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Abstract: 

Calculus of variations provides a very useful mathematical 

tool to solve differential equations related to numerous 

physical problems. Utilizing variational principles, Rayleigh – 

Ritz method effectively converts boundary value problems 

into a problem of minimizing functional and effectively 

applied in heat and mass transfer problems. The use of a trial 

function to solve this method is thoroughly elaborated for an 

eigenvalue problem with relevant convergence. A careful 

choice of field equation along with boundary conditions is the 

key to obtaining a successful solution and adequate insight 

into the physics of the problem. 
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1.  INTRODUCTION: 

The calculus of variations is an extremely powerful and 

elegant technique. Variational principles are of great scientific 

significance as they provide a unified approach to various 

mathematical and physical problems and yield fundamental 

exploratory ideas [1-5]. This method is concerned with 

changes in functionals. Functional means a quantity whose 

values are determined by one or several functions. A 

functional is a correspondence between a function in some 

class and the set of real numbers and is often expressed as 

definite integrals involving functions and their derivatives. 

The calculus of variations is a field of mathematical analysis 

that uses variations, which are small changes in functions and 

functional to find maxima and minima of functional. A wide 

range of problems can be treated in this method.  

Rayleigh Ritz's method [1, 3, 5] is based on the idea of 

utilizing the equivalence between boundary value problem 

(BVP) of partial differential equations on the one hand and 

problems of the calculus of variations on the other hand for 

numerical calculation of solutions. This method involves 

substitution for variational problems into simpler 

approximating extremum problems in which a finite number 

of parameters need to be determined. There can be multiple 

fields of application of this method such as in mechanics, fluid 

dynamics, heat and mass transfer, semiconductors, etc [2, 5, 

6]. The objective of this paper is to evolve an approximate 

method of solving complex heat or mass transfer equations by 

converting them into an eigenvalue problem. 

 

2.  BASIC OF VARIATIONAL CALCULUS: : 

 

 

Fig.1 – y(x) is extremal and ƞ(x) is an arbitrary function 

 

Calculus of variations involves in solving a problem of 

minimum path in between points A and B such that y(x) is 

extremal. In order to do this, it is essential to form a functional 

as, 

ϕ =  ∫ F(x, y, y′)dx              … . . (1)  
x2

x1

 

With boundary condition; 

y(x1) =  y1 & 𝑦(x2) =  y2           … … (2) 

 

Here, ϕ is a functional because it is a function of functions. 

It is now considered that y(x) is extremal which makes ϕ 

stationary and satisfies above boundary conditions. Another 

arbitrary function ƞ(x) is introduced such that ƞ(x1) = ƞ(x2) = 

0. This is means that ƞ(x) is zero at the boundaries and both 

y(x) and ƞ(x) have continuous derivatives. It is also defined 

that 

 y̅(x)  =  y(x)  +  ϵƞ(x)  . . . . . . . . . . . . (3) 

y ̅(x) therefore satisfies all boundary conditions as y(x) and 

y ̅(x) represents a family of curves [3, 4].  
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From equation (3), we can get derivative as; 

y̅′(𝑥)  =  𝑦′(𝑥)  +  𝜖ƞ′(𝑥)  . . . . . . . . . . . . (4) 

Again from equation (3),  

∂y̅

∂ϵ
=  ƞ(x)   … … . (5), (as y(x)is not a function of ϵ)  

From equation (4), it may be obtained as, 

∂y̅′

∂ϵ
 =  ƞ′(x)    … … . (6) 

Now the functional for the path y̅̅(x) can be; 

ϕ =  ∫ F(x, y̅, y̅′)dx    … … .
x2

x1

    (7) 

If y(x) is actual path and we know ϕ depends only on ϵ, it is 

essential to make ϕ stationary set or minimize ϕ with respect 

to ϵ. i.e.,  

dϕ

dϵ
|

ϵ=0
= 0     … … . (8) 

=>  
d

dϵ
|

ϵ=0
(∫ F(x, y̅, y̅′)dx

x2

x1

 ) = 0 … … (9)  

By applying Leibnitz rule, 
d

dϵ
 can go inside the integral. 

