
 
 

 

 

*Corresponding author 

 

Fractional Programming Methodology in Hybrid Decision Making 
Environment using Hexagonal Fuzzy Numbers  

 

Arnab Kumar De 1, Shyamali Dewan 2, Animesh Biswas 3* 
 

1Department of Mathematics  
Government college of Engineering and Textile Technology  

Serampore-712201, INDIA 

2Department of Mathematics  
Bhairab Ganguly College  
Kolkata- 700056, INDIA 

3Department of Mathematics  
University of Kalyani  

Kalyani – 741235, INDIA 

 
 

 
Abstract 
An innovative method for solving fuzzy stochastic 
fractional programming problems having some or all 
parameters as fuzzy numbers or exponentially distributed 
fuzzy random variables is proposed in this article. An 
equivalent fuzzy programing model is developed by 
applying chance constrained programming methodology 
to all the probabilistic constraints in a hybrid fuzzy 
uncertain decision making environment. Hexagonal fuzzy 
numbers are one of the extensions of fuzzy sets and 
trapezoidal fuzzy numbers and the concept of alpha-cuts 
of hexagonal fuzzy numbers is introduced to reduce the 
fuzzy fractional programming problem to a sub-problem 
with interval coefficients. After that, a nonlinear 
programming model is constructed by considering convex 
combination of each interval parameters. Finally, the 
modified form of nonlinear programming model is solved 
for different values of alpha-cuts. To demonstrate the 
efficiency of the proposed technique an illustrative 
example, studied previously, is considered and solved. 
Furthermore, comparison analysis of the proposed 
methodology is shown to express its advantages over 
similar existing methodologies.  
 
Keywords: 𝜶-Cut, Chance Constrained Programming, 
Exponential Distribution, Fractional Programming, Hexagonal 
Fuzzy Number, Fuzzy Programming. 
 

1. Introduction 

In many real world decision making problems, viz, production 

planning, financial and corporate planning, health care and hospital 

planning etc., the decision makers (DMs) often observed that 

optimization of ratios of criteria provides more insight into the 

situation than optimizing each criterion independently. To resolve that 

situation, fractional programming [1] performed as an optimization 

tool in which the objective of the model appeared in the form of the 

ratio of two functions. Mathematical programming model with linear 

fractional objective was introduced by Charnes and Cooper [2]. Borza 

et al. [3] proposed a methodology for solving linear fractional 

programming (LFP) models by considering interval coefficients with 

the objective. In 2012 Odior [4] solved the LFP problem by algebraic 

approach which depends on the duality concept and the partial 

fractions. 

However, in most of the practical applications, the DMs frequently 

face a situation that the parameters values of the mathematical models 

are not always crisp rather some sort of imprecision or ambiguity 

lying with them. These uncertainties may be in general probabilistic 

type or possibilistic type or a combination of both.      

Stochastic programming (SP) is a framework for modeling 

optimization problem that involve probabilistic uncertainty in defining 

parameters of the model. In 1959, Charnes and Cooper [5] first 

introduced chance constrained programming (CCP) technique for 

solving SP problem. Thereafter, different methodological aspects of 

CCP were discussed by several researchers [6, 7]. In 2005, Chen [8] 

applied stochastic fractional programming problems to inventory 

problems. Recently, stochastic fractional programming problem have 

been applied to sustainable waste management [9], sustainable 

management of electric power systems [10], etc.  

Zimmermann [11] introduced the concept of fuzzy programming (FP) 

to capture possibilistic uncertainties in decision making problems. 

There after a plenty of works have done [12, 13] from the view point 

of its potential applicability in different real life planning problems. 

Sinha and Baky [14], Mehrjerdi [15] proposed techniques for solving 

fractional programming problems in a fuzzy decision making 

environment. Using fuzzy goal programming (FGP) approach 

quadratic fractional bilevel programming problem was solved by 

Biswas and Bose [16]. Methodology for solving multiobjective fuzzy 

linear programming problem using hexagonal fuzzy number (HFN) 

was developed by Rajarajeswari and Sahaya [17]. The advantage of 

considering HFNs over triangular or trapezoidal fuzzy numbers is that 

it captures uncertainties more efficiently as HFNs are the 
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generalization of triangular or trapezoidal fuzzy numbers. Another 

advantage of using HFN is that the parameters, involving different 

practical problems, can be expressed more proficiently through HFN 

based on the available data resources. In recent years optimal solution 

of transportation problem using HFNs is proposed by Rajarajeswari 

and Sangeetha [18], Thamaraiselvi and Santhi [19]. Solving 

transportation problem with generalized HFNs by ranking method was 

developed by Ghadle and Pathade [20]. Again, fuzzy fractional 

programming problem are applied to various practical applications, 

like solid transportation problem [21], land use planning in 

agricultural sector [22], etc. 

To deal with co-occurrence of probabilistic and possibilistic 

uncertainties, hybrid approaches of stochastic programming and fuzzy 

programming were proposed [23]. The spectrum of research activities 

in this field of fuzzy stochastic programming are found in the work of 

Luhandjula [24]. A possibility programming approach for stochastic 

fuzzy multiobjective LFP was developed by Iskander [25]. However, 

solution technique for solving LFP problems with parameters as HFNs 

and extreme value distributed fuzzy random variables (FRVs) is yet to 

appear in the literature. 

In this article a methodology for solving fuzzy stochastic LFP problem 

consisting of exponentially distributed FRVs associated with right side 

parameters of the system constraints is developed. The other 

parameters of the model are considered as HFNs. At first the CCP 

methodology is applied to the probabilistic constraints to form an 

equivalent FP. Using α-cut of the HFNs the FP model is reduced to 

fractional programming problem with interval coefficients. Finally by 

introducing new variables and by using convex combination of 

intervals, the fractional programming problem is converted to a 

nonlinear programming model. Finally developed model is solved to 

achieve the most satisfactory solution in the hybrid uncertain decision 

making environment.  

 

2. Preliminary 

In this section the terms such as hexagonal fuzzy numbers, α −cut of 

hexagonal fuzzy numbers, fuzzy random variables following 

exponential distribution which are necessary for the development of 

the article are presented briefly. 

