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ABSTRACT

The widespread adoption of cloud computing has
resulted in a large number of cloud services that
provide similar functionality while exhibiting
varying Quality of Service (QoS) characteristics.
This growing diversity makes the process of cloud
service  composition increasingly  complex,
particularly when multiple QoS constraints must be
satisfied at the same time. The problem becomes
computationally demanding as the number of
candidate services increases, and it is widely
recognized as an NP-hard optimization problem. In
this work, a hybrid optimization approach is
introduced to address the challenges of QoS-aware
cloud service composition. The proposed
framework integrates a Genetic Algorithm with the
Fruit Fly Optimization Algorithm (HGA) in order
to exploit their complementary strengths. The
Genetic Algorithm is used to explore the global
search space effectively, whereas the Fruit Fly
Optimization Algorithm is applied to enhance local
search and improve convergence efficiency.

1. Introduction

Service-oriented computing has played an important role
in improving how computing resources and services are
shared across diverse platforms. By enabling
interoperability among heterogeneous systems, it has laid
the foundation for flexible and scalable service
composition. The emergence of cloud computing has
further strengthened this paradigm by offering on-
demand access to computing resources, allowing
organizations especially small and medium-sized
enterprises to avoid the high cost of building and
maintaining dedicated data centers. Although this model
significantly lowers operational expenses, it has also led

Service composition solutions are evaluated using
the QWS dataset, and an improved roulette-wheel
selection strategy is incorporated to strengthen
solution selection during the evolutionary process.
Additionally, a localized refinement mechanism is
employed to limit computational overhead while
maintaining a balanced exploration—exploitation
trade-off. The proposed approach is evaluated
based on solution quality, computational
efficiency, convergence behavior, and feasibility
rate, and its performance is compared with that of
the gbest-guided artificial ant bee colony
algorithm. Experimental results indicate that the
proposed hybrid framework consistently produces
high-quality service compositions and
demonstrates robust performance under different
composition scenarios.
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to an overwhelming growth in the number of cloud
services available online.

As the cloud ecosystem continues to expand, selecting
suitable services and combining them into an effective
composite solution has become increasingly challenging.
Many cloud services deliver comparable functionality,
which makes functional requirements alone insufficient
for service selection. Instead, non-functional factors,
commonly known as Quality of Service (QoS) attributes,
have gained considerable importance. Attributes such as
response time, availability, reliability, and cost strongly
influence the overall performance of a service
composition and directly affect user satisfaction.
Consequently, QoS-aware decision-making has become a
central concern in cloud service composition.
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QoS-aware cloud service composition involves selecting
one service for each task in a workflow while satisfying
multiple QoS constraints simultaneously. The number of
possible service combinations grows exponentially as the
number of candidate services increases, making the
problem computationally intensive and inherently NP-
hard. Over the years, researchers have proposed various
solution approaches, ranging from exact optimization
techniques to heuristic and meta-heuristic algorithms.
While exact methods can guarantee optimal solutions,
they often fail to scale efficiently for large problem
instances. On the other hand, many meta-heuristic
approaches provide reasonable solutions  within
acceptable time limits but may suffer from slow
convergence or premature stagnation.

To address these challenges, this study introduces a
hybrid optimization framework that combines the
Genetic Algorithm (GA) with the Fruit Fly Optimization
Algorithm (FOA). The motivation behind this integration
is to exploit the complementary strengths of both
techniques. GA is effective in exploring the global search
space, whereas FOA is well suited for rapid convergence
and local refinement. By coordinating these two
mechanisms, the proposed approach improves search
efficiency and enhances solution quality while keeping
computational cost under control. Experimental
evaluations demonstrate that the proposed method
consistently outperforms the conventional GA and the
gbest-guided discrete artificial bee colony (DGABC)
algorithm in terms of convergence speed and overall
solution quality.

2. Related Work

Before cloud computing became widely adopted,
research on service composition was mainly conducted
within Service-Oriented Architecture (SOA) and grid
computing environments. In SOA-based systems, service
composition generally involves designing workflows by
mapping abstract tasks to appropriate concrete services.
In grid computing, the focus is more aligned with
resource scheduling, where the objective is to efficiently
allocate distributed computational resources to meet
execution requirements [1].

