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ABSTRACT  

The widespread adoption of cloud computing has 
resulted in a large number of cloud services that 
provide similar functionality while exhibiting 
varying Quality of Service (QoS) characteristics. 
This growing diversity makes the process of cloud 
service composition increasingly complex, 
particularly when multiple QoS constraints must be 
satisfied at the same time. The problem becomes 
computationally demanding as the number of 
candidate services increases, and it is widely 
recognized as an NP-hard optimization problem. In 
this work, a hybrid optimization approach is 
introduced to address the challenges of QoS-aware 
cloud service composition. The proposed 
framework integrates a Genetic Algorithm with the 
Fruit Fly Optimization Algorithm (HGA) in order 
to exploit their complementary strengths. The 
Genetic Algorithm is used to explore the global 
search space effectively, whereas the Fruit Fly 
Optimization Algorithm is applied to enhance local 
search and improve convergence efficiency. 

Service composition solutions are evaluated using 
the QWS dataset, and an improved roulette-wheel 
selection strategy is incorporated to strengthen 
solution selection during the evolutionary process. 
Additionally, a localized refinement mechanism is 
employed to limit computational overhead while 
maintaining a balanced exploration–exploitation 
trade-off. The proposed approach is evaluated 
based on solution quality, computational 
efficiency, convergence behavior, and feasibility 
rate, and its performance is compared with that of 
the gbest-guided artificial ant bee colony 
algorithm. Experimental results indicate that the 
proposed hybrid framework consistently produces 
high-quality service compositions and 
demonstrates robust performance under different 
composition scenarios. 

Keywords : Cloud service composition; Quality of 
Service (QoS); Hybrid optimization; Genetic 
Algorithm; Fruit Fly Optimization Algorithm; 
Metaheuristic techniques; Service selection; Cloud 
computing 

 
1. Introduction 

Service-oriented computing has played an important role 
in improving how computing resources and services are 
shared across diverse platforms. By enabling 
interoperability among heterogeneous systems, it has laid 
the foundation for flexible and scalable service 
composition. The emergence of cloud computing has 
further strengthened this paradigm by offering on-
demand access to computing resources, allowing 
organizations especially small and medium-sized 
enterprises to avoid the high cost of building and 
maintaining dedicated data centers. Although this model 
significantly lowers operational expenses, it has also led 

to an overwhelming growth in the number of cloud 
services available online. 

As the cloud ecosystem continues to expand, selecting 
suitable services and combining them into an effective 
composite solution has become increasingly challenging. 
Many cloud services deliver comparable functionality, 
which makes functional requirements alone insufficient 
for service selection. Instead, non-functional factors, 
commonly known as Quality of Service (QoS) attributes, 
have gained considerable importance. Attributes such as 
response time, availability, reliability, and cost strongly 
influence the overall performance of a service 
composition and directly affect user satisfaction. 
Consequently, QoS-aware decision-making has become a 
central concern in cloud service composition. 
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QoS-aware cloud service composition involves selecting 
one service for each task in a workflow while satisfying 
multiple QoS constraints simultaneously. The number of 
possible service combinations grows exponentially as the 
number of candidate services increases, making the 
problem computationally intensive and inherently NP-
hard. Over the years, researchers have proposed various 
solution approaches, ranging from exact optimization 
techniques to heuristic and meta-heuristic algorithms. 
While exact methods can guarantee optimal solutions, 
they often fail to scale efficiently for large problem 
instances. On the other hand, many meta-heuristic 
approaches provide reasonable solutions within 
acceptable time limits but may suffer from slow 
convergence or premature stagnation. 

To address these challenges, this study introduces a 
hybrid optimization framework that combines the 
Genetic Algorithm (GA) with the Fruit Fly Optimization 
Algorithm (FOA). The motivation behind this integration 
is to exploit the complementary strengths of both 
techniques. GA is effective in exploring the global search 
space, whereas FOA is well suited for rapid convergence 
and local refinement. By coordinating these two 
mechanisms, the proposed approach improves search 
efficiency and enhances solution quality while keeping 
computational cost under control. Experimental 
evaluations demonstrate that the proposed method 
consistently outperforms the conventional GA and the 
gbest-guided discrete artificial bee colony (DGABC) 
algorithm in terms of convergence speed and overall 
solution quality. 

 
2. Related Work 

Before cloud computing became widely adopted, 
research on service composition was mainly conducted 
within Service-Oriented Architecture (SOA) and grid 
computing environments. In SOA-based systems, service 
composition generally involves designing workflows by 
mapping abstract tasks to appropriate concrete services. 
In grid computing, the focus is more aligned with 
resource scheduling, where the objective is to efficiently 
allocate distributed computational resources to meet 
execution requirements [1]. 

Cloud service composition extends these earlier models 
while introducing additional challenges unique to cloud 
environments. In particular, it requires the discovery, 
selection, and integration of cloud services while 
satisfying user-defined non-functional requirements and 
Service Level Agreement (SLA) constraints. Important 
considerations include automation of the composition 

process, execution control (centralized or decentralized), 
service compatibility, and consistency. Moreover, cloud-
specific factors such as cost efficiency, scalability, 
responsiveness, reliability, and long-term service 
availability significantly influence composition decisions. 
Several studies have addressed cloud service composition 
using traditional algorithmic approaches; however, these 
methods often face limitations when dealing with large-
scale service repositories [2]. 