2.1 Hexagonal Fuzzy Number 

A HFN �̃� is a 6 −tuple (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6) whose membership 

function 𝜇𝐴(𝑥) is defined by  

𝜇𝐴(𝑥) =

{
 
 
 
 

 
 
 
 

1

2
(
𝑥−𝑎1

𝑎2−𝑎1
) 𝑎1 ≤ 𝑥 ≤ 𝑎2

1

2
+
1

2
(
𝑥−𝑎2

𝑎3−𝑎2
) 𝑎2 ≤ 𝑥 ≤ 𝑎3

1 𝑎3 ≤ 𝑥 ≤ 𝑎4

1 −
1

2
(
𝑥−𝑎4

𝑎5−𝑎4
) 𝑎4 ≤ 𝑥 ≤ 𝑎5

1

2
(
𝑎6−𝑥

𝑎6−𝑎5
) 𝑎5 ≤ 𝑥 ≤ 𝑎6

0 𝑥 < 𝑎1  𝑜𝑟  𝑥 > 𝑎6



Diagrammatically, a HFN �̃� ≅ (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6) is expressed as 

 

 
 

 

 

 

 

 

 

 

Fig. 1.   

Fig.1: Hexagonal fuzzy number 

𝟐. 𝟐 𝜶 −cut of a Hexagonal Fuzzy Number 

An 𝛼-cut of a fuzzy set �̃� defined on a set 𝑋 is a crisp set, denoted by 

�̃�[𝛼] and defined as the set of those elements for which the 

membership value is greater than or equal to by 𝛼, i.e.,  

�̃�[𝛼] = {𝑥 ∈ 𝑋: 𝜇𝐴(𝑥) ≥ 𝛼 , 0 ≤ 𝛼 ≤ 1} 

An 𝛼-cut of any fuzzy number is always a closed interval of real 
numbers. 

The 𝛼-cut of a HFN �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6) is defined as  
 

�̃�[𝛼]

= {
[𝑎1 + 2𝛼(𝑎2 − 𝑎1), 𝑎6 − 2𝛼(𝑎6 − 𝑎5)] 𝛼 ∈ [0, 0.5]

[𝑎2 + (2𝛼 − 1)(𝑎3 − 𝑎2), 𝑎4 + (2 − 2𝛼)(𝑎5 − 𝑎4)] 𝛼 ∈ (0.5, 1]
 

 

2.3 Fuzzy Random Variable following Exponential 
distribution 

Let 𝑓(𝑥, 𝜃) be a probability density function of a continuous random 

variable 𝑋, where 𝜃 is the parameter of the probability density 

function. If 𝜃 is inexact in nature then 𝜃 can be regarded as the fuzzy 

number 𝜃. Then the continuous random variable with fuzzy 

parameter 𝜃 is known as continuous FRV �̃�. 

If �̃� be an exponentially distributed FRV, then its probability density 

function is written as 

𝑓(𝑥, �̃�) = 𝑠 𝑒𝑥𝑝(−𝑠𝑥) 

where 𝑠 ∈ �̃�[𝛼] ; �̃�[𝛼] being the 𝛼 –cut of the fuzzy number �̃�, the 

support of �̃� and �̃� are defined on the set of positive real numbers. 

The mean and variance of the FRV �̃� is given by  

𝑚�̃� = 𝐸(�̃�) =
1

�̃�
 and  𝜎�̃�

2 = 𝑉𝑎𝑟(�̃�) =
1

�̃�2
 , respectively. 

 

 

1 

1

2
 

0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 
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3. Fuzzy Stochastic Fractional Programming 
Model Formulation 

An LFP problem in a fuzzy probabilistic decision making 

environment is presented in matrix form as follows 

Find 𝑋(𝑥1, 𝑥2, … . . , 𝑥𝑛) so as to  

Minimize  
𝐶𝑋+𝑢

�̃�𝑋+�̃�
  

Subject to 

�̃�1𝑋 ≲ �̃�1  

�̃�2𝑋 ≲ �̃�2  

𝑋 ≥ 0  

where �̃� ≅ (�̃�1, �̃�2, … , �̃�𝑛), �̃� ≅ (�̃�1, �̃�2, … , �̃�𝑛) are 𝑛 dimensional row 

vectors with entries as HFNs. Also �̃�, �̃� are taken as HFNs. Here 𝑋 =

(𝑥1, 𝑥2, … . . , 𝑥𝑛) is a column vector regarded as non-fuzzy decision 

variables. Again �̃�1 ≅ (�̃�𝑖𝑗)𝑚×𝑛 and �̃�2 ≅ (�̃�𝑡𝑗)𝑙×𝑛 are the fuzzy 

matrices with elements as HFNs. The right hand side parameter �̃�1 =

(�̃�1, �̃�2, … , �̃�𝑚)  of the constraints in (2) is 𝑚 dimensional vector 

with components as exponentially distributed FRVs and the parameter 

�̃�2 ≅ (�̃�1, �̃�2, … , �̃�𝑙 ) for the constraint (3) is 𝑙 dimensional vector with 

entries as HFNs. 

3.1 Fuzzy Programming model formulation 

The right sided parameters of the constraints in (2) are FRVs 

following exponential distribution. Therefore the constraints in (2) 

are rewritten in the following form    

𝑃𝑟 (�̃�1𝑋 ≲ �̃�1) ≥ 𝛽  
 i.e., in summation convention  

𝑃𝑟 (∑ �̃�𝑖𝑗𝑥𝑗 ≲ �̃�𝑖
𝑛
𝑗=1 ) ≥ 𝛽𝑖; 𝑖 = 1,2,… ,𝑚.  

where a m-tuple vector 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑚) represents a specific 

probability level.  

As �̃�𝑖 is an exponentially distributed FRV, its probability density 

function is written as 

         𝑓(𝑏𝑖 , �̃�𝑖) = 𝑠 𝑒𝑥𝑝(−𝑠𝑏𝑖) where 𝑠 > 0 and 𝑠 ∈ �̃�𝑖[𝛼].  