Cloud service composition extends these earlier models
while introducing additional challenges unique to cloud
environments. In particular, it requires the discovery,
selection, and integration of cloud services while
satisfying user-defined non-functional requirements and
Service Level Agreement (SLA) constraints. Important
considerations include automation of the composition

process, execution control (centralized or decentralized),
service compatibility, and consistency. Moreover, cloud-
specific factors such as cost efficiency, scalability,
responsiveness, reliability, and long-term service
availability significantly influence composition decisions.
Several studies have addressed cloud service composition
using traditional algorithmic approaches; however, these
methods often face limitations when dealing with large-
scale service repositories [2].

To improve the quality of composed services, hybrid
optimization strategies have been explored in prior work.
A two-phase optimization framework combining global
optimization with local service selection was proposed in
[3], where global QoS constraints were decomposed into
local constraints using Mixed Integer Programming
(MIP). This transformation enabled parallel service
selection and reduced the overall search complexity.
Similarly, a dynamic and reliable service composition
framework was introduced in [4], where a Cultural
Genetic Algorithm (CGA) was employed in the initial
phase to identify promising composition structures. In the
subsequent phase, global QoS constraints were converted
into local constraints, and concrete services were selected
using an enhanced case-based reasoning approach.
Although these methods demonstrated improved QoS
satisfaction, they primarily emphasized solution
optimality =~ while paying limited attention to
computational efficiency.

As the demand for scalable solutions increased,
researchers shifted toward combinatorial and meta-
heuristic techniques to obtain near-optimal solutions
within acceptable execution time [5]. The approach
presented in [6] focused on optimizing QoS attributes
while maintaining reasonable computational overhead.
Genetic Algorithm—based methods have also been widely
studied. For example, the work in [7] incorporated user
preferences and SLA constraints into the service
composition process and applied skyline techniques to
improve convergence speed and service quality. To
further reduce execution time, a GA-based method for
web service composition was proposed in [8], ensuring
functional correctness while optimizing QoS parameters.

Other population-based optimization algorithms have
also been investigated. Particle Swarm Optimization
(PSO) with integer-based encoding was applied in [9] to
efficiently explore the solution space, where skyline
operators and binary selection mechanisms were used to
eliminate low-quality candidate services. Although such
meta-heuristic approaches generally outperform classical
methods in terms of execution time, their performance
tends to degrade as the number of available services



International Journal of Applied Engineering Research ISSN 0973-4562 VVolume 13, Number 24 (2018) pp. 17055-17065
© Research India Publications. http://www.ripublication.com

increases. Consequently, scalability remains a persistent
challenge in large-scale cloud service composition
problems [10]. Karimi et al. [11] proposed a QoS-aware
service composition framework using evolutionary
optimization to address the trade-off between solution
optimality and computational efficiency in dynamic cloud
environments. Hayyolalam et al. [12] proposed a survey paper
on QoS aware cloud service composition and selection in cloud
environment. A QoS aware cloud service composition
technique based on fuzzy set theory (FST) and genetic
algorithm (GA), a triangular fuzzy genetic algorithm (TGA) is
proposed for solving the service composition problem [13]. Liu
et al. [14] investigated QoS-aware service composition in cloud
manufacturing environments and highlighted the limitations of
one-to-one mapping-based service composition in terms of
overall QoS and composition success rate. To overcome these
issues, they introduced a synergistic elementary service
group—based composition model and employed an
improved genetic algorithm to manage the increased
optimization ~ complexity, demonstrating  superior

I - -
]

performance over conventional approaches. However, the
computational overhead of group-based composition
remains a challenge as the scale of candidate services continues
to grow. Gabrel et al. [15] investigated QoS-aware automatic
service composition by modeling the selection process as an
optimization problem, where global QoS constraints are
derived from individual service attributes to guide optimal
composition.

3. CLOUD SERVICE SELECTION BASED ON
QoS PARAMETER

The fig. 1 presents a structured approach for selecting cloud
services, in which each abstract task is associated with several
candidate services identified during the discovery phase.
Quality of Service attributes, such as response time,
availability, success ability, compliance, price , latency, and
throughput, are then evaluated to choose the most suitable
service from each layer, resulting in an optimized composite
cloud service.

