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Abstract

In the present paper | investigate the effects of thermal
excitations on a generalized thermoviscoelastic half-space
with voids with microtemperature without energy
dissipation.  The exact expressions for displacement
components, components of the microtemperature vector,
stresses, temperature distribution, change in volume fraction
field, and heat flux moment vector are derived using the
normal mode analysis approach on non-dimensional field
equations. The viscosity effect and effect of
microtemperature and voids on field variables has been
depicted graphically for temperature gradient boundary.

Keywords: Thermoviscoelasticity with voids, normal-mode
analysis, microtemperature.

1. INTRODUCTION

Nunziato and Cowin (1979) were the first to examine the
theory of voids in thermoelastic materials. lesan (1986)
investigated the theory of voids in thermoelastic materials.
Dhaliwal and Wang (1995) proposed a thermoelasticity
theory for elastic materials with voids that incorporates the
heat-flux as one of the constitutive variables and assumes a
heat-flux evolution equation. Kumar and Rani (2004)
examined at how mechanical and thermal stimuli affected the
response of a generalised thermoelastic half-space with voids.
Kumar and Rani (2007) investigated axisymmetric
deformation in a thermoelastic material with voids due to
mechanical and thermal causes. The asymptotic spatial
behaviour was investigated by Pompei and Scalia (2011).

Viscoelastic materials has applications in the field of
Biomechanics and engineering.

Cowin (1985) investigated the viscoelastic behavior of linear
elastic materials with voids. Ciarletta and Scalia (1991)
studied the integral type linear theory of viscoelastic
materials with voids. Martinez and Quintanilla (1998)
obtained uniqueness theorem By means of power type
function method. De Cicco and Nappa (2003) discussed
linear theory of thermoviscoelastic materials with voids. Luo
and Li (2007) established some basic principles in dynamic
theory of viscoelastic materials with voids. The effect due to
time-harmonic normal point source or thermal source in
magneto-thermo-viscoelastic half-space has been studied by
Abd-Alla and Abo-Dahab (2009) studied. lesan (2011)
established uniqueness, reciprocal and variational theorems
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in linear theory of thermoviscoelastic materials with voids.
Svanadze (2014) studied fundamental solutions and basic
properties of equations of the linear thermoviscoelasticity
theory with voids. Svanadze (2014) generalized basic results
of classical theory of elasticity in the linear theory of
viscoelastic materials with voids. Othman and Fekry (2016)
investigated the response of magnetic field in a
homogeneous, isotropic generalized thermo-viscoelastic
diffusion material with voids. Hooda and Deswal (2016)
discussed the effect of gravity in generalized
thermoviscoelastic solid with voids. Othman and Fekry
(2018) studied the influence of gravity and rotation in
generalized thermo-viscoelasticity ~with  voids. One-
dimensional thermoviscoelastic theory with voids had been
explained by Miranville and Quintanilla (2020).

The theory of thermoelasticity for bodies with
microstructures shows importance in recent years. Grot
invented the concept of microtemperatures and a
thermodynamics theory for elastic materials with
microstructure (1969). Riha (1975,1977) investigated a heat-
conducting micropolar fluid with microtemperatures theory.
Casas and Quintanilla (2005) established the exponential
stability of solutions of the equation in this theory.

Iesan (2007) develops a microstretch elastic solids with
microtemperatures  linear  theory. The theory of
thermoelasticity with microtemperatures was investigated by
Iesan and Quintanilla (2010). Scalia et al. (2010) investigated
basic theorems in thermoelasticity equilibrium theory using
microtemperatures. Bitsadze and Jaiani (2013) discussed
some basic plane thermoelasticity boundary value problems
using microtemperatures. The influence of initial stress on a
porous thermoelastic media using micro-temperatures was
investigated by Othman et al. (2016). For the half-space,
George and Bitsadze (2018) investigated basic
thermoelasticity problems with microtemperatures. Marin et
al. (2020) discussed microtemperatures and thermoelastic
materials with a dipolar structure.

In a homogeneous, isotropic, thermoviscoelastic half-space
with voids and microtemperature due to thermal source, the
components of displacement, components of the
microtemperatures vector, stresses, temperature distribution,
change in volume fraction field, and first heat flux moment
vector are proposed. The Lord-Shulman, Green-Lindsay,
Green and Naghdi theories of types Il and Il have all been
used to demonstrate the concept. To derive exact formulas for
physical values, the normal mode analysis is performed. The
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viscosity effect, influence of microtemperatures, and voids
are all depicted visually.

