxation (SOR) methods. On execution the code generates the 
data file containing all the flow field variables such as temperature, velocity 
components, stream functions and vorticity. The contour plots for various quantities 
are plotted using MATLAB. 

 
 
Results and Discussion 
In the present study, numerical experiments were conducted for two different fluids of 
Prandtl numbers 0.7 (air) and 10.0 (water). The specified initial and boundary 
conditions were imposed and for all the cases analyzed the maximum temperature at 
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the hot wall is Tmax =2.0 and the temperature at the cold wall Tmin is varied from 2.0 to 
-6.0. Using streamline plots the direction of fluid velocity at various points in the 
cavity and also the regions of high and low velocities could be found for different 
Prandtl numbers.   Using isothermal plots the regions of high and low temperature 
gradient could be found. Since the boundary temperatures and Prandtl number 
influence the distribution of momentum and temperature significantly within the 
cavity, different patterns of streamline and isotherms were obtained.  For all the cases 
analyzed, steady state isothermal and streamlines are obtained for a standard Grashof 
number 20000. 

 
Natural convection with Prandtl number 0.7 
Figure 2 shows the contour plots of streamlines and isotherms for different boundary 
temperatures. As the Prandtl number is less than one, the thermal diffusivity is more 
predominant than the momentum diffusivity within the cavity region. Due to this, the 
streamline patterns in all the figures are similar whereas significant changes are 
observed in isotherms. The streamlines in Figure 2 with Tmax = 2 and Tmin = 2, show 
that the fluid circulates within the cavity along the streamline. Low stream line 
spacing close to the bottom wall indicate higher fluid velocities in comparison with 
the low velocities associated with the coarse spacing near the top wall. The 
unsymmetrical nature of the streamline pattern is due to thermal gradient which exists 
only along Y direction and buoyancy force which acts only along X direction. The 
temperature gradients are observed along the Y direction and comparatively high 
temperature gradients could be noticed near the right boundary. In the region close to 
the left boundary the fluid particles move in the upward direction and deflected 
downward by the upper boundary. Streamlines close to the region near the top right 
boundary show the existence of the circulatory flow. Subsequently, as the temperature 
of the right boundary decreases up to Tmin = - 6.0, this recirculation zone disappears 
and the streamline pattern becomes symmetrical about the vertical axis passing 
through the centre of the cavity. As the boundary temperature difference is increased, 
the gradient increases at all the points within the cavity.  

 
Natural convection with Prandtl number 10.0 
When the Prandtl number is greater than one, the momentum diffusivity is more 
predominant than the thermal diffusivity within the cavity region. Figure 3 shows the 
streamlines and isotherms for different boundary temperatures with Prandtl number 
10.0. Significant changes in streamline formation could be observed as the 
temperature difference between the left and right boundary is increased. As the 
temperature difference decreases   the recirculatory zone vanishes and the magnitude 
of the vertical component of velocity increases. Increase in velocity close to the right 
boundary could be observed as the streamline spacing decreases. The direction of 
vertical component of velocity is upward close to the left boundary for all the test 
conditions. The changes in streamline pattern with raise in temperature difference 
shows that the magnitude of vertical component of velocity initially increases and 
then decreases gradually. There is a recirculatory flow created in the region near the 
centre of the cavity which increases in size with the increase in temperature 



Numerical Investigation of Natural Convection Heat Transfer In A et. al.  30025 

 

difference.  Streamline patterns plotted also show that the recirculation zone created at 
the centre of the cavity moves towards the right boundary. Since the Pr >>1, the 
changes in temperature distribution within the cavity is comparatively low. For all the 
cases analyzed the temperature gradient are found to exist near the left and right 
boundary. Over a larger region at the centre of the cavity uniform temperature could 
be observed. 

 
 
Conclusion 
A finite difference technique is applied using ‘C’ language to predict the natural 
convection heat transfer in an enclosed cavity consisting of a fluid, with different wall 
boundary temperatures. The numerical results are obtained for two different Prandtl 
numbers (0.7 and 10.0) of fluid. The influences of wall boundary temperature and 
Prandtl number of fluid within the cavity on flow pattern and temperature distribution 
are analyzed in detail. The results obtained are presented in the form of contours of 
streamlines and isotherms   using MATLAB. Significant changes in distribution of 
temperature within the cavity could be observed when the Prandtl number is less than 
unity. The results obtained with Prandtl number more than one, show considerable 
changes in streamline pattern inducing vortices within the cavity. This study will be 
useful in the design of devices consisting of fluid with different wall boundary 
temperature. 

 

     
 Tmin = 2.0; Tmax = 2.0                              Tmin = 1.0; Tmax = 2.0 
 

        
 Tmin = 0.0; Tmax = 2.0                                Tmin = -1.0 ; Tmax = 2.0 
 

         
 Tmin = -2.0; Tmax = 2.0                            Tmin = -3.0; Tmax = 2.0 
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 Tmin = -4.0; Tmax = 2.0                                   Tmin = -5.0; Tmax = 2.0 
 

     
Tmin = -6.0 and Tmax = 2.0 

 
Figure 2: Steady state streamlines and isotherms for Pr = 0.7 

 

          
 Tmin = 2.0;Tmax = 2.0     Tmin = 1.0; Tmax = 2.0 
 

          
 Tmin = 0.0; Tmax = 2.0  Tmin = -1.0; Tmax = 2.0 
 

          
 Tmin = -2.0 and Tmax = 2.0        Tmin = -3.0 and Tmax = 2.0 
 

               
 Tmin = -4.0 and Tmax = 2.0    Tmin = -5.0 and Tmax = 2.0 
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Tmin = -6.0 and          Tmax = 2.0 

 
Figure 3: Steady state streamlines and isotherms for Pr = 10 

 
 
Nomenclatures 

g = acceleration due to gravity 
β = volume coefficient of thermal expansion 
α = thermal conductivity 
ρ = density 
υ = kinematic viscosity 
θh = hot wall temperature  
θc  = cold wall temperature 
θ0 = initial temperature 
θ = temperature of fluid at any point  
T = non-dimensional form of temperature  
u,v = components of velocity along x and y directions respectively 
U,V = non-dimensional forms of velocity components along X and Y directions 

respectively 
∆X,∆Y = grid spacing in the X and Y directions respectively  
∆τ = time increment 
ζ = dimensionless vorticity 
ψ = dimensionless stream function 
ω = relaxation parameter 
Pr = Prandtl number 
Gr = Grashof number 
L   = ratio of cavity height to its width 
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