P W oL

Fig .1 Cloud service composition process

3.1 Problem statement and workflow description

To formally describe the QoS-aware cloud service
composition problem, the following definitions and
assumptions are considered.

Step 1:

A complex service request is decomposed into a set of
atomic tasks denoted as: ACSC = {Ty, Ty, ..., Tn}, where
each Ti represents an individual atomic task and n is the
total number of such tasks. For each atomic task Ti, a
corresponding candidate cloud service set Si = {CS;;,
CSi, ..., CSin} is defined, where CS;; represents the jth

FE
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concrete cloud service capable of executing task T;, and
m denotes the number of candidate services available for
each task.

Step 2:

Each cloud service is characterized by a set of Quality of
Service (QoS) attributes defined as: QoS = {q1, g2, ...,
qr}, where r denotes the total number of QoS parameters.
These attributes are categorized into positive QoS
attributes (QoS+) and negative QoS attributes (QoS-).
For negative QoS attributes, such as response time and
cost, lower values indicate better performance.

Step 3:

User-defined global constraints are represented by the
set: GCst = {Csty, Csty, ..., Cstc}, where each Cst; (t <k
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and k <r) specifies a constraint applied to the
corresponding QoS attribute gt.

Step 4:

A weight vector W = {wy, Wy, ..., W} is assigned to
represent the importance of each QoS attribute. Each wt
lies in the range [0,1], and the sum of all weights
satisfies: T wt=1.

3.2 Genetic Algorithm (GA)

Genetic  Algorithm  (GA) is a population-based
optimization technique inspired by natural evolution. It
starts with a randomly generated population of candidate
solutions, where each individual represents a possible
cloud service composition. A fitness function evaluates
the quality of each individual based on QoS satisfaction.
Through selection, crossover, and mutation operations,
the population evolves toward optimal solutions.

General Steps of GA :
1. Initialize a population of candidate solutions.
2. Evaluate the fitness of each individual.
3. Repeat until termination condition is met:
- Select individuals for reproduction.
- Apply crossover to generate offspring.
- Perform mutation to maintain diversity.
- Recalculate fitness values.
4. Fruit Fly Optimization Algorithm (FOA)

3.3 Fruit fly optimization (FOA)

Fruit Fly Optimization Algorithm (FOA) is a swarm
intelligence-based global optimization method inspired
by the food-searching behavior of fruit flies. The
algorithm utilizes smell-based and vision-based search
mechanisms.

Step 1: Initialization

Randomly, initialize the fruit fly population in the search
space. Define population size (SN) and maximum
generations (MAX_GEN).

Step 2: Smell-Based Search
Generate fruit flies near the current position and evaluate
their fitness values.

Step 3: Vision-Based Search
Identify the fruit fly with the best fitness value and move
the population toward this optimal position.

Step 4: Termination
Repeat the search process until the maximum number of
generations is reached.

4. Cloud Service Composition

The objective of this work is to design an efficient cloud
service composition framework capable of generating
near-optimal composite cloud services within a limited
computational time. To accomplish this goal, a hybrid
optimization strategy, referred to as the Hybrid Genetic—
Fruit Fly Algorithm (HGA), is proposed. The framework
integrates the global search strength of the Genetic
Algorithm (GA) with the local exploitation capability of
the Fruit Fly Optimization Algorithm (FOA). The
proposed approach consists of multiple stages, including
solution encoding, enhanced population initialization,
fitness evaluation, genetic evolution, and fruit fly-based
refinement. A  modified roulette-wheel selection
mechanism is introduced in the GA phase to improve
selection efficiency and exploration performance. To
further control execution time and maintain a balance
between exploration and exploitation, FOA is applied
after each genetic evolution cycle. Moreover, an elitism
strategy is employed to ensure that high-quality solutions
are preserved during the evolutionary process.

4.1 Encoding Phase

In the proposed HGA model, each individual in the
population represents a complete cloud service
composition solution. The solution is encoded as an
integer-based vector, where each position corresponds to
an atomic task, and the integer value stored at that
position indicates the selected concrete cloud service
from the associated candidate service set.