To improve the quality of composed services, hybrid 
optimization strategies have been explored in prior work. 
A two-phase optimization framework combining global 
optimization with local service selection was proposed in 
[3], where global QoS constraints were decomposed into 
local constraints using Mixed Integer Programming 
(MIP). This transformation enabled parallel service 
selection and reduced the overall search complexity. 
Similarly, a dynamic and reliable service composition 
framework was introduced in [4], where a Cultural 
Genetic Algorithm (CGA) was employed in the initial 
phase to identify promising composition structures. In the 
subsequent phase, global QoS constraints were converted 
into local constraints, and concrete services were selected 
using an enhanced case-based reasoning approach. 
Although these methods demonstrated improved QoS 
satisfaction, they primarily emphasized solution 
optimality while paying limited attention to 
computational efficiency. 

As the demand for scalable solutions increased, 
researchers shifted toward combinatorial and meta-
heuristic techniques to obtain near-optimal solutions 
within acceptable execution time [5]. The approach 
presented in [6] focused on optimizing QoS attributes 
while maintaining reasonable computational overhead. 
Genetic Algorithm–based methods have also been widely 
studied. For example, the work in [7] incorporated user 
preferences and SLA constraints into the service 
composition process and applied skyline techniques to 
improve convergence speed and service quality. To 
further reduce execution time, a GA-based method for 
web service composition was proposed in [8], ensuring 
functional correctness while optimizing QoS parameters. 

Other population-based optimization algorithms have 
also been investigated. Particle Swarm Optimization 
(PSO) with integer-based encoding was applied in [9] to 
efficiently explore the solution space, where skyline 
operators and binary selection mechanisms were used to 
eliminate low-quality candidate services. Although such 
meta-heuristic approaches generally outperform classical 
methods in terms of execution time, their performance 
tends to degrade as the number of available services 
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increases. Consequently, scalability remains a persistent 
challenge in large-scale cloud service composition 
problems [10]. Karimi et al. [11] proposed a QoS-aware 
service composition framework using evolutionary 
optimization to address the trade-off between solution 
optimality and computational efficiency in dynamic cloud 
environments. Hayyolalam et al. [12] proposed a survey paper 
on QoS aware cloud service composition and selection in cloud 
environment. A QoS aware cloud service composition 
technique based on fuzzy set theory (FST) and genetic 
algorithm (GA), a triangular fuzzy genetic algorithm (TGA) is 
proposed for solving the service composition problem [13]. Liu 
et al. [14] investigated QoS-aware service composition in cloud 
manufacturing environments and highlighted the limitations of 
one-to-one mapping–based service composition in terms of 
overall QoS and composition success rate. To overcome these 
issues, they introduced a synergistic elementary service 
group–based composition model and employed an 
improved genetic algorithm to manage the increased 
optimization complexity, demonstrating superior 

performance over conventional approaches. However, the 
computational overhead of group-based composition 
remains a challenge as the scale of candidate services continues 
to grow. Gabrel et al. [15] investigated QoS-aware automatic 
service composition by modeling the selection process as an 
optimization problem, where global QoS constraints are 
derived from individual service attributes to guide optimal 
composition. 

3. CLOUD SERVICE SELECTION BASED ON 
QoS PARAMETER 

The fig. 1 presents a structured approach for selecting cloud 
services, in which each abstract task is associated with several 
candidate services identified during the discovery phase. 
Quality of Service attributes, such as response time, 
availability, success ability, compliance,  price , latency, and 
throughput, are then evaluated to choose the most suitable 
service from each layer, resulting in an optimized composite 
cloud service. 

     Fig .1 Cloud service composition process  
 
 
3.1 Problem statement and workflow description 

To formally describe the QoS-aware cloud service 
composition problem, the following definitions and 
assumptions are considered. 

Step 1: 
A complex service request is decomposed into a set of 
atomic tasks denoted as: ACSC = {T1, T2, …, Tn}, where 
each Ti represents an individual atomic task and n is the  
total number of such tasks. For each atomic task Ti, a 
corresponding candidate cloud service set Si = {CSi1, 
CSi2, …, CSim} is defined, where CSij represents the jth  

 
concrete cloud service capable of executing task Ti, and 
m denotes the number of candidate services available for 
each task. 
Step 2:  
Each cloud service is characterized by a set of Quality of 
Service (QoS) attributes defined as: QoS = {q1, q2, …, 
qr}, where r denotes the total number of QoS parameters. 
These attributes are categorized into positive QoS 
attributes (QoS+) and negative QoS attributes (QoS−). 
For negative QoS attributes, such as response time and 
cost, lower values indicate better performance. 
Step 3: 
User-defined global constraints are represented by the 
set: GCst = {Cst1, Cst2, …, Cstk}, where each Cstt (t ≤ k 
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and k ≤ r) specifies a constraint applied to the 
corresponding QoS attribute qt. 