Therefore, equation (9) can be written as, 

∫
d

dϵ
[F(x, y̅, y̅′)]|

ϵ=0
 dx = 0   

x2

x1

 

 

=>  ∫ (
∂F

∂x

∂x

∂ϵ
+

∂F

∂y̅

∂y̅

∂ϵ
+

∂F

∂y̅′

∂y̅′

∂ϵ
)|

ϵ=0

dx
x2

x1

= 0 … … . (10) 

Since x is not a function of ϵ, then 
∂x

∂ϵ
= 0 

∴  ∫ (
∂F

∂y̅

∂y̅

∂ϵ
+

∂F

∂y̅′

∂y̅′

∂ϵ
)|

ϵ=0

dx
x2

x1

= 0  … … (11) 

We put the value of 
∂y̅

∂ϵ
 and 

∂y̅′

∂ϵ
 from equation (5) and (6) in the 

equation (11). 

∴   ∫ (
∂F

∂y̅
ƞ +

∂F

∂y̅′
ƞ′)|

ϵ=0

dx = 0 
x2

x1

 … … . (12) 

As ϵ approaches zero, y ̅(x) approaches to y(x) and y ̅’(x) 

approaches to y’(x). So, equation (12) may be written as 

follows;  

∫ (
∂F

∂y
ƞ +

∂F

∂y′
ƞ′) dx = 0  … …  (13) 

x2

x1

 

Now the second term of left hand side can be integrated by 

parts. Therefore the equation (13) can be written as, 

∫
∂F

∂y
ƞdx +

∂F

∂y′
∫ ƞ′dx −

x2

x1

 ∫ [
d

dx
(

∂F

∂y′
) ∫ ƞ′dx] dx

x2

x1

 
x2

x1

  = 0 

 

=>  ∫
∂F

∂y
ƞdx

x2

x1

+  [
∂F

∂y′
ƞ]

x1

x2

− ∫ ƞ
d

dx
(

∂F

∂y′
) dx = 0 

x2

x1

 … … . (14) 

Since, ƞ = 0 at x1 and x2, equation (14) can be written as; 

∫
∂F

∂y
ƞdx

x2

x1

− ∫ ƞ
d

dx
(

∂F

∂y′
) dx = 0 

x2

x1

 

=> ∫ [
∂F

∂y
−

d

dx
(

∂F

∂y′
)] ƞ𝑑𝑥 = 0   … . .  (15)

𝑥2

𝑥1

 

As ƞ has been chosen as an arbitrary function; the only way 

equation (15) can be zero when 

[
∂F

∂y
−

d

dx
(

∂F

∂y′
)] = 0    … ….  (16) 

Equation (16) is Euler – Lagrange equation. This means that 

y(x) must satisfy the equation (16), if it is the actual solution 

[1-3, 5]. 

 

3. RAYLEIGH – RITZ METHOD:  

This method has been developed using calculus of variations 

principle to solve differential equation. It is a direct numerical 

method of approximating eigenvalue, originated in the context 

of solving physical boundary value problems.  

A second order differential equation of following form is 

considered.  

d

dx
(py′) − qy − f = 0    … ….  (17) 

If Y(x) is the solution of equation (17), then functional ϕ 

would be [1]; 

ϕ =  ∫ [pY′2 + qY2 + 2fY]dx  
x2

x1

  … ….   (18) 

Then, functional ϕ should be minimum for Y(x) to be the 

solution for equation (17). For the heat transfer problems, the 

following field equation may be written as; 

𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
    … . .   (19) 

Where, T, t, x and k are temperature, time, distance and heat 

transfer coefficient. The method of separation of variables 

often leads to transform partial differential equations to 

ordinary differential equations which usually form an 

eigenvalue problem such as; 