2.Basic equations

The constitutive relations for a homogeneous and isotropic
thermoelastic medium with voids with microtemperature,
according to lesan and Quintanilla(2000), are

tij = A wrbyj + #(ui,j + uj,i) + bpé;;

—BT(1+ 857, 5) &, (i = 1,2,3), (1)

q; = KT,i+ kyw, (2

qij = —k4Wr,r5ij - kSWi,j - k6Wj,i» 3)

pn = ey, +aT + m’o, (4)

p €= —b'w, ;= ag,, (®)
a,b’, K, (i=12....... ,6) are constant  constitutive

coefficients, t;; are components of stress tensor, a, b, &1, m”,
¥ material constants due to presence of  voids,
B:(37\,+2H)0Lt, a, linear thermal expansion, A, w

Lame’s constants, p is the reference mass density of the
medium, K thermal conductivity, ¢ change in volume
fraction field, n is the entropy per unit mass,€; are the
components of the first moment of the energy vector, q;;are
the components of the first heat flux moment vector. g; are
the components of the heat flux vector, u;are components of
displacement vector u, w; are the components of the
microtemperatures vector w, T is the temperature change. 70
is the temperature of the medium in its natural state. 4 comma
in the subscript denotes the spatial derivative and &;;is the
Kronecker delta.

Following lesan and Quintanilla(2000), the constitutive Egs.
(1)-(3), combined with the reduced

Clausius-Duhem inequality imply the following inequalities
for the linear theory of thermoelasticity with
microtemperatures

3K, + Ks + Kg > 0,Ks + K5 > 0,
Ks—Ks = 0,K = 0,
(K, + ToK3)? — 4T,KK, < 0.

According to lesan and Quintanilla(2000), the linear theory
of thermoelasticity with voids with microtemperatures in the
absence of body force, heat sources, and extrinsic
equilibrated body force has a fundamental set of field
equations

(1 Equation of motion for stress
tij,j = pili, (6)
(ii) Balance energy equation is

pTon = quy, (7
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(iii) First moment of energy balanced equation is
PE = Qqjii + qi (8)

The temporal derivative is represented by the superposed dot,
while the other symbols are as explained previously. Using
Egs (1)-(5) in Egs (6)-(8), and following lesan (2011), Lord-
Shulman (1967), Green-Lindsay (1972), Green and Naghdi
(1993), the equations in a homogeneous, isotropic,
thermoviscoelastic medium with voids with
microtemperature, in the context of (G-N) theory of type I,
in the absence of body force, body couple, equilibrated force,

#1721_1 + (/11 + Ml)V(V.lj) + blv(p - ﬁV(T + SZleT)

= pii, ©)
V2@ —v;(V.U0) = &9 + (m* + V)T = px¢, (10)

2
KV?T + K*V2T — BT, 2 + ro6lka— v.id —
at at?

(cV? —m*T,) Z—‘f + K\ VW = pc (T +1,T) +

aT, T (11)
KsV?W + (K, + Ks)V (V.W)-Ks VT — KW = b°w,  (12)
where
A Y SN VI S S
M=pr i o = at’ 1 Frae
=ata 7t

« 0 . 0
w=bty' L g =E+82 (13)

7o, T; are thermal relaxation times, For L-S theory, 7,= 0,
61,=1 and for G-L theory 7,>0, &,= 0 (i.e., k=1 for L-S
theory and k = 2 for G-L theory). The thermal relaxations
T, and t, satisfy the inequality 7, =7, >0 for the

~ 0 ~ 0 ~ 0
G-L theory only, V = i-+J 7 + ka—z and other symbols

have their usual meaning. u*, A%, b*, a*,y", & are constitutive
coefficient. ¢, is specific heat at constant strain. K" is the
material constant characteristic of the theory, When K*—0
then (11) reduces to the heat conduction equation in (G-N)
theory (of type I1).

3. Formulation and Solution of the problem

In the undeformed state at uniform temperature, we study a
homogeneous, isotropic, thermally conducting generalised
thermoviscoelastic ~ half-space with  voids  with
microtemperature. To. The rectangular Cartesian co-ordinate
system (x,y,z) is introduced, with the origin at z = 0 and the
z-axis pointing normally into the medium. At the origin of the
rectangular Cartesian co-ordinates, a thermal source is
supposed to be acting.

All quantities studied in the two-dimensional issue are
functions of the time variable t and the coordinates x and z.



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 17, Number 4 (2022) pp. 370-395
© Research India Publications. http://www.ripublication.com

As a result,
microtemperature vector w are used.

the displacement vector

u and the

u=(u;(x,z,t),0,us(x,z1t)), w=(w,(x,2z1t),0,w;(x,2z1t))

To simplify the algebra, only problems with zero initial

conditions are considered.