Step 4: 
A weight vector W = {w1, w2, …, wr} is assigned to 
represent the importance of each QoS attribute. Each wt 
lies in the range [0,1], and the sum of all weights 
satisfies: Σ wt = 1. 

3.2 Genetic Algorithm (GA) 
Genetic Algorithm (GA) is a population-based 
optimization technique inspired by natural evolution. It 
starts with a randomly generated population of candidate 
solutions, where each individual represents a possible 
cloud service composition. A fitness function evaluates 
the quality of each individual based on QoS satisfaction. 
Through selection, crossover, and mutation operations, 
the population evolves toward optimal solutions. 
 
General Steps of  GA : 
1. Initialize a population of candidate solutions. 
2. Evaluate the fitness of each individual. 
3. Repeat until termination condition is met: 
   - Select individuals for reproduction. 
   - Apply crossover to generate offspring. 
   - Perform mutation to maintain diversity. 
   - Recalculate fitness values. 
4. Fruit Fly Optimization Algorithm (FOA) 

3.3 Fruit fly optimization (FOA) 

Fruit Fly Optimization Algorithm (FOA) is a swarm 
intelligence-based global optimization method inspired 
by the food-searching behavior of fruit flies. The 
algorithm utilizes smell-based and vision-based search 
mechanisms. 

Step 1: Initialization 
Randomly, initialize the fruit fly population in the search 
space. Define population size (SN) and maximum 
generations (MAX_GEN). 

Step 2: Smell-Based Search  
Generate fruit flies near the current position and evaluate 
their fitness values. 
 
Step 3: Vision-Based Search  
Identify the fruit fly with the best fitness value and move 
the population toward this optimal position. 

 

Step 4: Termination 
Repeat the search process until the maximum number of 
generations is reached. 

4. Cloud Service Composition 

The objective of this work is to design an efficient cloud 
service composition framework capable of generating 
near-optimal composite cloud services within a limited 
computational time. To accomplish this goal, a hybrid 
optimization strategy, referred to as the Hybrid Genetic–
Fruit Fly Algorithm (HGA), is proposed. The framework 
integrates the global search strength of the Genetic 
Algorithm (GA) with the local exploitation capability of 
the Fruit Fly Optimization Algorithm (FOA). The 
proposed approach consists of multiple stages, including 
solution encoding, enhanced population initialization, 
fitness evaluation, genetic evolution, and fruit fly–based 
refinement. A modified roulette-wheel selection 
mechanism is introduced in the GA phase to improve 
selection efficiency and exploration performance. To 
further control execution time and maintain a balance 
between exploration and exploitation, FOA is applied 
after each genetic evolution cycle. Moreover, an elitism 
strategy is employed to ensure that high-quality solutions 
are preserved during the evolutionary process. 

4.1 Encoding Phase 

In the proposed HGA model, each individual in the 
population represents a complete cloud service 
composition solution. The solution is encoded as an 
integer-based vector, where each position corresponds to 
an atomic task, and the integer value stored at that 
position indicates the selected concrete cloud service 
from the associated candidate service set. 

4.2 Population Initialization Phase 

In conventional evolutionary optimization techniques 
such as Genetic Algorithms (GA) and Fruit Fly 
Optimization Algorithm (FOA), the initial population is 
typically generated using random sampling. Although 
this approach is computationally simple, it often produces 
individuals with low solution quality and limited 
diversity, which may slow down convergence and 
increase the likelihood of premature stagnation. In 
contrast, an initial population that simultaneously 
maintains high solution quality and sufficient diversity is 
more effective in guiding the search process toward 
optimal solutions within a shorter convergence time. 
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To address this limitation, the proposed model 
incorporates a heuristic local optimization–based 
selection strategy for population initialization. Instead of 
relying solely on randomly generated individuals, this 
strategy refines the initial population by constructing 
improved solutions using QoS-aware evaluation, thereby 
enhancing the overall search efficiency from the early 
stages of evolution. 

4.2.1 Local Optimization Selection Method 

The local optimization selection method is designed to 
generate an individual (denoted as ind) with a high level 
of solution quality. First, all Quality of Service (QoS) 
attributes are normalized to a unified numerical range of 
[0, 1] in order to eliminate scale inconsistencies among 
heterogeneous attributes. The normalization procedures 
for negative and positive  QoS attributes of a composite 
cloud service (CCS) are defined in Equations (1) and (2), 
respectively. The normalized value of Q(CCS)qt ∈ [0, 1]  
for negative and positive  QoS attributes  are shown is  
Equations (3) and (4), respectively. Following 
normalization, each QoS attribute value is multiplied by 
its corresponding user-defined preference weight wt, 
reflecting the relative importance of that attribute. The 
weighted normalized values are then aggregated to 
compute the overall score of the CCS, as expressed in 
Equation (5). This aggregated score serves as a 
quantitative measure of the solution quality and is 
subsequently used to guide the selection of high-quality 
individuals during population initialization. By 
integrating normalization, preference weighting, and 
local optimization–based selection, the proposed 
initialization mechanism produces a diverse set of 
promising individuals, which significantly improves 
convergence speed and solution robustness in the 
subsequent evolutionary phases. 