Using CCP methodology to all the probabilistic constraints 

𝑃𝑟 (∑ �̃�𝑖𝑗𝑥𝑗 ≲ �̃�𝑖
𝑛
𝑗=1 ) ≥ 𝛽𝑖 , the constraints are modified as follows 

𝑃𝑟 (∑ �̃�𝑖𝑗𝑥𝑗 ≲ �̃�𝑖
𝑛
𝑗=1 ) ≥ 𝛽𝑖  ; i.e.,  𝑃𝑟(�̃�𝑖 ≲ �̃�𝑖) ≥ 𝛽𝑖 , where �̃�𝑖 ≅

∑ �̃�𝑖𝑗𝑥𝑗 
𝑛
𝑗=1  

i.e., {∫ 𝑠 𝑒𝑥𝑝(−𝑠𝑏𝑖)𝑑𝑏𝑖
∞

𝑢
: 𝑢 ∈ �̃�𝑖[𝛼], 𝑠 ∈ �̃�𝑖[𝛼]} ≥ 𝛽𝑖  ; 𝑖 =

1,2,… ,𝑚 

𝑖. 𝑒.,𝑢 ≤ −
1

𝑠
ln (𝛽𝑖); 𝑖 = 1,2,… ,𝑚   

Since this is true for all 𝛼 ∈ (0, 1], then the above equation can be 

written as  

�̃�𝑖[𝛼] ≤ −
1

�̃�𝑖[𝛼]
ln (𝛽𝑖); 𝑖 = 1,2,… ,𝑚   

Applying the first decomposition theorem on (5) it becomes 

∑ �̃�𝑖𝑗𝑥𝑗 
𝑛
𝑗=1 ≲ −

1

�̃�𝑖
ln (𝛽𝑖); 𝑖 = 1,2,… ,𝑚 

Hence the equivalent FP model of the fuzzy stochastic fractional 

programming model is written as 

Find 𝑋(𝑥1, 𝑥2, … . . , 𝑥𝑛) so as to  

Minimize  
∑ 𝑐�̃�𝑥𝑗
𝑛
𝑗=1 +𝑢

∑ �̃�𝑗𝑥𝑗
𝑛
𝑗=1 +�̃�

  

Subject to 

∑ �̃�𝑖𝑗𝑥𝑗 
𝑛
𝑗=1 ≲ −

1

�̃�𝑖
ln (𝛽𝑖) ; 𝑖 = 1,2,… ,𝑚 

∑ �̃�𝑡𝑗𝑥𝑗 
𝑛
𝑗=1 ≲ �̃�𝑡 ; 𝑡 = 1,2,… , 𝑙 

𝑥𝑗 ≥ 0 ; 𝑗 = 1,2, … , 𝑛             (7) 

3.2 Interval Parameter Fractional Programing Model 
Formulation  

On the basis of 𝛼 −cut of the HFNs the FP model (7) is converted 

into fractional programming model with interval coefficients as 

follows 

The different hexagonal fuzzy parameters �̃�𝑗 , �̃�𝑗 , �̃�, �̃�, �̃�𝑖𝑗 , �̃�𝑡𝑗 , �̃�𝑡 ,
1

�̃�𝑖
 involved with the model (7) are considered as follows 

�̃�𝑗 ≅ (𝑐𝑗1, 𝑐𝑗2, 𝑐𝑗3, 𝑐𝑗4, 𝑐𝑗5, 𝑐𝑗6)�̃�𝑗 ≅ (𝑑𝑗1, 𝑑𝑗2, 𝑑𝑗3 , 𝑑𝑗4, 𝑑𝑗5 , 𝑑𝑗6)

�̃� ≅ (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6)�̃� ≅ (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6)

�̃�𝑖𝑗 ≅ (𝑎𝑖𝑗1, 𝑎𝑖𝑗2, 𝑎𝑖𝑗3, 𝑎𝑖𝑗4, 𝑎𝑖𝑗5, 𝑎𝑖𝑗6)

�̃�𝑡𝑗 ≅ (𝑎𝑡𝑗1, 𝑎𝑡𝑗2, 𝑎𝑡𝑗3, 𝑎𝑡𝑗4, 𝑎𝑡𝑗5, 𝑎𝑡𝑗6)

�̃�𝑡 ≅ (𝑏𝑡1, 𝑏𝑡2, 𝑏𝑡3, 𝑏𝑡4, 𝑏𝑡5, 𝑏𝑡6)
1

�̃�𝑖
≅ (

1

𝜆𝑖1
,
1

𝜆𝑖2
,
1

𝜆𝑖3
,
1

𝜆𝑖4
,
1

𝜆𝑖5
,
1

𝜆𝑖6
)(𝑗 =

1,2,… , 𝑛; 𝑖 = 1,2,… ,𝑚; 𝑡 = 1,2,… , 𝑙) 

The 𝛼 −cut of the above expressed HFNs are stated as defined 

subsection 2.2. as 

�̃�𝑗[𝛼] =

{
[𝑐𝑗1 + 2𝛼(𝑐𝑗2 − 𝑐𝑗1), 𝑐𝑗6 − 2𝛼(𝑐𝑗6 − 𝑐𝑗5)] 𝛼 ∈ [0, 0.5]

[𝑐𝑗2 + (2𝛼 − 1)(𝑐𝑗3 − 𝑐𝑗2), 𝑐𝑗4 + (2 − 2𝛼)(𝑐𝑗5 − 𝑐𝑗4)] 𝛼 ∈ (0.5, 1]


�̃�𝑗[𝛼] =

{
[𝑑𝑗1 + 2𝛼(𝑑𝑗2 − 𝑑𝑗1), 𝑑𝑗6 − 2𝛼(𝑑𝑗6 − 𝑑𝑗5)] 𝛼 ∈ [0, 0.5]

[𝑑𝑗2 + (2𝛼 − 1)(𝑑𝑗3 − 𝑑𝑗2), 𝑑𝑗4 + (2 − 2𝛼)(𝑑𝑗5 − 𝑑𝑗4)] 𝛼 ∈ (0.5, 1]
(𝑗 =

1,2,… , 𝑛)

�̃�[𝛼] = {
[𝑢1 + 2𝛼(𝑢2 − 𝑢1), 𝑢6 − 2𝛼(𝑢6 − 𝑢5)] 𝛼 ∈ [0, 0.5]

[𝑢2 + (2𝛼 − 1)(𝑢3 − 𝑢2), 𝑢4 + (2 − 2𝛼)(𝑢5 − 𝑢4)] 𝛼 ∈ (0.5, 1]


�̃�[𝛼] = {
[𝑣1 + 2𝛼(𝑣2 − 𝑣1), 𝑣6 − 2𝛼(𝑣6 − 𝑣5)] 𝛼 ∈ [0, 0.5]