Introducing dimensionless quantities

! wl ! a);
X =—X, 7 =—7Z,
C2 C2
*
2 4 ! 1
t == G)It, (ull u3) = _(ull u3);
2
*
T
' ’ 1 '
(Wll W3) = C_Z(Wli W3)I T = T_OJ
¢ = w1X<p L R
Cz ) 1 Kwik » Yo 10>
’ wl
Tl—wlTl,a =—Cl
2
: w7
-- 14
ql] ﬁT()CZ ql] ( )
' tZZ ’ th
S TP T
. ey,
= o (15)
where

= 2

2 CeC
¢, = (E) and w! = PleCs
p K

After suppressing the primes, equations (9) — (12) can be

recast into the dimensionless form as:

- 0 > 0%u, N 0%u,
V15¢)\oxz T a2
0\ [0%u,
+ (]/2 HRE E) 0x?2 +
d\0dp
+ <V4 +V5a>a_y6 (1

0%y

)

0%u,

0x0z
t s 6>6T
1192k 51 ) Bx
(16)

i 02u3 aZU3) (
(1+Y1gt)(ax§ t 922 T r2t
9\ (%%w , 0 ”3) ( i)a_‘f’_
Vs at) (azax t 922 T Ve t7s at) oz

6T
Ye (1 + 7,0, at) Py
d%u
7 ?23! (17)

{(173) Gt 7m) —vaag —vuafo -
(ro+12030) G+ 57

2
2) @1+ <V12 +
Vi3 (aaxzz aaz2 )) r=

0, (18)

d 0°T 0°T
1+152) (G+3) -& &

9% 6u1 6u3 62 LK
ToO1k atz) (52 +%2) — e (axz toz)
an aW3

)/17} + V1s ( o + az) V19(at +
oT

To3; Z)T T Y205, (19)
62W1 62W1 62W1 62W3
( 6x; t 0z2 ) TV ( 0x2 + axaz) -
T
Y22 Ev Y23W1 =
ow,
Y24 P (20)
62W3 6 w3 62W1 62W3 _
( 0x2 t 0z2 ) t Va1 (6xaz t 0z2 )
V22 Er Y23W3 =
ow;
Y24 ot (21)
where
U w3 A+ puwi
Y1 = VYo =——""",
H H G
A+ u* wi? bcs
Y3 = S ==
oow o ot
b*c, BTy pw;’
Ys = vy Ye =, V7 = )
@ wq b_X _ YV Xwq
Vs a Yo 2 » V10 7
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2 x 2
_§q _$c
Y11 = %2 'V12 x2 7 4
1 1
m”xTy 0)16'%
Y13 = a Y14 = aw! )
K*w; ¢cs
Yis = — V16 =
K’ wiKTox'
m*cy K,c3
Y17 = 3, V1s8 w2
w;"Kx w{“KT
pc,c2 aTyc2
Y19 = —= V2
wK " wiK’
_ Ki+Ks _ K3T0C2 _ K2C2
Y21 = Ke y V22 = Kew?? y V23 = Kew?2’
_ b Cz _ 3C22
V2a = 5 €1=

Kew: 1 Kaw¥’

Using the dimensional form of the expression relating
displacement components and microtemperature components
u(x,z,t) and w(x,zt) as well as the scalar potential
function ¢4 (x, z, t), 1 (x, 2, t),@, (x, z, t) and P, (x, z, t)

L7 ox dz ' > 0z ox ’

Wz%_%
Y7 ox az
Wi =a—+ﬂ 22)

in equations (16) — (21), we obtain
2

0
a(h + Vs) - Y7ﬁ] 72 @1

0
+<V4+V5E)‘P

0
—Y6(1 + 7165 a)T =0, (23)

[(1 +72) +

1+ 0 V2 0 +1
[( V1s 8t) V19(at atz)

— T
Y20 at]

2

0 02
—€ (%"‘Toé‘wﬁ)v ¥1

0
_(V16‘72 - V17) a_(f
+¥1577 ¢,=0 (24)

0 2 02 02
(1+vs a) (W + ﬁ) “Yugaz Y11}

0 2 0%
—(¥s *+ Y10 a) (ﬁ + ﬁ) P1

0?2 0?
+(V12 + V13 <8x2 + ﬁ))'r

=0, (25)
d

{\72 (1+Y21) = V23 — Vaa E}‘Pz — 22T = 0, (26)

F]
{72 — VY23~ V24 a}lpz =0, (27)

0 92
[(1+y, 5)72 —VY7 ﬁ]llh =0, (28)
where
2 2
V2 = a_ + a_
0x2  0z%

4. Normal mode analysis

The following form can be used to decompose the solution of

the considered physical variable in terms of normal modes

(Uy, Wy, 91, Y1, Uz, W3, Q2, P2, @, 0ij, qij» T)(x,2z,1t)

= (Uy %, W1 *, Q1 %P1 %, Uz *, W3 %, @y %,
*, (py* O-l] *, ql] *,T

*)(2) exp( wt + imx), (29)
where  (Uy *, Wy *, @1 *, 1 *, Uz *, W3 *, Qg *, P, *
,@,% 0 *,qj * T ) are the magnitude of the functions,

The complex time constant is w and The wave number in the
x —direction is denoted by a.