Normalization of negative QoS attributes (i.e. qt ∈ 
QoS-) 

QoS-(qt)  =  𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)−𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒)
             𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)−𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)

                                ( 1)                                                                          

Normalization of positive QoS attributes (i.e. qt ∈ 
QoS+) 

QoS+(qt)=  𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒)−𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)
𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)−𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)

                                     (2)                                                                  

The normalized value of Q(CCS)qt ∈ [0, 1]  for 
negative and positive  QoS attributes  are shown is  
Equations (3) and (4), respectively   

𝐐𝐐(𝐂𝐂𝐂𝐂𝐂𝐂)𝐪𝐪𝐭𝐭 = �
𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)−𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒)

𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)−𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)
, 𝒊𝒊𝒊𝒊 𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)  ≠  𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒) 

𝟏𝟏,                        𝒊𝒊𝒊𝒊 𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒) =  𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)
�  (3 )                                                                                                                                            

  

𝑸𝑸(𝑪𝑪𝑪𝑪𝑪𝑪)𝒒𝒒𝒕𝒕 = �
𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒)−𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)

𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)−𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)
, 𝒊𝒊𝒊𝒊 𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)  ≠  𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒) 

𝟏𝟏,                        𝒊𝒊𝒊𝒊 𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒) =  𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒)
�  (4)              

 

Score (ccs) = ∑ (𝒄𝒄𝒄𝒄𝒄𝒄)𝒕𝒕 ∗ 𝒘𝒘𝒘𝒘𝒓𝒓
𝒙𝒙=𝟏𝟏                                                (5)                                                                                

                     

 After completing the normalization process, the 
following procedure is carried out. 

Step 1: The local score of each concrete cloud service in 
the candidate set CSi

j is computed using the Simple 
Additive Weighting (SAW) method ( Eq. 6) . 
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪) =
 ∑ 𝒒𝒒𝒒𝒒,𝒊𝒊 𝒎𝒎𝒎𝒎𝒎𝒎−𝒒𝒒𝒒𝒒,𝒊𝒊 𝒋𝒋

𝒒𝒒𝒒𝒒,𝒊𝒊𝐦𝐦𝐦𝐦𝐦𝐦−𝒒𝒒𝒒𝒒,𝒊𝒊 𝒎𝒎𝒎𝒎𝒎𝒎𝒒𝒒𝒒𝒒∈ 𝐐𝐐𝐐𝐐𝐐𝐐− ∗ 𝑾𝑾𝑾𝑾 + ∑ −𝒒𝒒𝒒𝒒,𝒊𝒊 𝒎𝒎𝒎𝒎𝒎𝒎+𝒒𝒒𝒒𝒒,𝒊𝒊 𝒋𝒋
𝒒𝒒𝒒𝒒,𝒊𝒊𝐦𝐦𝐦𝐦𝐦𝐦−𝒒𝒒𝒒𝒒,𝒊𝒊 𝒎𝒎𝒎𝒎𝒎𝒎𝒒𝒒𝒒𝒒∈ 𝐐𝐐𝐐𝐐𝐐𝐐−            (6) 

where, qt, i 
j  represents the value of the tth QoS criterion 

for the jth concrete cloud service within the ith candidate 
set Si. The symbols qt,i

min⁡ and qt,i
max denote the 

minimum and maximum values of the tth attribute 
observed in the candidate set Si , respectively, while wt 
indicates the user-assigned preference weight associated 
with the tth QoS attribute. 

Step 2:  

For each candidate cloud service set Si, an individual ind 
corresponds to the ith position in the solution vector does.  

do 

Select two distinct concrete cloud services, CSi
j and CSi

k  
randomly from Si using a binary tournament selection 
mechanism. The local scores of the selected services are 
then compared. 

1. If the local score of 𝑆𝑆𝑐𝑐𝑜𝑜𝑟𝑟𝑒𝑒 𝑙𝑙 (CSi
k) > 𝑆𝑆𝑐𝑐𝑜𝑜𝑟𝑟𝑒𝑒𝑙𝑙 (CSi

j) at ith 
the position of ind is updated with the index k;  

2. Else, it is replaced with the index j.  

3. End If 

End For 
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4.2.2 Initial Population Construction Procedure 

The process of generating the initial population is carried 
out as follows: 

Step 1: A high-quality candidate solution is first 
produced using the proposed local optimization-based 
selection strategy. 

Step 2: Let the iteration counter be initialized as itr = 1. 
The following steps are executed until itr reaches the 
predefined population size, denoted by PopSize. 

Step 3: A new optimized solution is generated using the 
same local optimization approach. If this solution is 
distinct from all existing individuals in the current 
population, it is added to the population and the iteration 
counter is incremented by one. Otherwise, the solution is 
discarded and the generation process is repeated until a 
unique solution is obtained. 

4.3 Crossover Operator 

After the parent selection stage, pairs of individuals are 
recombined using a crossover mechanism to generate 
new candidate solutions. This process integrates genetic 
information from both parents to form offspring with 
potentially improved characteristics. Two crossover 
strategies are adopted in the proposed framework, namely 
single-point crossover and double-point crossover. 