4.2 Population Initialization Phase

In conventional evolutionary optimization techniques
such as Genetic Algorithms (GA) and Fruit Fly
Optimization Algorithm (FOA), the initial population is
typically generated using random sampling. Although
this approach is computationally simple, it often produces
individuals with low solution quality and limited
diversity, which may slow down convergence and
increase the likelihood of premature stagnation. In
contrast, an initial population that simultaneously
maintains high solution quality and sufficient diversity is
more effective in guiding the search process toward
optimal solutions within a shorter convergence time.
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To address this limitation, the proposed model
incorporates a heuristic local optimization-based
selection strategy for population initialization. Instead of
relying solely on randomly generated individuals, this
strategy refines the initial population by constructing
improved solutions using QoS-aware evaluation, thereby
enhancing the overall search efficiency from the early
stages of evolution.

4.2.1 Local Optimization Selection Method

The local optimization selection method is designed to
generate an individual (denoted as ind) with a high level
of solution quality. First, all Quality of Service (QoS)
attributes are normalized to a unified numerical range of
[0, 1] in order to eliminate scale inconsistencies among
heterogeneous attributes. The normalization procedures
for negative and positive QoS attributes of a composite
cloud service (CCS) are defined in Equations (1) and (2),
respectively. The normalized value of Q(CCS)q; € [0, 1]
for negative and positive QoS attributes are shown is
Equations (3) and (4), respectively. Following
normalization, each QoS attribute value is multiplied by
its corresponding user-defined preference weight wit,
reflecting the relative importance of that attribute. The
weighted normalized values are then aggregated to
compute the overall score of the CCS, as expressed in
Equation (5). This aggregated score serves as a
quantitative measure of the solution quality and is
subsequently used to guide the selection of high-quality
individuals during population initialization. By
integrating normalization, preference weighting, and
local optimization-based selection, the proposed
initialization mechanism produces a diverse set of
promising individuals, which significantly improves
convergence speed and solution robustness in the
subsequent evolutionary phases.

Normalization of negative QoS attributes (i.e. g; €
QoS)

agg(qtmax)—agg(qt) (1)
agg(qgtmax)—agg(qtmin)

QoS(ay =

Normalization of positive QoS attributes (i.e. q; €

Qos")

+y V= _ 299(qt)—agg(qtmax)

QoS {(ay= agg(qtmax)—agg(qtmin) @
The normalized value of Q(CCS)q, € [0, 1] for
negative and positive QoS attributes are shown is
Equations (3) and (4), respectively

agg(qtmax)—agg(qt)

Q(CCs)qt = [ngy(qtma;)ayy(qtmin) + if agg(qtmin) # agg(qtmax) 3)

if agg(qtmin) = agg(qtmax)

agg(qt)—agg(qtmax) . :
—_— t t
Q(CcCs)qt = [agy(qtmaﬂ—ayy(qtmin) if agg(qtmin) # agg(qtmax) 4

1, if agg(qtmin) = agg(qtmax)

Score (ccs) = X5 _4(ces)t = wt (5)

After completing the normalization
following procedure is carried out.

process, the

Step 1: The local score of each concrete cloud service in
the candidate set CS/ is computed using the Simple
Additive Weighting (SAW) method ( Eq. 6) .

Scorel(Csij) =

qt,i max—qt,ij

—qt,i min+qt,ij
qt,i max —qt,i min (6)

qt,i max —qt,i min

the QoS— * Wt + the QoS—

where, q; ;' represents the value of the t" QoS criterion
for the j" concrete cloud service within the i" candidate
set Si. The symbols q,;™" and g™ denote the
minimum and maximum values of the t" attribute
observed in the candidate set S; , respectively, while w;
indicates the user-assigned preference weight associated
with the t" QoS attribute.

Step 2:

For each candidate cloud service set S;, an individual ind
corresponds to the i position in the solution vector does.

do

Select two distinct concrete cloud services, CS; and CS
randomly from S; using a binary tournament selection
mechanism. The local scores of the selected services are
then compared.