In equations (23)-(28), we use normal mode analysis
technique and obtain

02 i
<V25 ﬁ - Vze) Q1+ V279" — V28T =0

= (30)
0% 0%
(V29 972 Y30)®  — )/231(5 - mZ)QD;
+ (V13 ﬁ + ¥32)T *
=0, (3D
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2 62
1’33(_ - mz)(pI + 72/18(@
0

- (V16ﬁw —¥35)@"
2

m*)p;

0
+ (V27 ﬁ — ¥34)T *

=0, (32)
62
(V3s 972 Y39)P2 — V24T *
=0, (33)
(— — 9P, += 0, (34)
(—— A2)P, =0, (35)
Where
V25 = m2(1 +yi0 ) +yn0°

+ Y71Y72w2m2),
V2e = (1+vs0 +vy1602),
V27 = —m*(1 +yg)

—(V11 V12 — V14) — }’15(1’2 - m2V16w2):
Yag = m*(¥o + wY10),
Y29 = (Yo + WY10),
7.2
Y30 = —mM? € w?(1+ 1,0 +%w2) ,
V31 = _%’2:
V32 = —m%yss,
Y33 = [(tr w* + w) + y17,(1 + 7, w)]

Eliminating ¢ *, ¢, *,@ xand T * from the resulting
expressions, we obtain

a8 a° o4 92
(G + Mo+ N+ 0z +P) (01002 50
,T %) =0, (36)
where

M = {—y39(V25Y29Y27 + Y25V13V16)

— ¥38(Y25Y29Y34 + V25Y30V27

+ V25V13Y35 — WY25V16Y32 T
Y26Y29Y27 + WY26Y13V16) + Y18Y24V25Y20}/ a1,

N = [y38{YV26(V34V20 + ¥27V30 + V13V35
— WY16Y26)} — V39 (Y25Y29Y34
+ ¥Y25Y30Y27 T V25Y13Y35
— WY25V16Y32 T
Y26Y29Y27 + ®Y26Y13Y16) +
Y18Y36(Y19Y30 + V20V29 + V27V31) +
M?Y18V24 + ¥25V201/ 01,

0 = {¥35(Y26Y32Y35 — Y26¥30¥34)

— Y39{V26(Y34Y20 + ¥27V30

+ Y13¥35 — WY16Y26)}

— Y18Y24(M*V27¥31 + V26V30)
+m*y18Y24(V25V30 + V26V20 + V27Y31)}/ 04

P = {—¥39(—Y26Y30Y34 + V26¥32V35) —
M*Y18Y24(M*V27Y31 + V26Y30)}/ Q1

a1 = (V25Y29Y27 + V25Y13Y16) Y38

The roots of equations (30) - (35) are +4,(¢ = 1,2,3,4). we
use the regularity condition at

z= oo, the solutions of equations (30) - (35) may be written as
(p; = Aléllz + Aze_lzz + A3él3Z + A4él4z, (37)
(38)
0" = g1A18M% + g,A,8%% + giAeM7 + g, A,eM7, (39)

@3 = bjA8M7 + b, A,6%7 + by A;8737 + b, A,eM7,

¥ = hy A eM7 4 hyA,6%27 + hyAgé?e” +
h4A4eﬂ4Z, (40)
P; = Age 6%, (41)
@5 = Age™ s (42)

Where

_ A{¥sa + A7¥ss + Vse
¢ = ,
A7¥s1+ Af¥sz + Vs3
AiVa1 + AfVaz + Va3
A2Va4 + Vas

ge=—
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l Yag+A7Va0+Vs0
0, == ¢=1,2,3,4),
‘= /15]/46"']/47 ( Y )

Ya1 = Y1325, Ya2 = Y13Y26 T V25Y32 — Y28Y31,

Y27
Ya3 = — ]/_ (Y27Y39 + Y34Y38 — V24Y18)
24

Yas = Y27Y13 — Y28Y29, Va5 = Y27Y32 T V28Y30,

Yas = —(V28Y29 + V27V13),

Ya7 = (Y28Y30 — Y27¥32) Yag = V25V 29,
Yao = —(V25Y30 + V2629 + V27V31),
¥so = M*Y27¥31 + Y30V 26)

Y27 V28
Y51 = — (V27V38) + — (WY16V38),
V24 V24
Y27
V52 = — ]/_ (Y27Y39 + Y34Y38 — V24Y18)
24

V28
——(¥38Y35 + WY39Y16),
V24

Y27 Y28
V53 = — y_ (V34Y39 — M?Y18Y24) + )/_ (¥35Y39)

24 24

V54 = —WY16Y19
V55 = —WYV16Y26 T V19Y35 T V27V33,
V56 = V35Y26 T V27Y29,

with 4,(¢ = 1,2,3,4) being arbitrary constants.