In the single-point crossover approach, a crossover 
position is selected at random along the chromosome. 
The gene segments located beyond this position are then 
exchanged between the two parent chromosomes, 
resulting in two new offspring (as illustrated in Fig. 2a). 
In contrast, the double-point crossover method involves 
selecting two distinct crossover positions. The gene 
segment lying between these two points is swapped 
between the parent individuals; thereby producing new 
chromosomes with mixed genetic structures (see Fig. 2b). 

To maintain diversity in the evolutionary process, a 
probabilistic mechanism is employed to select the 
crossover type. Specifically, a random value r ∈ [0, 1] is 
generated. When r ≤ 0.5, single-point crossover is 
applied; otherwise, the algorithm performs a double-point 
crossover during reproduction. 

4.4 Mutation Operator 

Following the crossover operation, mutation is applied to 
further enhance population diversity and prevent 

premature convergence. The mutation strategy operates 
by randomly selecting a gene position within the newly 
generated individual, where each gene represents an 
abstract cloud service. The selected gene is then replaced 
with an alternative concrete cloud service chosen 
randomly from the corresponding candidate service set 
(as shown in Fig. 2c). 

This mutation mechanism enables the exploration of new 
regions within the search space by introducing controlled 
random variations, thereby increasing the likelihood of 
discovering high-quality solutions in subsequent 
generations. 

4.5 FOA Phase (Local Exploitation) 

The Fruit Fly Optimization Algorithm (FOA) phase is 
applied as a local exploitation mechanism to refine the 
high-quality solutions obtained from the genetic phase. 
For each promising solution produced by the genetic 
operators, FOA is employed to further enhance solution 
quality by exploring its local neighbourhood. During the 
smell-based foraging stage, a set of SN neighbouring 
solutions is generated around each selected individual. 
These neighbours are created using a mutation-based 
operation, where certain decision variables of the selected 
solution are randomly modified to produce nearby 
candidate solutions. 

In the vision-based search stage, all SN neighbouring 
individuals of a given solution (ind) are evaluated 
according to the fitness function. The best-performing 
neighbour, referred to as BestInd, is then identified. If  
BestInd yields a better fitness value than the original 
individual Ind, it replaces ind in the population; 
otherwise, the original solution is retained. This process 
ensures that only improvements are accepted, thereby 
strengthening local search capability. 

The FOA procedure applied to each solution generated 
by the genetic phase can be summarized as follows: 

Step 1: For every individual indi, produced after the 
genetic phase, where i=1, 2,…,Pop Size, execute the 
subsequent steps. 

Step 2: Compute the selection probability pn of each 
individual indi, using Equations (17-18). 

4.3 Fitness Evaluation 

In the proposed framework, each individual in the 
generated population is assigned a fitness value that 
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reflects its performance within the search space. The 
fitness evaluation mechanism is designed to distinguish 
between feasible and infeasible solutions while guiding 
the evolutionary process toward high-quality 
compositions. 

To penalize constraint violations, a penalty function 
Pn(ind) is defined in Eq. 7 as follows: 

𝑷𝑷𝑷𝑷(𝒊𝒊𝒊𝒊𝒊𝒊) = �∑  𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒊𝒊𝒊𝒊𝒊𝒊)𝒈𝒈 ∗ 𝒑𝒑𝒑𝒑𝒌𝒌
𝒕𝒕=𝟏𝟏 , 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒃𝒃𝒃𝒃𝒃𝒃

𝟎𝟎, 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇
�          (7)                                    

 where, CstVt(ind) represents the degree of constraint 
violation corresponding to the tth QoS attribute, as 
formulated in Eq. (8). The parameter g controls the 
severity of the penalty and is set to g=2 in this study. The 
weighting factor pt ∈ [0, 1] for t = 1, 2, ……, k, indicates 
the relative importance of the tth constraint, subject to the 
condition ∑ 𝑝𝑝𝑝𝑝 = 1𝑘𝑘

𝑡𝑡=1 . This penalty-based fitness 
formulation ensures that feasible individuals are always 
favored over infeasible ones, while infeasible solutions 
are proportionally penalized based on the magnitude of 
their constraint violations. 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒊𝒊𝒊𝒊𝒊𝒊) =  �
𝐦𝐦𝐦𝐦𝐦𝐦(𝟎𝟎,𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒)− 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪)    𝒊𝒊𝒊𝒊 𝐪𝐪𝐭𝐭 ∈ 𝐐𝐐𝐐𝐐𝐐𝐐−  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪
𝐦𝐦𝐦𝐦𝐦𝐦(𝟎𝟎,𝒂𝒂𝒂𝒂𝒂𝒂(𝒒𝒒𝒒𝒒)− 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪)    𝒊𝒊𝒊𝒊 𝐪𝐪𝐭𝐭 ∈ 𝐐𝐐𝐐𝐐𝐐𝐐+  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

�       (8) 

 

where, Cstt and agg (qt) represent the constraint 
threshold and the aggregated value of the tth QoS 
attribute, respectively. For attributes with positive 
constraints, feasibility is satisfied when agg (qt) ≤ , 
whereas for negatively constrained attributes, the 
condition agg(qt) ≥ 𝐶𝐶𝑠𝑠𝑡𝑡𝑡𝑡 must hold, as defined in Eq. (5). 
The constraint threshold Cstt belongs to the global 
constraint set GCst. The term agg (𝑞𝑞𝑡𝑡) denotes the 
cumulative value of the tth QoS attribute associated with 
an individual solution. 