[𝑣2 + (2𝛼 − 1)(𝑣3 − 𝑣2), 𝑣4 + (2 − 2𝛼)(𝑣5 − 𝑣4)] 𝛼 ∈ (0.5, 1]


�̃�𝑖𝑗[𝛼] =

{
[𝑎𝑖𝑗1 + 2𝛼(𝑎𝑖𝑗2 − 𝑎𝑖𝑗1), 𝑎𝑖𝑗6 − 2𝛼(𝑎𝑖𝑗6 − 𝑎𝑖𝑗5)] 𝛼 ∈ [0, 0.5]

[𝑎𝑖𝑗2 + (2𝛼 − 1)(𝑎𝑖𝑗3 − 𝑎𝑖𝑗2), 𝑎𝑖𝑗4 + (2 − 2𝛼)(𝑎𝑖𝑗5 − 𝑎𝑖𝑗4)] 𝛼 ∈ (0.5, 1]


�̃�𝑡𝑗[𝛼] =

{
[𝑎𝑡𝑗1 + 2𝛼(𝑎𝑡𝑗2 − 𝑎𝑡𝑗1), 𝑎𝑡𝑗6 − 2𝛼(𝑎𝑡𝑗6 − 𝑎𝑡𝑗5)] 𝛼 ∈ [0, 0.5]

[𝑎𝑡𝑗2 + (2𝛼 − 1)(𝑎𝑡𝑗3 − 𝑎𝑡𝑗2), 𝑎𝑡𝑗4 + (2 − 2𝛼)(𝑎𝑡𝑗5 − 𝑎𝑡𝑗4)] 𝛼 ∈ (0.5, 1]


(𝑖 = 1,2,… ,𝑚; 𝑗 = 1,2,… , 𝑛; 𝑡 = 1,2,… , 𝑙)

�̃�𝑡[𝛼] =

{
[𝑏𝑡1 + 2𝛼(𝑏𝑡2 − 𝑏𝑡1), 𝑏𝑡6 − 2𝛼(𝑏𝑡6 − 𝑏𝑡5)] 𝛼 ∈ [0, 0.5]

[𝑏𝑡2 + (2𝛼 − 1)(𝑏𝑡3 − 𝑏𝑡2), 𝑏𝑡4 + (2 − 2𝛼)(𝑏𝑡5 − 𝑏𝑡4)] 𝛼 ∈ (0.5, 1]
(𝑡 =

1,2,… , 𝑙)
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1

�̃�𝑖
[𝛼] =

{
[
1

𝜆𝑖1
+ 2𝛼 (

1

𝜆𝑖2
−

1

𝜆𝑖1
) ,

1

𝜆𝑖6
− 2𝛼 (

1

𝜆𝑖6
−

1

𝜆𝑖5
)] 𝛼 ∈ [0, 0.5]

[
1

𝜆𝑖2
+ (2𝛼 − 1) (

1

𝜆𝑖3
−

1

𝜆𝑖2
) ,

1

𝜆𝑖4
+ (2 − 2𝛼) (

1

𝜆𝑖5
−

1

𝜆𝑖4
)] 𝛼 ∈ (0.5, 1]

 

(𝑖 = 1,2,… ,𝑚)                (9) 

Using the above defined 𝛼 −cut of HFNs, the fractional 

programming model with interval coefficients is presented as 

Find 𝑋(𝑥1, 𝑥2, … . . , 𝑥𝑛) so as to  

Minimize  

∑ [𝑐𝑗1+2𝛼(𝑐𝑗2−𝑐𝑗1),𝑐𝑗6−2𝛼(𝑐𝑗6−𝑐𝑗5)]𝑥𝑗
𝑛
𝑗=1 +[𝑢1+2𝛼(𝑢2−𝑢1),𝑢6−2𝛼(𝑢6−𝑢5)]

∑ [𝑑𝑗1+2𝛼(𝑑𝑗2−𝑑𝑗1),𝑑𝑗6−2𝛼(𝑑𝑗6−𝑑𝑗5)]𝑥𝑗
𝑛
𝑗=1 +[𝑣1+2𝛼(𝑣2−𝑣1),𝑣6−2𝛼(𝑣6−𝑣5)]

  

Subject to 

∑ [𝑎𝑖𝑗1 + 2𝛼(𝑎𝑖𝑗2 − 𝑎𝑖𝑗1), 𝑎𝑖𝑗6 − 2𝛼(𝑎𝑖𝑗6 − 𝑎𝑖𝑗5)]𝑥𝑗 
𝑛
𝑗=1 ≤

(− ln(𝛽𝑖)) [
1

𝜆𝑖1
+ 2𝛼 (

1

𝜆𝑖2
−

1

𝜆𝑖1
) ,

1

𝜆𝑖6
− 2𝛼 (

1

𝜆𝑖6
−

1

𝜆𝑖5
)] ; 𝑖 = 1,2,… ,𝑚 

∑ [𝑎𝑡𝑗1 + 2𝛼(𝑎𝑡𝑗2 − 𝑎𝑡𝑗1), 𝑎𝑡𝑗6 − 2𝛼(𝑎𝑡𝑗6 − 𝑎𝑡𝑗5)]𝑥𝑗 
𝑛
𝑗=1 ≤

[𝑏𝑡1 + 2𝛼(𝑏𝑡2 − 𝑏𝑡1), 𝑏𝑡6 − 2𝛼(𝑏𝑡6 − 𝑏𝑡5)] ; 𝑡 = 1,2, … , 𝑙 

𝑥𝑗 ≥ 0 ; 𝑗 = 1,2,… , 𝑛; 0 ≤ 𝛼 ≤ 0.5       (10)  (10) 

and, 

Find 𝑋(𝑥1, 𝑥2, … . . , 𝑥𝑛) so as to  

Minimize  
∑ [𝑐𝑗2+(2𝛼−1)(𝑐𝑗3−𝑐𝑗2),𝑐𝑗4+(2−2𝛼)(𝑐𝑗5−𝑐𝑗4)]𝑥𝑗
𝑛
𝑗=1 +[𝑢2+(2𝛼−1)(𝑢3−𝑢2),𝑢4+(2−2𝛼)(𝑢5−𝑢4)]

∑ [𝑑𝑗2+(2𝛼−1)(𝑑𝑗3−𝑑𝑗2),𝑑𝑗4+(2−2𝛼)(𝑑𝑗5−𝑑𝑗4)]𝑥𝑗
𝑛
𝑗=1 +[𝑣2+(2𝛼−1)(𝑣3−𝑣2),𝑣4+(2−2𝛼)(𝑣5− 𝑣4)]