5. Applications

Thermal source

In this case the boundary conditions are

ts3(x,z,t) =0,
t31(x,z,t) =0,
de

0z =0,
g3z =0,

qz1 =0atz =0,

aT .
a(x,z =0) = Pe®*'™X atg

= 0, for the temperature gradient boundary,
or
T(x,z=0) = Pe®ttimx atz
= 0, for the temperature input boundary,. (43)

The magnitude of constant temperature applied on the
boundary is denoted by P.

We obtain the expressions for displacement components,
components of the microtemperatures vector, stresses,
temperature distribution, change in volume fraction field, and
components of the first heat flux moment vector by using
equations (1), (3), (13)-(15), (22) and substituting the values
of @1, 05,1, Y5, T, " from equations (37)—(42) in the
boundary conditions (43)

* P 7 ! ‘/112 ! ‘Azz ! ‘A3Z
u; = Z{Lm(Ale + A,e*?% + Ase
+A’ —/'142) +A’A6é162}ewt+imx'
uj =——{(/11 eMZ 4+ A A5eM7 4+ A AL ets?

+ A,4,8747)
+ imA' é/162}ewt+imx,

—{Lm(blﬂlell + b,A,é%2%

+ by Azé%3% + b, A, e%47%)
+ 15A5€A5Z}€wt+lmx,

W == __{(A'lbl /112 + /’lzb Az -AZZ

_ imA'SéASZ}ethmx,

033 = E{(n A;eM7 + nyA,e%27 + nyAgets?
33 = 71, 24, 343

+ ny,A,6%4%)
+ n5A6é)Lez}ea)t+me’

031 = E{(n A1eM7 + n, 4,847 + ngAgets?
31 = 7164y 74 843

+ ngA,e14%)
+ nloA’6él6Z}ewt+me,

* p " =2 ) )
Q = n (9141€"7 + g, 4,€7%% + g;A5e73%
, + g4A;é/14Z)ewt+imx,
T* = Z (hlAaéllz + thlzélzz + h3AI3é132

+ h4A£Le-/14Z)ewt+me,
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P , , —
s = Z{(nllblﬂléalz + ny,b, 4,80 +n20[n6{/13g_37:l14{1314 ; i&;ggnmbs}
' ez ' ey 811191 M1403
+ n13b3436’;3 ;J:#f;bé}meh ) — A49any1b1}
+nisdsetle ’ + ng{A;91M13b3
p — A3g3nq1by}]
q31 = Z{Z(nmﬂiéhz + ny, 4,827 A~y = —ny5[n1{A393n19 — 2494N18}
+ 15438437 + nygd, M%) — n3{A191M19 — A4 gaN16}
+ nZOA'Séﬂ.5Z}ewt+imx. + n4{11g1n18 —_ /13g3n16}]
+n20[N1{A393M14bs — A494M13b3}
(44) — N3{A191M14by
where — A494mny1 by}
A=A, #+4, * +ny{A191M13b3
— A393n41b1}]
Ay *=ny5(NsNg + NyoNy)[A4191{N17(—13 T

+ h)hz —nyg(=A; + h)h,} Ay = —ngAY 4+ AFng

— A292{n16(=43 + h)h3 ,

—Nnyg(—A1 + h)hy} + 4’3 = —ny5[ni{A,92n19 — 4494117}
A393{n16(—A2 + W)h; — ny7(=A; + —n7{A191M19 — A494N16}
h)h,}] + Ng{A191M17 — 1292M46}]
A% =1 0(NgNg + Ny )[A,Gi{N, 0, (“hg + )Ny =, dy (<1, R0 [ Re Wadatlon (F74 499Ra7h, 0, (<1, + h)h, 3+

230540, 0, (<4, + h)h, —n,d, (<2, + h)h 3] —n7{A191M14 — A4gaNi6}
A = ng A", — Ay, ) +no{d1 91117 — 1292M463]
., A3 =ny5[ni{A,9:M19 — A4 gany7}
A" = —ny5[n7{A393M19 — A4 gaNig} — —ny{A191M19 — A4 9aN6}
Ng{A292M19 — A4gaNy7} + No{dzg,n4g — + n4{A191M18 — 4292146}
A3g3ni7}] + nyo[ns{A3g3n14b4 +150[N1{A292M14bs — A4gany2b,}
—A4ganyzbs} — ng{d,g,ny3b3 — Ny{A1g1N14by
—A393niyby} + no{A,9,n43b3 — 4494111 D1}
— A393ny5b,}] + ny{A191n12b;
117 — /1 n b
A" = —ny5[ny{A393M10 — A4 ganyg} 292m11b1}]