𝑭𝑭(𝒇𝒇𝒇𝒇𝒇𝒇(𝒊𝒊𝒊𝒊𝒊𝒊) =

�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺
(𝒊𝒊𝒊𝒊𝒊𝒊) ∗ 𝟎𝟎.𝟓𝟓 − 𝒑𝒑𝒑𝒑(𝒊𝒊𝒊𝒊𝒊𝒊), 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝒊𝒊𝒊𝒊𝒊𝒊) ∗ 𝟎𝟎.𝟓𝟓 + 𝟎𝟎.𝟓𝟓,  𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�    (9)                                 

Where, pn(ind) represents the penalty assigned to an 
individual, while Score(ind) denotes its aggregated score 
as defined in Eq. (3). As indicated by Eq. (9), feasible 
solutions are always assigned higher fitness values than 
infeasible ones, thereby guiding the search process 
toward valid and high-quality solutions. 

The dissimilarity between any two individuals is 
measured using the Hamming distance metric (Eq. 10), which 
quantifies the number of differing positions between their 
respective representations. 

dist(indk, indj) = ∑ 𝒚𝒚𝒚𝒚𝒏𝒏
𝒊𝒊=𝟏𝟏                                               (10)                                                                                                                                                                                                                 

 
where, indk  denotes the gene value at the ith position of the kth 
individual. The diversity measure div(indk), which quantifies 
the dissimilarity between an individual and the remaining 
members of the population, is defined in Eq. (11). Based on 
this diversity measure, the updated selection score  (𝑖𝑖𝑛𝑛𝑑𝑑𝑗𝑗) is 
computed as expressed in Eq. (12). This score is obtained 
using the Simple Additive Weighting (SAW) method, which 
integrates both fitness and diversity information into a single 
scalar value for each individual. 

div(indj) =  ∑ 𝒔𝒔𝒔𝒔𝒔𝒔(𝒇𝒇𝒇𝒇𝒇𝒇(𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊, 𝒊𝒊𝒊𝒊𝒊𝒊𝒉𝒉)) 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷
𝒉𝒉=𝟏𝟏               (11)                                                                      

In this context, j ≠ h, PopSize represents the total number of 
individuals in the population, and std denotes the standard 
deviation. The term fit(𝑖𝑖𝑛𝑛𝑑𝑑𝑗𝑗,𝑖𝑖𝑛𝑛𝑑𝑑ℎ ) refers to the fitness values 
associated with individuals 𝑖𝑖𝑛𝑛𝑑𝑑𝑗𝑗 and 𝑖𝑖𝑛𝑛𝑑𝑑ℎ , respectively.    

Scrsel(indj) =Nd(indj)*wd + Nf(indj)*wf                                                (12) 

Where , 

Nf(indj) = 

�

𝟏𝟏                 𝒊𝒊𝒊𝒊(𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇) = 𝒎𝒎𝒎𝒎𝒎𝒎⁡(𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇)
𝒇𝒇𝒇𝒇𝒇𝒇(𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊)−𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇)

𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇)−𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇)
 𝒊𝒊𝒊𝒊 (𝒎𝒎𝒎𝒎𝒎𝒎(𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇) ≠ 𝒎𝒎𝒎𝒎𝒎𝒎⁡(𝒇𝒇𝒇𝒇𝒇𝒇(𝒑𝒑𝒑𝒑𝒑𝒑)

                                                                                                          (𝟏𝟏𝟏𝟏)

� 

Nf(indj) = 

�

𝟏𝟏                 𝒊𝒊𝒊𝒊(𝒎𝒎𝒎𝒎𝒎𝒎(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) = 𝒎𝒎𝒎𝒎𝒎𝒎⁡(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅)
𝒅𝒅𝒅𝒅𝒅𝒅(𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊)−𝒎𝒎𝒎𝒎𝒎𝒎(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅)

𝒎𝒎𝒎𝒎𝒎𝒎(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅)−𝒎𝒎𝒎𝒎𝒎𝒎(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅)
 𝒊𝒊𝒊𝒊 (𝒎𝒎𝒎𝒎𝒎𝒎(𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) ≠ 𝒎𝒎𝒎𝒎𝒎𝒎⁡(𝒅𝒅𝒅𝒅𝒅𝒅(𝒑𝒑𝒑𝒑𝒑𝒑)

                                                                                                            (𝟏𝟏𝟏𝟏)

� 

     

According to Eqs. (12) – (14), fit(𝑖𝑖𝑛𝑛𝑑𝑑𝑗𝑗) represents the fitness 
value of the jth individual, while div(indj) denotes its 
corresponding diversity measure. The terms min(𝑓𝑓𝑖𝑖𝑡𝑡𝑃𝑃𝑜𝑜𝑝𝑝) and 
max(𝑓𝑓𝑖𝑖𝑡𝑡𝑃𝑃𝑜𝑜𝑝𝑝), indicate the minimum and maximum fitness 
values observed in the current population Pop, respectively. 
The weighting parameters wf and wd (Eqs. 15 - 16), are 
employed to regulate the relative influence of fitness and 
diversity components during the selection process.    