𝑇 = 𝐴(𝑡)𝑌(𝑥)    … . .    (20) 

and hence,
1

𝑘

𝐴′(𝑡)

𝐴(𝑡)
=

𝑌′′(𝑥)

𝑌(𝑥)
=  −𝜆  … … ..   (21) 

Thus the following differential equation (22) can be derived 

under boundary conditions (23);  

Y" +  λY = 0   … ..     (22) 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 17, Number 4 (2022) pp. 422-426 

© Research India Publications. https://dx.doi.org/10.37622/IJAER/17.4.2022.422-426 

424 

Y = 0, at x = −1 and Y =  0 at x = 1, where − 1 ≤ x
≤ 1 ….  (23) 

This problem may be replaced by problem of minimization of 

functional by following method. First y(x) is considered to be 

actual solution of differential equation (22). Then it may be 

written as; 

 ∫ (
d2y

dx2
+ λy) ƞdx

1

−1

= 0   … … (24) 

Here, ƞ is an arbitrary function of x which vanishes at x = -1 

and at x = 1. Integration by parts is applied to the first term of 

left hand side of equation (24).  

=>   [ƞ
dy

dx
]

−1

1

− ∫ (ƞ′
dy

dx
) dx

1

−1

+ λ ∫ ƞydx = 0 
1

−1

… … (25)  

The first term of equation (25) will be zero as ƞ vanishes at x 

= -1 and at x = 1. Therefore the equation (25) can be written 

as; 

=>   − ∫ (
dƞ

dx

dy

dx
) dx 

1

−1

+ λ ∫ ƞydx 
1

−1

 =   0   … … (26) 

=>  ∫ (
dƞ

dx

dy

dx
) dx 

1

−1

− λ ∫ ƞydx 
1

−1

 =   0 … . . … . (27)  

Now, if the arbitrary function ƞ(x) approaches y(x) then the 

functional can be expressed as; 

ϕ =  ∫ (
dy

dx
)

2

dx − λ ∫ y2dx
1

−1

1

−1

 

=>  𝜙 =  ∫ [(
dy

dx
)

2

− λy2] dx 
1

−1

 

∴ ϕ =  ∫
[y′2

− λy2]dx    … . .  (28),
1

−1

 

 

Hence, the solution of the problem of boundary value 

differential equation can be transformed to minimization of 

functional ϕ of equation (28) 

Interestingly, a generalized method [5] may be easily 

developed for second order differential equation of following 

form; 

a(x)Y′′ + b(x)Y′ + c(x)Y = f(x)    … ….    ( 29) 

then the functional will be; 

ϕ =  ∫ [F(x, y, y′′]dx 
x2

x1

        

ϕ =  ∫ [P(x)Y′2
+ Q(x)Y2 + R(x)Y]dx   

x2

x1

… …   (30)     

The function F is established in such a way that it should 

satisfy Euler – Lagrange equation (16). For the functional ϕ it 

is possible to find P(x), Q(x) and R(x) such as; 

P(x) =  e
∫

b(x)
a(x)

dx
        … . . (31A) 

Q(x) =  −
c(x)

a(x)
P(x)      ….   (31B) 

R(x) =  
2f(x)

a(x)
P(x)   … …   (31C) 

 

In this method, a trial function is assumed ω(x) which should 

be continuous in the range and satisfy essential boundary 

conditions. A trial function can be a polynomial as; 

ω(x) =  a1ψ1(x) + a2ψ2(x) + …
+ anψn(x)         … … ..  (32) 

Here, a1, a2, ..., an are unknown coefficients and ψ1, ψ2, ..., ψn 

are assumed functions. It is to be noted that the assumed 

functions ψi should satisfy the essential boundary conditions 

and be continuous in the range of x. With this trial function, 

the functional ϕ is calculated. In order to get nearly exact 

solution, it is necessary to differentiate ϕ with respect to 

coefficients of trial function such as a1, a2, ..., an and forced to 

zero. i.e.,  

dϕ

da1

=  
dϕ

da2

= ⋯ =  
dϕ

dan

= 0    … … (33) 

This treatment would result in adjusting a1, a2, ..., an itself in 

such a way that ω(x) gives almost exact solution. It should be 

noted that one must take sufficiently large number of 

coefficients of ω(x) so that the solution converges and 

approaches to very near to the actual solution [6].  