1. If the local score of Score ; (CS¥) > Score; (CS}) at i
the position of ind is updated with the index k;

2. Else, it is replaced with the index j.
3.End If

End For
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4.2.2 Initial Population Construction Procedure

The process of generating the initial population is carried
out as follows:

Step 1: A high-quality candidate solution is first
produced using the proposed local optimization-based
selection strategy.

Step 2: Let the iteration counter be initialized as itr = 1.
The following steps are executed until itr reaches the
predefined population size, denoted by PopSize.

Step 3: A new optimized solution is generated using the
same local optimization approach. If this solution is
distinct from all existing individuals in the current
population, it is added to the population and the iteration
counter is incremented by one. Otherwise, the solution is
discarded and the generation process is repeated until a
unique solution is obtained.

4.3 Crossover Operator

After the parent selection stage, pairs of individuals are
recombined using a crossover mechanism to generate
new candidate solutions. This process integrates genetic
information from both parents to form offspring with
potentially improved characteristics. Two crossover
strategies are adopted in the proposed framework, namely
single-point crossover and double-point crossover.

In the single-point crossover approach, a crossover
position is selected at random along the chromosome.
The gene segments located beyond this position are then
exchanged between the two parent chromosomes,
resulting in two new offspring (as illustrated in Fig. 2a).
In contrast, the double-point crossover method involves
selecting two distinct crossover positions. The gene
segment lying between these two points is swapped
between the parent individuals; thereby producing new
chromosomes with mixed genetic structures (see Fig. 2b).

To maintain diversity in the evolutionary process, a
probabilistic mechanism is employed to select the
crossover type. Specifically, a random value r € [0, 1] is
generated. When r < 0.5, single-point crossover is

applied; otherwise, the algorithm performs a double-point
crossover during reproduction.

4.4 Mutation Operator

Following the crossover operation, mutation is applied to
further enhance population diversity and prevent

premature convergence. The mutation strategy operates
by randomly selecting a gene position within the newly
generated individual, where each gene represents an
abstract cloud service. The selected gene is then replaced
with an alternative concrete cloud service chosen
randomly from the corresponding candidate service set
(as shown in Fig. 2c).

This mutation mechanism enables the exploration of new
regions within the search space by introducing controlled
random variations, thereby increasing the likelihood of
discovering high-quality solutions in  subsequent
generations.

4.5 FOA Phase (Local Exploitation)

The Fruit Fly Optimization Algorithm (FOA) phase is
applied as a local exploitation mechanism to refine the
high-quality solutions obtained from the genetic phase.
For each promising solution produced by the genetic
operators, FOA is employed to further enhance solution
quality by exploring its local neighbourhood. During the
smell-based foraging stage, a set of SN neighbouring
solutions is generated around each selected individual.
These neighbours are created using a mutation-based
operation, where certain decision variables of the selected
solution are randomly modified to produce nearby
candidate solutions.

In the vision-based search stage, all SN neighbouring
individuals of a given solution (ind) are evaluated
according to the fitness function. The best-performing
neighbour, referred to as BestInd, is then identified. If
Bestind yields a better fitness value than the original
individual Ind, it replaces ind in the population;
otherwise, the original solution is retained. This process
ensures that only improvements are accepted, thereby
strengthening local search capability.

The FOA procedure applied to each solution generated
by the genetic phase can be summarized as follows:

Step 1: For every individual ind;, produced after the
genetic phase, where i=1, 2,...,Pop Size, execute the
subsequent steps.

Step 2: Compute the selection probability p, of each
individual ind;, using Equations (17-18).

4.3 Fitness Evaluation

In the proposed framework, each individual in the
generated population is assigned a fitness value that
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reflects its performance within the search space. The

The dissimilarity between any two individuals is

fitness evaluation mechanism is designed to distinguishmeasured using the Hamming distance metric (Eq. 10), which
between feasible and infeasible solutions while guidingquantifies the number of differing positions between their

the  evolutionary toward

compositions.

process

To penalize constraint violations, a penalty function
Pn(ind) is defined in Eq. 7 as follows:

Yk, Cstvt(ind)g = pt, if ind is infeasible @)
0, if ind is feasible

Pn(ind) = {

where, CstV(ind) represents the degree of constraint
violation corresponding to the t" QoS attribute, as
formulated in Eqg. (8). The parameter g controls the
severity of the penalty and is set to g=2 in this study. The
weighting factor p;€ [0, 1] fort=1, 2, ...... , Kk, indicates
the relative importance of the t constraint, subject to the
condition ¥k_ pt=1. This penalty-based fitness
formulation ensures that feasible individuals are always
favored over infeasible ones, while infeasible solutions
are proportionally penalized based on the magnitude of
their constraint violations.

max(0,agg(qt)— Cstt) if qt € QoS—

. _ Cstt
Cstvt(ind) = max(0,agg(qt)— Cstt) if qt € QoS+ ®)

Cstt

where, Cst; and agg (g:) represent the constraint
threshold and the aggregated value of the t" QoS
attribute, respectively. For attributes with positive
constraints, feasibility is satisfied when agg (qy) <,
whereas for negatively constrained attributes, the
condition agg(q:) > Cst: must hold, as defined in Eq. (5).
The constraint threshold Cst, belongs to the global
constraint set GCst. The term agg (qt) denotes the
cumulative value of the t" QoS attribute associated with
an individual solution.

F(fit(ind) =
{Score(ind) * 0.5 — pn(ind), if ind is infeasible )
Score(ind) « 0.5 + 0.5, if ind is feasible

Where, pn(ind) represents the penalty assigned to an
individual, while Score(ind) denotes its aggregated score
as defined in Eq. (3). As indicated by Eq. (9), feasible
solutions are always assigned higher fitness values than
infeasible ones, thereby guiding the search process
toward valid and high-quality solutions.

high-qualityrespective representations.

dist(indy, ind;) = X1, yi (10)

where, ind, denotes the gene value at the i" position of the k™
individual. The diversity measure div(indy), which quantifies
the dissimilarity between an individual and the remaining
members of the population, is defined in Eq. (11). Based on
this diversity measure, the updated selection score (indj) is
computed as expressed in Eq. (12). This score is obtained
using the Simple Additive Weighting (SAW) method, which
integrates both fitness and diversity information into a single
scalar value for each individual.

div(ind) = Y7225 std(fit(indj, indh)) (11)

In this context, j # h, PopSize represents the total number of
individuals in the population, and std denotes the standard
deviation. The term fit(indj,indh ) refers to the fitness values
associated with individuals indj and indh , respectively.

Scrg(ind;) =Ng(ind;)*wd + N(indj)*wf (12)
Where ,
Nf(indj) =
1 if (max(fitpop) = mini{fitpop)
fit(indj)—min(fitpop) . . e
max(fitpop)—min(Fitpop) if (max(fitpop) = mini{fit(pop)
13)
Nf(indj) =
1 if (max(divpop) = mini{divpop)

div(indj)—min(divpop)

if (max(divpop) # mini{div(pop)
(14)

max(divpop)—min(divpop)

According to Egs. (12) — (14), fit(indj) represents the fitness
value of the j" individual, while div(indj) denotes its
corresponding diversity measure. The terms min(fitPop) and
max(fitPop), indicate the minimum and maximum fitness
values observed in the current population Pop, respectively.
The weighting parameters wrand wy (Egs. 15 - 16), are
employed to regulate the relative influence of fitness and
diversity components during the selection process.

Wd — counter 5 (15)

2xmaxitr
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counter

wf =0.5— (16)

2xmaxitr

Here, maxitr denotes the maximum number of iterations,
while counter represents the current iteration index of the
proposed algorithm. A new individual for the next
generation, denoted as is selected using the following
procedure.

Step 1: Generate a random real number r € [0, 1] using a
uniform random function.

Step 2: If r < p1, the first individual ind; is selected.
Otherwise, select the individual ind; (i =1, ... ,PopSize),
such that p.1< r < pi , where pi represents the
cumulative selection probability of the i"" individual in
the current population Pop, computed as defined in Egs.
(17 - 18).

scrsel(ind1)

P1= Z?ﬁf‘ﬁze scrsel(indi) (17)
. scrsel(indi) . . .
= . + D; <j<
Pi Z,-:i’sm sersel(ind]) Pi1, if, 2 <j < popsize (18)

4.4 Genetic Phase (Global Exploration)

4.4.1 Selection Operator

In this phase, a modified roulette wheel selection strategy
is introduced, where the selection probability of each
chromosome is determined by jointly considering its
fitness and diversity. This approach increases the
likelihood of selecting individuals that are both well-
performing and diverse, thereby enhancing population
variability and avoiding premature convergence. To
compute the updated selection scores, the diversity of
each individual is quantified by measuring its
dissimilarity from all other individuals within the current
population.