𝑾𝑾𝑾𝑾 =  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
𝟐𝟐∗𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

+ 𝟎𝟎.𝟓𝟓                                                  (15)           
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 𝒘𝒘𝒘𝒘 = 𝟎𝟎.𝟓𝟓 − 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
𝟐𝟐∗𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

                                                                     (16)                                                                                                           

Here, maxitr denotes the maximum number of iterations, 
while counter represents the current iteration index of the 
proposed algorithm. A new individual for the next 
generation, denoted as is selected using the following 
procedure. 

Step 1: Generate a random real number r ∈ [0, 1] using a 
uniform random function. 
Step 2: If r ≤ p1, the first individual ind1 is selected. 
Otherwise, select the individual 𝑖𝑖𝑛𝑛𝑑𝑑𝑖𝑖 (i =1, ... ,PopSize), 
such that 𝑝𝑝𝑖𝑖−1< r ≤ 𝑝𝑝𝑖𝑖 , where 𝑝𝑝𝑖𝑖 represents the 
cumulative selection probability of the ith individual in 
the current population Pop, computed as defined in Eqs. 
(17 - 18). 

𝑷𝑷𝑷𝑷 =  𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝒊𝒊𝒊𝒊𝒊𝒊𝟏𝟏)
∑ 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊)𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝒊𝒊=𝟏𝟏

                                      (17)                       

𝑷𝑷𝑷𝑷 =  𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊)
∑ 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊)𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝒋𝒋=𝟏𝟏

 + pi-1, if, 2 ≤ j ≤ popsize    (18) 

4.4 Genetic Phase (Global Exploration) 

4.4.1 Selection Operator 

In this phase, a modified roulette wheel selection strategy 
is introduced, where the selection probability of each 
chromosome is determined by jointly considering its 
fitness and diversity. This approach increases the 
likelihood of selecting individuals that are both well-
performing and diverse, thereby enhancing population 
variability and avoiding premature convergence. To 
compute the updated selection scores, the diversity of 
each individual is quantified by measuring its 
dissimilarity from all other individuals within the current 
population. 

4.4.2 Crossover Operator 
After the parent selection stage, pairs of individuals are 
recombined using a crossover mechanism to generate 
new candidate solutions. This process integrates genetic 
information from both parents to form offspring with 
potentially improved characteristics. Two crossover 
strategies are adopted in the proposed framework, namely 
single-point crossover and double-point crossover. 

In the single-point crossover approach, a crossover 
position is selected at random along the chromosome. 
The gene segments located beyond this position are then 
exchanged between the two parent chromosomes, 
resulting in two new offspring (as illustrated in Fig. 2a). 

In contrast, the double-point crossover method involves 
selecting two distinct crossover positions. The gene 
segment lying between these two points is swapped 
between the parent individuals; thereby producing new 
chromosomes with mixed genetic structures (see Fig. 2b). 

To maintain diversity in the evolutionary process, a 
probabilistic mechanism is employed to select the 
crossover type. Specifically, a random value r ∈ [0, 1] is 
generated. When r ≤ 0.5, single-point crossover is 
applied; otherwise, the algorithm performs a double-point 
crossover during reproduction. 

4.4.3 Mutation Operator 
Following the crossover operation, mutation is applied to 
further enhance population diversity and prevent 
premature convergence. The mutation strategy operates 
by randomly selecting a gene position within the newly 
generated individual, where each gene represents an 
abstract cloud service. The selected gene is then replaced 
with an alternative concrete cloud service chosen 
randomly from the corresponding candidate service set 
(as shown in Fig. 2c).This mutation mechanism enables 
the exploration of new regions within the search space by 
introducing controlled random variations, thereby 
increasing the likelihood of discovering high-quality 
solutions in subsequent generations

 Fig. 2 Genetic operators used in the evolutionary phase: (a) single-
point crossover, (b) double-point crossover, and (c) mutation 
operation. 