  

Subject to 

∑ [𝑎𝑖𝑗2 + (2𝛼 − 1)(𝑎𝑖𝑗3 − 𝑎𝑖𝑗2), 𝑎𝑖𝑗4 + (2 − 2𝛼)(𝑎𝑖𝑗5 −
𝑛
𝑗=1

𝑎𝑖𝑗4)]𝑥𝑗 ≤ (− ln(𝛽𝑖)) [
1

𝜆𝑖2
+ (2𝛼 − 1) (

1

𝜆𝑖3
−

1

𝜆𝑖2
) ,

1

𝜆𝑖4
+

(2 − 2𝛼) (
1

𝜆𝑖5
−

1

𝜆𝑖4
)] ; 𝑖 = 1,2,… ,𝑚 

∑ [𝑎𝑡𝑗2 + (2𝛼 − 1)(𝑎𝑡𝑗3 − 𝑎𝑡𝑗2), 𝑎𝑡𝑗4 + (2 − 2𝛼)(𝑎𝑡𝑗5 −
𝑛
𝑗=1

𝑎𝑡𝑗4)]𝑥𝑗 ≤ [𝑏𝑡2 + (2𝛼 − 1)(𝑏𝑡3 − 𝑏𝑡2), 𝑏𝑡4 + (2 − 2𝛼)(𝑏𝑡5 − 𝑏𝑡4)] 

; 𝑡 = 1,2, … , 𝑙 

𝑥𝑗 ≥ 0 ; 𝑗 = 1,2,… , 𝑛; 0.5 < 𝛼 ≤ 1    (11)  (11) 

Now to remove the fractional nature of the objective, the following 

variables are introduced by defining  

𝑧 = (∑ [𝑑𝑗1 + 2𝛼(𝑑𝑗2 − 𝑑𝑗1), 𝑑𝑗6 − 2𝛼(𝑑𝑗6 − 𝑑𝑗5)]𝑥𝑗
𝑛
𝑗=1 +

[𝑣1 + 2𝛼(𝑣2 − 𝑣1), 𝑣6 − 2𝛼(𝑣6 − 𝑣5)])
−1

,  

Or,  

𝑧 = (∑ [𝑑𝑗2 + (2𝛼 − 1)(𝑑𝑗3 − 𝑑𝑗2), 𝑑𝑗4 + (2 − 2𝛼)(𝑑𝑗5 −
𝑛
𝑗=1

𝑑𝑗4)]𝑥𝑗 + [𝑣2 + (2𝛼 − 1)(𝑣3 − 𝑣2), 𝑣4 + (2 − 2𝛼)(𝑣5 − 𝑣4)])
−1

  

and 𝑦𝑗 = 𝑥𝑗𝑧 ; 𝑗 = 1,2, … . . , 𝑛 ,  

On the basis of the new variables the model (10) and (11) reduce to 

the following form, 

Minimize  ∑ [𝑐𝑗1 + 2𝛼(𝑐𝑗2 − 𝑐𝑗1), 𝑐𝑗6 − 2𝛼(𝑐𝑗6 − 𝑐𝑗5)]𝑦𝑗
𝑛
𝑗=1 +

[𝑢1 + 2𝛼(𝑢2 − 𝑢1), 𝑢6 − 2𝛼(𝑢6 − 𝑢5)]𝑧  

Subject to 

∑ [𝑑𝑗1 + 2𝛼(𝑑𝑗2 − 𝑑𝑗1), 𝑑𝑗6 − 2𝛼(𝑑𝑗6 − 𝑑𝑗5)]𝑦𝑗
𝑛
𝑗=1 + [𝑣1 +

2𝛼(𝑣2 − 𝑣1), 𝑣6 − 2𝛼(𝑣6 − 𝑣5)]𝑧 = 1  

∑ [𝑎𝑖𝑗1 + 2𝛼(𝑎𝑖𝑗2 − 𝑎𝑖𝑗1), 𝑎𝑖𝑗6 − 2𝛼(𝑎𝑖𝑗6 − 𝑎𝑖𝑗5)]𝑦𝑗 
𝑛
𝑗=1 +

ln(𝛽𝑖) [
1

𝜆𝑖1
+ 2𝛼 (

1

𝜆𝑖2
−

1

𝜆𝑖1
) ,

1

𝜆𝑖6
− 2𝛼 (

1

𝜆𝑖6
−

1

𝜆𝑖5
)] 𝑧 ≤ 0 ; 𝑖 =

1,2,… ,𝑚 

∑ [𝑎𝑡𝑗1 + 2𝛼(𝑎𝑡𝑗2 − 𝑎𝑡𝑗1), 𝑎𝑡𝑗6 − 2𝛼(𝑎𝑡𝑗6 − 𝑎𝑡𝑗5)]𝑦𝑗 
𝑛
𝑗=1 −

[𝑏𝑡1 + 2𝛼(𝑏𝑡2 − 𝑏𝑡1), 𝑏𝑡6 − 2𝛼(𝑏𝑡6 − 𝑏𝑡5)]𝑧 ≤ 0 ; 𝑡 = 1,2,… , 𝑙 

𝑥𝑗 ≥ 0 ; 𝑗 = 1,2,… , 𝑛; 0 ≤ 𝛼 ≤ 0.5  (12)  (12) 