4.4.2 Crossover Operator

After the parent selection stage, pairs of individuals are
recombined using a crossover mechanism to generate
new candidate solutions. This process integrates genetic
information from both parents to form offspring with
potentially improved characteristics. Two crossover
strategies are adopted in the proposed framework, namely
single-point crossover and double-point crossover.

In the single-point crossover approach, a crossover
position is selected at random along the chromosome.
The gene segments located beyond this position are then
exchanged between the two parent chromosomes,
resulting in two new offspring (as illustrated in Fig. 2a).

In contrast, the double-point crossover method involves
selecting two distinct crossover positions. The gene
segment lying between these two points is swapped
between the parent individuals; thereby producing new
chromosomes with mixed genetic structures (see Fig. 2b).

To maintain diversity in the evolutionary process, a
probabilistic mechanism is employed to select the
crossover type. Specifically, a random value r € [0, 1] is
generated. When r < 0.5, single-point crossover is
applied; otherwise, the algorithm performs a double-point
crossover during reproduction.

4.4.3 Mutation Operator

Following the crossover operation, mutation is applied to
further enhance population diversity and prevent
premature convergence. The mutation strategy operates
by randomly selecting a gene position within the newly
generated individual, where each gene represents an
abstract cloud service. The selected gene is then replaced
with an alternative concrete cloud service chosen
randomly from the corresponding candidate service set
(as shown in Fig. 2¢).This mutation mechanism enables
the exploration of new regions within the search space by
introducing controlled random variations, thereby
increasing the likelihood of discovering high-quality

solutions in subsequent generations
Individual 1 I-] 21511719 Individual 1 [ 1 T2 517 19
1 1 1
Individual 2 [3 4 TI[2]5] Individuat2 [3TA[TH2]5]  tndivicualt (T[4 [A[7 ]38
Individual 1" 1 |2 [{1([2| 5§ Individual 1" | 1 | 41| 7|9
Individual 2 [37415]7]9] Individual2' [3[278[2]5] Individual1’ (1457779

(a) (h) (e)
Fig. 2 Genetic operators used in the evolutionary phase: (a) single-
point crossover, (b) double-point crossover, and (c) mutation
operation.

5. Results and Analysis

5.1 Experimental Setup

To evaluate the performance of the proposed approach, a
sequential Abstract Cloud Service Composition (ACSC)
scenario is considered. In this setup, the composition consists
of n abstract cloud services, where each abstract service is
associated with a candidate set of m concrete cloud services.
The experiments are conducted using the QWS dataset, which
includes eight Quality of Service (QoS) attributes: response
time, availability, throughput, success ability, reliability, , and
compliance are treated as positive attributes, where higher
values represent improved service quality. This experimental
configuration enables a comprehensive assessment of the
effectiveness and robustness of the proposed model under
diverse QoS constraints.
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5.2 Parameter setting of the proposed model

Table 1: Quantitative parameters used in simulation

environment

Cst Weight Penalty
Response time  0.92 0.1 0.2
Availability 0.89 0.2 0.1
Throughput 0.011 0.05 0.1
Success ability  0.12 0.05 0.2
Reliability 0.11 0.2 0.05
Compliance 0.21 0.1 0.05
Price 0.119 0.1 0.1
Latency 0.98 0.2 0.2

Table 1 presents the quantitative configuration of QoS-related
parameters, including constraint thresholds, weighting
coefficients, and penalty values adopted for the experimental
evaluation. To assess the effectiveness of the proposed model,
a comparative evaluation is carried out against two benchmark
algorithms, namely the Simple Genetic Algorithm (GA) and
the discrete gbest-guided Ant Bee Colony (DGABC)
algorithm. The comparison is performed based on two key
performance criteria: optimality and execution time.