— n3{A,9,M19 — 4494117} 4, =ny54", + Ay ny,

+ ny{A292M15 — A393M17}] ,
+n20[n2{/‘l3g3n14b4 — A4g4n13b3} — A 4 = _n5 [n6{/’12g2n18 - A3g3n17}
n3{d,gom14by — A4ganqby} + — N7{A191M15 — A393N16}
n4{/12g2n13b3 - Agggnlzbz}]z + ng{ﬂ'lglnl7 - /12(92”16}]

) . " +ny0[n1{A292M18 — 4393117}
4z = —nsd; + 4310 — Np{A191115 — A393N46}
" + Tl A Tl - A n
45 = —ny5[ne{dzgsnio — 14ganqg} 3thgity 292116}

— ng{d191M19 — 1494N16}
+ ng{A191M18 — A393N46}]
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Ay = —ng [ne{A292n13b3 — A3g3ny2by}

— ny7{A191M13b3

— A393M11b1}

+ ng{d191n12b;

— A292nq1b1}]
+140[N1{A292M13b4 — A393M12b5}

— N{A1 91 M13b3

— A393M11b1}

+ n3{A191M12b;

— A292M11b13]

A,5 = —n5A”5 + A’5”n10

AHS = Ng[A,92{N13b3M19 — Ny4byN1g}

— A393{n12b,1m49

— Nyabyny7}

+ A49a{ni2bon4g

— Ny3b3ny7}]
—N7[A191{N13b3M19 — N14byNyg}

— A393{ny11b1Ny9

— Ny4byNy6}

+ 1494{n11b104g

— Ny3b3ny6}]
+ng[A191{N12b02M19 — Ny4byny7}

— A292{n11b1M9

— Ny4byNy6}

+ 1494{n11b1147

— Ny2bM46}]
—Ng[A191{N12b2M15 — Ny3b3Ny7}

— A292{n11b1n4g

— Ny3b3nye}

+ A393{ny1b1n47

— Nq2byn46}]

A" s =ny[A392{N13b3M19 — N14bsnyg}
— A393{n12b,m49
— N14byNy7}
+ 1494{Nn12bm18
— Ny3b3ny7}]
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—Ny[A1 91{n13bsN19 — NysbsMyg}

— A393{ni1b1ny9

— Nqgbanye})

+ A494{n11b114g

— Nq3baNy6}]
+n3[A191{N12b02M19 — Ny1gbyny7}

— A292{n11b1M9

— N14byNy6}

+ 1494{n11b1147

— N12b;M46}]
+14[A191{n12b2115 — Ny3b3Ny7}

— A292{n11b1n45

— Ny3b3nye}

+ A393{n11b1n47

— N12b;M46}]

I " m
Ag = —nysd7¢ + Agnyg

Aﬁs = ny[n;(A393M19 — A49aN13g)
— Ng(4292M19 — A294M17)
+ 19 (4292118 — A393N47)]
—Ny[Nne(A393N19 — 1494M38)
— ng(h191M19 — 449aM16)
+ 19 (4191115 — A393M16)]
+n3[ne(4292M19 — 1494M17)
— N7 (4191119 — 4494M16)
+ ng(A191M17 — A292M46)]
+1y[ne(A292118 — A393M17)
— N7 (4191118 — A393MN46)
+ ng(A191M17 — A292M16) ]

Ag = nq[n;(A393n14bs — A494M13b3)

— Ng(A292M14by

— A4gany2b;)

+ ng(A2921n13b3

— A393M12b;)]
—Nz[Ne(A3g3niaby — A494M13b3)

— ng(A191M14by

— A49any1b1)

+ 19 (41911133

— A393M11b1)]
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+n3[ne(A292M14bs — Aagany2by)
— n7(A1 91M14by
— A4gany1bq)
+ ng(A191n12b;
— A29anq1b1)]
+14[ne(A292M13b3 — A3g3ny2b7)
—n7(A1 91M13b3
— A3gsny bq)
+ ng(A191M12b;
— A292nq41b1)]
ny = [-A+ or)m? + {(A + wA*) + 2(u + wp*)}A5 + (b

€20, To(1 + 7,8, 0)h
wIZK_B o(1+7165,w)hy],

n, = [-(A+ wA)m? + {1 + wA*) + 2(u + wp*)}A% + (b

52291
a)l*zK = BTo(1 + 7,62k w)hy],

ng = [-(A+ wA)m? + {1 + wA*) + 2(u + wp*)}A% + (b
;g
w’K
g, = [-(A+ wA)m? + {1 + wA*) + 2(u + wp*)}A% + (b