and,  

Minimize  ∑ [𝑐𝑗2 + (2𝛼 − 1)(𝑐𝑗3 − 𝑐𝑗2), 𝑐𝑗4 + (2 − 2𝛼)(𝑐𝑗5 −
𝑛
𝑗=1

𝑐𝑗4)]𝑦𝑗 + [𝑢2 + (2𝛼 − 1)(𝑢3 − 𝑢2), 𝑢4 + (2 − 2𝛼)(𝑢5 − 𝑢4)]𝑧  

Subject to 

∑ [𝑑𝑗2 + (2𝛼 − 1)(𝑑𝑗3 − 𝑑𝑗2), 𝑑𝑗4 + (2 − 2𝛼)(𝑑𝑗5 − 𝑑𝑗4)]𝑦𝑗
𝑛
𝑗=1 +

[𝑣2 + (2𝛼 − 1)(𝑣3 − 𝑣2), 𝑣4 + (2 − 2𝛼)(𝑣5 − 𝑣4)]𝑧 = 1  

∑ [𝑎𝑖𝑗2 + (2𝛼 − 1)(𝑎𝑖𝑗3 − 𝑎𝑖𝑗2), 𝑎𝑖𝑗4 + (2 − 2𝛼)(𝑎𝑖𝑗5 −
𝑛
𝑗=1

𝑎𝑖𝑗4)]𝑦𝑗 + ln(𝛽𝑖) [
1

𝜆𝑖2
+ (2𝛼 − 1) (

1

𝜆𝑖3
−

1

𝜆𝑖2
) ,

1

𝜆𝑖4
+ (2 − 2𝛼) (

1

𝜆𝑖5
−

1

𝜆𝑖4
)] 𝑧 ≤ 0 ; 𝑖 = 1,2,… ,𝑚 

∑ [𝑎𝑡𝑗2 + (2𝛼 − 1)(𝑎𝑡𝑗3 − 𝑎𝑡𝑗2), 𝑎𝑡𝑗4 + (2 − 2𝛼)(𝑎𝑡𝑗5 −
𝑛
𝑗=1

𝑎𝑡𝑗4)]𝑦𝑗 − [𝑏𝑡2 + (2𝛼 − 1)(𝑏𝑡3 − 𝑏𝑡2), 𝑏𝑡4 + (2 − 2𝛼)(𝑏𝑡5 −

𝑏𝑡4)]𝑧 ≤ 0 ; 𝑡 = 1,2,… , 𝑙 

𝑥𝑗 ≥ 0 ; 𝑗 = 1,2,… , 𝑛; 0.5 < 𝛼 ≤ 1  (13)  (13) 

Further the concept of convex combination be applied to each 

interval of the model (12) and (13), which yields the following non-

linear models as 
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Minimize ∑ [𝜌𝑗 (𝑐𝑗1 + 2𝛼(𝑐𝑗2 − 𝑐𝑗1)) + (1 − 𝜌𝑗) (𝑐𝑗6 −
𝑛
𝑗=1

2𝛼(𝑐𝑗6 − 𝑐𝑗5))] 𝑦𝑗 + [𝜌𝑛+1(𝑢1 + 2𝛼(𝑢2 − 𝑢1)) + (1 − 𝜌𝑛+1)(𝑢6 −

2𝛼(𝑢6 − 𝑢5))]𝑧 

subject to  

∑ [𝛿𝑗 (𝑑𝑗1 + 2𝛼(𝑑𝑗2 − 𝑑𝑗1)) + (1 − 𝛿𝑗) (𝑑𝑗6 − 2𝛼(𝑑𝑗6 −
𝑛
𝑗=1

𝑑𝑗5))] 𝑦𝑗 + [𝛿𝑛+1(𝑣1 + 2𝛼(𝑣2 − 𝑣1)) + (1 − 𝛿𝑛+1)(𝑣6 −

2𝛼(𝑣6 − 𝑣5))]𝑧 = 1   

∑ [𝜏𝑖𝑗 (𝑎𝑖𝑗1 + 2𝛼(𝑎𝑖𝑗2 − 𝑎𝑖𝑗1)) + (1 − 𝜏𝑖𝑗) (𝑎𝑖𝑗6 −
𝑛
𝑗=1

2𝛼(𝑎𝑖𝑗6 − 𝑎𝑖𝑗5))] 𝑦𝑗 + ln(𝛽𝑖) [𝜏𝑖(𝑛+1) (
1

𝜆𝑖1
+ 2𝛼 (

1

𝜆𝑖2
−

1

𝜆𝑖1
)) +

(1 − 𝜏𝑖(𝑛+1)) (
1

𝜆𝑖6
− 2𝛼 (

1

𝜆𝑖6
−

1

𝜆𝑖5
))] 𝑧 ≤ 0 ; 𝑖 = 1,2, … ,𝑚 

∑ [𝜃𝑡𝑗 (𝑎𝑡𝑗1 + 2𝛼(𝑎𝑡𝑗2 − 𝑎𝑡𝑗1)) + (1 − 𝜃𝑡𝑗) (𝑎𝑡𝑗6 −
𝑛
𝑗=1

2𝛼(𝑎𝑡𝑗6 − 𝑎𝑡𝑗5))] 𝑦𝑗 − [𝜃𝑡(𝑛+1)(𝑏𝑡1 + 2𝛼(𝑏𝑡2 − 𝑏𝑡1)) +

(1 − 𝜃𝑡(𝑛+1))(𝑏𝑡6 − 2𝛼(𝑏𝑡6 − 𝑏𝑡5))]𝑧 ≤ 0 ; 𝑡 = 1,2,… , 𝑙 

0 ≤ 𝛼 ≤ 0.5;  𝑦𝑗 ≥ 0 for  𝑗 = 1,2,… , 𝑛, 

𝑧 ≥ 0, 0 ≤ 𝜌𝑗 ≤ 1 , 0 ≤ 𝛿𝑗 ≤ 1  ; 𝑗 = 1,2,… , 𝑛 + 1   

0 ≤ 𝜏𝑖𝑗 ≤ 1 ; 0 ≤ 𝜃𝑡𝑗 ≤ 1; 𝑖 = 1,2,… ,𝑚 ; 𝑡 = 1,2, . . , 𝑙; 𝑗 =

1,2,… , 𝑛 + 1                (14) 