Execution time: It represents the computational efficiency of
the algorithms and is defined as the total time required
identifying the optimal composite cloud service. This metric
highlights the algorithm’s capability to achieve high-quality
solutions within a reasonable time frame, which is crucial for
practical cloud service composition scenarios. Figure 3
presents a comparative analysis of the execution times of GA,
DGABC, and HGA for varying numbers of abstract services.
The results indicate that GA and DGABC generally achieve
lower execution times, reflecting their ability to identify
suitable composite services with reduced computational
overhead. In contrast, HGA exhibits comparatively higher and
more consistent execution times across all service
configurations, suggesting increased processing complexity.
DGABC shows performance close to GA and, in some cases,
slightly better, highlighting its computational efficiency.
Overall, the figure demonstrates that GA and DGABC are
more suitable for time-sensitive cloud service composition
scenarios.

Optimality: It reflects the quality of the obtained solution and
is measured through the fitness value of the best composite
cloud service identified by each algorithm. A higher fitness
value indicates a more efficient and well-optimized service
composition under the given QoS constraints. The fig, 4

illustrates the convergence characteristics of GA, DGABC, and
HGA in terms of fitness value over successive generations. he
proposed HGA demonstrates faster convergence and achieves
superior solution quality compared to GA and DGABC as the
number of iterations increases It can be observed that all three
algorithms show a steady improvement in solution quality as
the iterations progress. HGA consistently achieves the highest
fitness values, indicating its stronger capability to reach
superior composite service solutions. DGABC demonstrates
stable convergence with moderate fluctuations, while GA
converges more slowly and attains comparatively lower fitness
values. Overall, the fig. 4 highlights the effectiveness of HGA
in achieving better optimization performance within fewer
generations. As illustrated in Fig. 5, the proposed approach
achieves higher fitness values than the benchmark algorithms
(GA and DGABC) when the number of abstract services varies
from 5 to 9 with 200 candidate services per task.

HGA
B DGABC

execution time(S)

HGA

[ T T
5 6 7 8 9

No of abstract services

Fig. 3 Computational time comparison of GA, DGABC, and HGA
under Scenario 1, where each abstract service is associated with 200
concrete services (m = 200) and the number of abstract services varies
from5t0 9.
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Fig. 4 Convergence behavior of the compared algorithms (GA,
DGABC, and HGA) illustrating the improvement in the quality of the
optimal composite service across iterations.



International Journal of Applied Engineering Research ISSN 0973-4562 VVolume 13, Number 24 (2018) pp. 17055-17065
© Research India Publications. http://www.ripublication.com

=
o

HGA
B DGABC

Fitness Value
[}
n

(=]
=
)

B HGA

=
T

=
P

(=]
—

\_]

Number of abstract services

Fig. 5 Comparison of fitness value of GA, DGABC, and HGA
optimality for different numbers of abstract services ranging from 5 to
9, with each abstract service having 200 candidate concrete services
(m =200).

6. Conclusion and Future Work

This study evaluated the proposed model by analyzing its
performance in terms of solution optimality and
computational time. Comparative experiments with
existing algorithms demonstrate that the proposed
approach is both efficient and effective in generating
high-quality composite cloud services while maintaining
lower execution time. The experimental results confirm
its capability to achieve superior fitness values and faster
convergence under varying service composition
scenarios.

Despite these advantages, the current approach has
certain limitations when compared with Pareto-based
multi-objective techniques. Specifically, the multi-
objective QoS-aware cloud service composition problem
is transformed into a single-objective formulation using
the Simple Additive Weighting (SAW) method, which
may lead to information loss among conflicting
objectives. Moreover, interdependencies and correlations
among cloud services are not explicitly modeled, and the
influence of service distribution across distributed cloud
servers is not considered.

Future research will focus on addressing these limitations
by formulating the problem within a fully distributed
cloud environment that incorporates multiple objectives,
complex constraints, and service interdependencies. The
proposed model will be extended to a multi-objective
optimization framework to simultaneously optimize
diverse QoS attributes while accounting for correlations

among services. This extension is expected to improve
the practicality and robustness of cloud service
composition  in  real-world  distributed  cloud
infrastructures
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