 

4.  RESULTS & DISCUSSIONS: 

Solving the equation (22) under the boundary conditions (23) 

by Rayleigh – Ritz method, a trial function with one term is 

first considered as; 

𝜔(𝑥) = 𝑎1(1 − 𝑥2)      … . (34) 

The results of approximate solution of eigenvalue with one 

and two terms are compared with exact solution and 

illustrated in the following table 1.  

Table 1: Comparison of λ obtained from Rayleigh Ritz 

method with exact solution. 

Method Functions Value of λ 

Rayleigh Ritz with one 

term 
(1 − 𝑥2) 2.50 

Rayleigh Ritz with 

two terms 

(1 − 𝑥2), 𝑥2(1 − 𝑥2) 2.46740 

Exact solution {(𝑛 − 1/2)𝜋)}2,  

n=1, 2, 3, ... 

2.46744 

 

The evaluation of λ with other trial functions satisfying the 

essential boundary conditions is also carried out. It is 

interesting to point out that calculation with other trial 

under the samecondition. 
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functions leads to identical the value of λ. However, the rate 

of convergence differs with the choice of trial function. It is 

evident from the figure 2 that trial function with (1 −
𝑥2)𝑖+1, 𝑖 = 1, 2, … has rate of convergence reasonably slow, 

whereas, functions with  𝑥2𝑖−2(1 − 𝑥2), 𝑖 = 1, 2, …   

converges within 2 terms. The speed of convergence for some 

specific functional is available in the literature [1, 2]. 

However, these estimates are so complicated that they are 

impractical in the concrete situation [5]. For this reason, it is 

easier to calculate 𝑦𝑛(𝑥) and 𝑦𝑛+1(𝑥) and compare the results. 

If the values of two successive terms coincide within the 

limits of desired accuracy (usually less than 0.01%) then the 

solution of the variational problem is taken as 𝑦𝑛(𝑥) and the 

corresponding value of λ is accepted. Otherwise, this process 

is repeated till the values agree within the desired accuracy. 

 

 

 

Fig. 2 – Dependence of Convergence on nature of trial function 

 

It is evident from table 1 that with only two terms the solution 

is approaching near exact solution with less than 0.01% error. 

This shows the power of this method and its diverse range of 

applications. It is to be noted that in many occasions, it is not 

possible to derive the exact solution due to the complexity of 

the problem and this method can be the only reliable solution 

to those problems.  

 

5.  SUMMARY:  

There can be several applications of the Rayleigh Ritz’s 

method in the metallurgical engineering and materials science 

area. Applications in the field of heat and mass transfer, 

extractive processing, etc may be the potential areas where 

this method can be used. This method is extremely useful 

when the field equation along with boundary conditions 

makes the problem very complex and an exact solution is not 

possible. It is important to point out that the selection of a 

proper field equation with careful choice of boundary 

conditions is the key to the successful solution. Extreme care 

should be taken in the physics of the problem at the time of 

choosing field equation and boundary conditions which will 

lead to near accurate results and give an insight into the 

phenomenon. It is shown that the test of convergence can be 

carried out by calculating two successive terms. If the values 

coincide within the limits of accuracy, then the solution can be 

taken. This method is mathematically not rigorous and can be 

sufficiently reliable. 

Discretization of this method can also be used in the advanced 

stage which involves the division of the range into 10 or 20 

equal parts and solving the equation to obtain further accurate 

results. This is the basis of finite element method.  
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