and, 

Minimize ∑ [𝜌𝑗
∗ (𝑐𝑗2 + (2𝛼 − 1)(𝑐𝑗3 − 𝑐𝑗2)) + (1 − 𝜌𝑗

∗) (𝑐𝑗4 +
𝑛
𝑗=1

(2 − 2𝛼)(𝑐𝑗5 − 𝑐𝑗4))] 𝑦𝑗 + [𝜌𝑛+1
∗ (𝑢2 + (2𝛼 − 1)(𝑢3 − 𝑢2)) +

(1 − 𝜌𝑛+1
∗ )( 𝑢4 + (2 − 2𝛼)(𝑢5 − 𝑢4))]𝑧 

subject to  

∑ [𝛿𝑗
∗(𝑑𝑗2 + (2𝛼 − 1)(𝑑𝑗3 − 𝑑𝑗2)) + (1 − 𝛿𝑗

∗) ( 𝑑𝑗4 +
𝑛
𝑗=1

(2 − 2𝛼)(𝑑𝑗5 − 𝑑𝑗4))] 𝑦𝑗 + [𝛿𝑛+1
∗ (𝑣2 + (2𝛼 − 1)(𝑣3 − 𝑣2)) +

(1 − 𝛿𝑛+1
∗ )(𝑣4 + (2 − 2𝛼)(𝑣5 − 𝑣4))]𝑧 = 1   

∑ [𝜏𝑖𝑗
∗ (𝑎𝑖𝑗2 + (2𝛼 − 1)(𝑎𝑖𝑗3 − 𝑎𝑖𝑗2)) + (1 − 𝜏𝑖𝑗

∗ ) (𝑎𝑖𝑗4 +
𝑛
𝑗=1

(2 − 2𝛼)(𝑎𝑖𝑗5 − 𝑎𝑖𝑗4))] 𝑦𝑗 + ln(𝛽𝑖) [𝜏𝑖(𝑛+1)
∗ (

1

𝜆𝑖2
+ (2𝛼 − 1) (

1

𝜆𝑖3
−

1

𝜆𝑖2
)) + (1 − 𝜏𝑖(𝑛+1)

∗ ) ( 
1

𝜆𝑖4
+ (2 − 2𝛼) (

1

𝜆𝑖5
−

1

𝜆𝑖4
))] 𝑧 ≤ 0 ; 𝑖 =

1,2,… ,𝑚  

∑ [𝜃𝑡𝑗
∗ (𝑎𝑡𝑗2 + (2𝛼 − 1)(𝑎𝑡𝑗3 − 𝑎𝑡𝑗2)) + (1 − 𝜃𝑡𝑗

∗ ) (𝑎𝑡𝑗4 +
𝑛
𝑗=1

(2 − 2𝛼)(𝑎𝑡𝑗5 − 𝑎𝑡𝑗4))] 𝑦𝑗 − [𝜃𝑡(𝑛+1)
∗ (𝑏𝑡2 + (2𝛼 − 1)(𝑏𝑡3 −

𝑏𝑡2)) + (1 − 𝜃𝑡(𝑛+1)
∗ )(𝑏𝑡4 + (2 − 2𝛼)(𝑏𝑡5 − 𝑏𝑡4))]𝑧 ≤ 0 ; 𝑡 =

1,2,… , 𝑙,  

0.5 < α ≤ 1; 𝑦𝑗 ≥ 0 for  𝑗 = 1,2,… , 𝑛, 

𝑧 ≥ 0, 0 ≤ 𝜌𝑗
∗ ≤ 1 , 0 ≤ 𝛿𝑗

∗ ≤ 1  ; 𝑗 = 1,2,… , 𝑛 + 1   

0 ≤ 𝜏𝑖𝑗
∗ ≤ 1 ; 0 ≤ 𝜃𝑡𝑗

∗ ≤ 1; 𝑖 = 1,2,… ,𝑚 ; 𝑡 = 1,2, . . , 𝑙; 𝑗 =

1,2,… , 𝑛 + 1               (15) 

Now model (14) and (15) is solved to find the satisfactory solution in 

the hybrid uncertain decision making environment. 

3.3 Solution Algorithm  

The developed methodology for solving fuzzy stochastic fractional 

programming problem in hybrid environment is presented in the form 

of an algorithm as follows: 

Step 1: Apply CCP technique to all the fuzzy probabilistic 

constraints, to form a fuzzy fractional programming model 

with HFNs as parameters.  

Step 2: Using the 𝛼 −cut of HFNs, a fractional programing model 

with interval coefficients is developed. 

Step 3: Some variables are introduced to remove the fractional nature 

of the objective.  

Step 4: Taking convex combination of each interval to form an 

equivalent nonlinear programming model. 

Step 5: Developed nonlinear programming model is solved to 

achieve most satisfactory solution in hybrid uncertain 

environment. 

Step 6: Stop. 

4. Numerical Illustration 

To illustrate the proposed approach for solving fuzzy stochastic 

fractional programming model with HFNs, a modified version of the 

fractional programming problem studied earlier by Borza et al. [3] is 

considered. 

Minimize  
−2̃𝑥1+3̃𝑥2+(−1)̃

1̃𝑥1+1̃𝑥2+4̃
 

Subject to 𝑃𝑟(−1̃𝑥1 + 1̃𝑥2 ≲ �̃�1) ≥ 0.70; 

    𝑃𝑟(2̃𝑥1 + 3̃𝑥2 ≲ �̃�2) ≥ 0.45; 

1̃x1 + (−1̃)x2 ≲ 5̃; 𝑥1, 𝑥2  ≥ 0.           (16) 

Here �̃�1 , �̃�2 are independent FRVs following exponential distribution 

with mean represented by the following HFNs 

𝑚�̃�1
≅ 2̃ ≅ (1.95,1.98, 2, 2.02, 2.04, 2.05);  

𝑚�̃�2
≅ 14̃ ≅ (13.95, 13.97, 14, 14.02, 14.03, 14.05).  

Again all the parameters −2̃,−1̃, 1̃, 3̃, 4̃ of the objectives are taken as 

HFNs of the form  
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−2̃ ≅ (−3,−2.75,−2.25,−2,−1.5,−1),  

 −1̃ ≅ (−2,−1.75,−1.25,−1,−0.5, 0),   

 1̃ ≅ (0.5, 0.75, 1, 1.15, 1.25, 1.5),  

 3̃ ≅ (2, 2.5, 3, 3.25, 3.75, 4),  

4̃ ≅ (3, 3.5, 4, 4.25, 4.75, 5).  

Also, remaining parameters of all the constraints are considered as 

HFNs with the following form  

−1̃ ≅ (−1.05,−1.02,−1,−0.98,−0.96,−0.95),  

1̃ ≅ (0.92, 0.96, 1, 1.01, 1.04, 1.06),  2̃ ≅

(1.95,1.98, 2, 2.02, 2.04, 2.05), 

3̃ ≅ (2.95, 2.97, 3, 3.01, 3.03, 3.05),  5̃ ≅

(4.95, 4.98, 5, 5.25, 5.75, 5.94).  

Using CCP technique and 𝛼-cut of HFNs, the problem (16) is 

reduced to a fractional programming problem with interval 

coefficients as described in section 3.2. 