52291
a)l*zK = BTo(1 + 7,62k w)hy],

+ wb")

+ wb")

+(Ub*) _ﬁTo(l +T152kw)u1],

+ wb")

ng = —2mide(u + wp’),

Neg = —2mily,n; = —2mid,, ng = —2mil;,
Ng = —2midy, nyo = —(Mid2 + m?),
Ny = _(51/147712 +5; + /1%).
nyy = —(s14,m? + 5, + 13),
Nz = _(51/147712 +5; + /13),
Ny = _(51147”2 + 5, + /LZ}),

nyg = imslll}l‘ls - imSZ,n16 = imSl/h,n” = Slbzlz,

Nyg = S1baA3, Mg = $1D544,
w;3p2
— s,
BTou?
The expressions for temperature gradient boundary and

temperature input boundary are obtained by replacing 4 by
A7 and A3, respectively.

Nyg = Slim + Sllé, S1 = =51 + (K4 + Ks + Kﬁ),

PATICULAR CASE: On Neglecting the microtemperature,
voids and viscosity effect i.e.(g, == b=¢=m"=
x=0,u" =1 =b"=qa*=y* =& = K'=0) in equation
(44), the corresponding expressions of stresses, displacement

and temperature distribution for thermoelastic half-space are
obtained.

Special case 1: For L-S theory, we obtain the corresponding
expressions of thermoelastic half-space with voids and
microtemperature by takingk =1, n=u* =A*=b* = a* =
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y* = & = K"=0 in equation (44), respectively,

Special case 2: The expressions of thermoelastic half-space
with voids and microtemperature, are obtained by taking
k=2, u* =A*=b* = a* =y* =& = K'=0 in equation (44)
for G-L theory

Special case 3: In case of coupled theory of thermoelasticity,
the expressions of thermoelastic half-space with voids and
microtemperature are obtained by taking 7, =17, = 0,u* =
A =b*=a* =y* =& =K"=0in equation (44).

Special case 4: For uncoupled theory of thermoelasticity, we
take €,=0,7p =7, =0, W=V =b"=a" =y " =¢&=
K"=0 in equation (44), and obtain the expressions of
thermoelastic half-space with voids and microtemperature,
respectively,.

6. Numerical results and discussion

Following Tomar et. al. (2013) the hypothetical values of the
relevant parameters are

A=15x10°Nm?, pu=25x10*Nm?
,b=2.1x10* N/m?,

a=4x10°N,
5 x 103N /m2K,

K=0.016 x 10 Nsec'K, p=2.6x108kgm® , 1*=2.6x
10° Nsec/m?, p*= 1.0 x 102 Nsec/m?,

b*=1.2 x 10* Nsec/m?, & =4 x 10* Nsec/m?, a*=1.6
Nsec, y* =8.0 x 103 Nsec/m?, 7* = 6.0 x 107°NK™?, y
=0.2x10°%m? ¢=0.2x 108 N, To=300°K,

a=2 x 108 N/m2K?

B =4x10°N/M?K , & = 40N /m?,m" =

and co= 1.04 x 103 J kg 'degree 1, P=1, K*= ¢, (21124

4

and other physical constants are (Steeb et. al.(2013))

K, =2x10"Wm 1K, = 0.1 x 101°'Wm™1,

K; = 0.4 x 10"°Wm 1, K, = 0.3 x 101°Wm™1,
Ks = 0.5 x 10"°Wm™,Kg = 0.7 x 10°°Wm™1,

b® = 1.3849 x 10°N,

Figures 1-14 graphically compare the values of components
of the microtemperatures vectors (w;and wj), tangential
stress 034, normal stress g3, boundary temperature field
T*and change in volume fraction field ¢ , the components
of the first heat flux moment vector 35 with distance x , for
G-N,
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L-S and G-L theories, for non-dimensional relaxation
timest, = 0.02,7, = 0.05

and w = wy+in,wy,=2.0,n=0.1,m=0.9. For time
t=1.0 and t=2.0, inthe range 0 < x < 10 at z=1, the
computation has been done. The variation for G-N theory
with viscous effect is shown by black lines with and without
centre symbols in figures 1-7, whereas the variation for G-N
theory without viscous effect is represented by red lines with
and without centre symbols in figures 1-7. The variation for
L-S theory is represented by black lines with and without
centre symbols in figures 8-14, whereas the variation for G-L
theory is represented by red lines with and without centre
symbols. The temperature gradient boundary is represented
in the figures.