5. Results and Analysis 
 
5.1 Experimental Setup 
 
To evaluate the performance of the proposed approach, a 
sequential Abstract Cloud Service Composition (ACSC) 
scenario is considered. In this setup, the composition consists 
of n abstract cloud services, where each abstract service is 
associated with a candidate set of m concrete cloud services. 
The experiments are conducted using the QWS dataset, which 
includes eight Quality of Service (QoS) attributes: response 
time, availability, throughput, success ability, reliability, , and 
compliance are treated as positive attributes, where higher 
values represent improved service quality. This experimental 
configuration enables a comprehensive assessment of the 
effectiveness and robustness of the proposed model under 
diverse QoS constraints. 
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5.2 Parameter setting of the proposed model  
 
Table 1: Quantitative parameters used in simulation 
environment 
 
 Cst  

 
Weight  
 

Penalty 

Response time  
 

0.92  
 

0.1  
 

0.2  
 

Availability 0.89  
 

0.2  
 

0.1  
 

Throughput 0.011  
 

0.05  
 

0.1  
 

Success ability  
 

0.12  
 

0.05  
 

0.2  
 

Reliability  
 

0.11  
 

0.2  
 

0.05 

Compliance  
 

0.21  
 

0.1 
 

0.05 

Price 0.119  
 

0.1 
 

0.1  
 

Latency 0.98 0.2  
 

0.2  
 

Table 1 presents the quantitative configuration of QoS-related 
parameters, including constraint thresholds, weighting 
coefficients, and penalty values adopted for the experimental 
evaluation. To assess the effectiveness of the proposed model, 
a comparative evaluation is carried out against two benchmark 
algorithms, namely the Simple Genetic Algorithm (GA) and 
the discrete gbest-guided Ant Bee Colony (DGABC) 
algorithm. The comparison is performed based on two key 
performance criteria: optimality and execution time. 

Execution time: It represents the computational efficiency of 
the algorithms and is defined as the total time required 
identifying the optimal composite cloud service. This metric 
highlights the algorithm’s capability to achieve high-quality 
solutions within a reasonable time frame, which is crucial for 
practical cloud service composition scenarios. Figure 3 
presents a comparative analysis of the execution times of GA, 
DGABC, and HGA for varying numbers of abstract services. 
The results indicate that GA and DGABC generally achieve 
lower execution times, reflecting their ability to identify 
suitable composite services with reduced computational 
overhead. In contrast, HGA exhibits comparatively higher and 
more consistent execution times across all service 
configurations, suggesting increased processing complexity. 
DGABC shows performance close to GA and, in some cases, 
slightly better, highlighting its computational efficiency. 
Overall, the figure demonstrates that GA and DGABC are 
more suitable for time-sensitive cloud service composition 
scenarios. 

Optimality: It reflects the quality of the obtained solution and 
is measured through the fitness value of the best composite 
cloud service identified by each algorithm. A higher fitness 
value indicates a more efficient and well-optimized service 
composition under the given QoS constraints. The fig, 4 

illustrates the convergence characteristics of GA, DGABC, and 
HGA in terms of fitness value over successive generations.  he 
proposed HGA demonstrates faster convergence and achieves 
superior solution quality compared to GA and DGABC as the 
number of iterations increases It can be observed that all three 
algorithms show a steady improvement in solution quality as 
the iterations progress. HGA consistently achieves the highest 
fitness values, indicating its stronger capability to reach 
superior composite service solutions. DGABC demonstrates 
stable convergence with moderate fluctuations, while GA 
converges more slowly and attains comparatively lower fitness 
values. Overall, the fig. 4 highlights the effectiveness of HGA 
in achieving better optimization performance within fewer 
generations. As illustrated in Fig. 5, the proposed approach 
achieves higher fitness values than the benchmark algorithms 
(GA and DGABC) when the number of abstract services varies 
from 5 to 9 with 200 candidate services per task. 

 

Fig. 3 Computational time comparison of GA, DGABC, and HGA 
under Scenario 1, where each abstract service is associated with 200 
concrete services (m = 200) and the number of abstract services varies 
from 5 to 9. 
 

 

 Fig. 4 Convergence behavior of the compared algorithms (GA, 
DGABC, and HGA) illustrating the improvement in the quality of the 
optimal composite service across iterations. 
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Fig. 5 Comparison of fitness value  of  GA, DGABC, and HGA 
optimality for different numbers of abstract services ranging from 5 to 
9, with each abstract service having 200 candidate concrete services 
(m = 200). 

6. Conclusion and Future Work 
This study evaluated the proposed model by analyzing its 
performance in terms of solution optimality and 
computational time. Comparative experiments with 
existing algorithms demonstrate that the proposed 
approach is both efficient and effective in generating 
high-quality composite cloud services while maintaining 
lower execution time. The experimental results confirm 
its capability to achieve superior fitness values and faster 
convergence under varying service composition 
scenarios. 

Despite these advantages, the current approach has 
certain limitations when compared with Pareto-based 
multi-objective techniques. Specifically, the multi-
objective QoS-aware cloud service composition problem 
is transformed into a single-objective formulation using 
the Simple Additive Weighting (SAW) method, which 
may lead to information loss among conflicting 
objectives. Moreover, interdependencies and correlations 
among cloud services are not explicitly modeled, and the 
influence of service distribution across distributed cloud 
servers is not considered. 

Future research will focus on addressing these limitations 
by formulating the problem within a fully distributed 
cloud environment that incorporates multiple objectives, 
complex constraints, and service interdependencies. The 
proposed model will be extended to a multi-objective 
optimization framework to simultaneously optimize 
diverse QoS attributes while accounting for correlations 

among services. This extension is expected to improve 
the practicality and robustness of cloud service 
composition in real-world distributed cloud 
infrastructures 
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