Thermal source (Temperature gradient boundary)

Figure 1. depicts the variation of microtemperatures
vector wywith distance x. Initially, the values w; remain the
same in the range 0 < x < 5 for viscous and without viscous
effect. The values of w; for the case without viscous effect
are more than with viscous effect in the range 5 1 x < 10 for
time t=1.0 and t=2.0. Figure 2. displays the variation of
microtemperatures vector w3with distance x. For viscous
effect and without viscous effect the values of w3 at time t=1
are more than that at time t=2 in the whole range 0< x < 10.
Figure 3. shows the variation of temperature distribution
T* with distance x. For viscous and without viscous effect the
value of T* shows the opposite oscillatory pattern in the

range 0<x <10. The variation of tangential stress O ,; 1 Wwith
distance x has been shown in Figure 4.

For viscous and without viscous effect the values of 0'31
start from zero and decrease with an increase in distance X.

Figure 5 depicts the variation of O'§3with distance x. For
viscous effect the values of O- ; 3 at time t=3 are more than

at time t=1 and for without viscous effect the values of O :;ak 3
at time t=1 are more than at time t=3 in the whole range.
Figure 6 shows the variation of change in volume fraction
field @™ with distance x. The values of ¢ are the same for
viscous and without viscous effect in the range 0 <x < 3 and
increase with an increase in distance x in the range 3.1 <x <
10 for viscous and without viscous effect. The variation of

E3 . . E3
(]33 has been shown in Figure7. The values of (J33
increases as time decreases for viscous and without viscous
effect in the whole range.

Figure 8. shows the variation of microtemperatures
vector wywith distance x. Near the point of application of
source, in the range, 0 < x < 3.5, the values of w; for L-S and
G-L theories show very small differences and in the range
3.6< x < 10 an appreciable difference is observed, i.e., the
values of w; for L-S theory are more than G-L theory for time
t=1 and t=2. Figure 9 displays the variation of
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microtemperatures vector wiwith distance x. The values
ofw; for time t=2 lies between the time t=1 for L-S and G-L
theories. Figure 10 depicts the variation of temperature
distribution T* with distance x. The value of T* for L-S and
G-L theories start from zero and decreases with an increase
in distance x for both values of time in the whole range. The

variation of tangential stress O ; 1 Wwith distance x has been
shown in Figure 11. Initially, the values of tangential stress
for both the theories are the same and the values of L-S theory
are less than G-L theory for both values of time in the range

2 < x < 10. Figure 12 depicts the variation of 0';3with

distance x. The values of O r;)k 3 start from zero and decrease
with an increase in distance x for both the theories and for
both values of the time. Figurel13 shows the variation of ¢*
with distance x. The values of ¢* for L-S theory are more
than those of G-L theory for both values of time in the whole
range. The variation of the first heat flux moment vector

* . . *
(J33 has been shown in Figurel4. The values of (J33

decrease with an increase in distance x in the range 0 < x <
10 for both L-S and G-L theories and for time t=1 and t=2.

CONCLUSIONS

1. The thermo-viscoelastic materials with voids has
application in the distribution of field quantities.

2. For finding the solution of the problem the normal
mode analysis technique has been used.
3. The comparison G-N theory, L-S, G-L theories with

viscous and without viscous effect has been depicted
graphically for temperature gradient boundary.

4. It is noticed that the viscous effect plays an
important role in all considered physical quantities.

5. Itis observed that the deformation of a body depends
on viscous effect, the nature of the applied force as well as
the type of boundary conditions. The problem Investigated
here is applicable in the field of earthquake engineering,
seismology and geophysics.

Funding: No specific grant has been received from any
funding agency or profitable sector.
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Microtemperature vector
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Figure 2. Variation of microtemperatures vector w; with distance x.

383



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 17, Number 4 (2022) pp. 370-395
© Research India Publications. http://www.ripublication.com

160 0 -0 0=g
o

\\Q\_‘

N

NS
LN

NS

1.2

Temperature

0.4

00—0—0—0—0—
0 2 4 6 8 10
Figure 3. Variation of temperature distributior T rith distance x.

384



Tangential stress
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Normal stress
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Change in volume fraction field
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Figure6. Variation of change in volume fraction field ¢* with distance x.
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First heat flux moment vector
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Microtemperatures vector
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Figure 9. Variation of microtemperatures vector w, with distance x.
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Figure 10. Variation of temperature distributior T* with distance x.
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Tangential stress
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Figure 11. The variation of tangential stress ¢;; with distance x .
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Normal stress
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Figure 12. The variation of normal stress o¢3; with distance x.
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Figurel3. Variation of change in volume fraction fielc ¢~ with distance x.
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First heat flux moment vector
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Figurel4. Variation of the first heat flux moment vector s with distance x.
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