By introducing the variables 𝑧, 𝑦1, 𝑦2 and on the basis of convex 

combination of the 𝛼 −cut the HFNs associated with the model, the 

model with interval parameter, is reduced to the form as  

Minimize [𝜌1(−3 + 0.5𝛼) + (1 − 𝜌1)( −1 − 𝛼)]𝑦1 + [𝜌2(2 + 𝛼) +

(1 − 𝜌2)(4 − 0.5𝛼)]𝑦2+[𝜌3(−2 + 0.5𝛼) + (1 − 𝜌3)(−𝛼)]𝑧 

subject to 

[𝛿1(0.5 + 0.5𝛼) + (1 − 𝛿1)(1.5 − 0.5𝛼)]𝑦1 + [𝛿2(0.5 + 0.5𝛼) +

(1 − 𝛿2)(1.5 − 0.5𝛼)]𝑦2 + [𝛿3(3 + 𝛼) + (1 − 𝛿3)(5 − 0.5𝛼)]z = 1  

[𝜏11(−1.05 + 0.06𝛼) + (1 − 𝜏11)(−0.95 − 0.02𝛼)]𝑦1 +

[𝜏12(0.92 + 0.08𝛼) + (1 − 𝜏12)(1.06 − 0.04𝛼)]𝑦2 ≤

−z[𝜏13(1.95 + 0.06𝛼) + (1 − 𝜏13)(2.05 − 0.02𝛼)] 𝑙𝑛(0.70),   

[𝜏21(1.95 + 0.06𝛼) + (1 − 𝜏21)(2.05 − 0.02𝛼)]𝑦1 + [𝜏22(2.95 +

0.04𝛼) + (1 − 𝜏22)(3.05 − 0.04𝛼)]𝑦2 ≤ −z[𝜏23(13.95 + 0.04𝛼) +

(1 − 𝜏23)(14.05 − 0.04𝛼)] 𝑙𝑛 (.45)  

[𝜃11(0.92 + 0.08𝛼) + (1 − 𝜃11)(1.06 − 0.04𝛼)]𝑦1 + [𝜃12(−1.05 +

0.06𝛼) + (1 − 𝜃12)(−0.95 − 0.02𝛼)]𝑦2 ≤ [𝜃13(4.95 + 0.06𝛼) +

(1 − 𝜃13)(5.94 − 0.38𝛼)]𝑧  

0 ≤ 𝛼 ≤ 0.5; 0 ≤ 𝜌𝑗 ≤ 1; 0 ≤ 𝛿𝑗 ≤ 1; 0 ≤ 𝜏𝑖𝑗 ≤ 1; 0 ≤ 𝜃𝑡𝑗 ≤ 1  

𝑦1, 𝑦2, 𝑧 ≥ 0   ;  (𝑗 = 1,2,3; 𝑖 = 1,2; 𝑡 = 1)    (17) 

 

and, 

Minimize [𝜌1
∗(−3.25 + 𝛼) + (1 − 𝜌1

∗)(−1 − 𝛼)]𝑦1 + [𝜌2
∗(2 + 𝛼) +

(1 − 𝜌2
∗)(4.25 − 𝛼)]𝑦2+[𝜌3

∗(−2.25 + 𝛼) + (1 − 𝜌3
∗)(−𝛼)]𝑧   

subject to  

[𝛿1
∗(0.5 + 0.5𝛼) + (1 − 𝛿1

∗)(1.35 − 0.2𝛼)]𝑦1 + [𝛿2
∗(0.5 + 0.5𝛼) +

(1 − 𝛿2
∗)(1.35 − 0.2𝛼)]𝑦2 + [𝛿3

∗(3 + 𝛼) + (1 − 𝛿3
∗)(5.25 − 𝛼)]z =

1  

[𝜏11
∗ (−1.04 + 0.04α) + (1 − 𝜏11

∗ )(−1.02 + 0.04α)]𝑦1 +

[𝜏12
∗ (0.92 + 0.08𝛼) + (1 − 𝜏12

∗ )(0.95 + 0.06𝛼)]𝑦2 ≤

−z[𝜏13
∗ (1.96 + 0.04𝛼) + (1 − 𝜏13

∗ )(1.98 + 0.04𝛼)] 𝑙𝑛(0.70),    

[𝜏21
∗ (1.96 + 0.04𝛼) + (1 − 𝜏21

∗ )(1.98 + 0.04𝛼)]𝑦1 + [𝜏22
∗ (2.94 +

0.06𝛼) + (1 − 𝜏22
∗ )(2.97 + 0.04𝛼)]𝑦2 ≤ −z[𝜏23

∗ (13.94 + 0.06𝛼) +

(1 − 𝜏23
∗ )(14 + 0.02𝛼)] 𝑙𝑛 (.45)  

[𝜃11
∗ (0.92 + 0.08𝛼) + (1 − 𝜃11

∗ )(0.95 + 0.06𝛼)]𝑦1 + [𝜃12
∗ (−1.04 +

0.04𝛼) + (1 − 𝜃12
∗ )(−1.02 + 0.04𝛼)]𝑦2 ≤ [𝜃13

∗ (4.96 + 0.04𝛼) +

(1 − 𝜃13
∗ )(5 + 0.5𝛼)]𝑧  

0.5 < 𝛼 ≤ 1;  0 ≤ 𝜌𝑗
∗ ≤ 1; 0 ≤ 𝛿𝑗

∗ ≤ 1; 0 ≤ 𝜏𝑖𝑗
∗ ≤ 1; 0 ≤ 𝜃𝑡𝑗

∗ ≤ 1  

𝑦1, 𝑦2, 𝑧 ≥ 0 ; (𝑗 = 1,2,3; 𝑖 = 1,2; 𝑡 = 1) (18) 

The software LINGO (11.0) is used to solve the problem. 

The optimal solutions of the problem obtained for different values of 

𝛼 are shown in the following table. In this table the optimal solution 

for lower values of 𝛼 are only considered, as the 𝛼 −cut for lower 

values of 𝛼 contain the 𝛼 −cut for higher values of 𝛼. 

Table 1: Solution for different values of 𝛼 

 The solution obtained by using the methodology developed by Borza 

et al. [3] by considering transformation of variables approach is 𝑦1 =

0.9091, 𝑦2 = 0, 𝑧 = 0.1818 with the corresponding objective value 

−3.0909. 

Value of 𝛼 Solution Point Objective value 

0 
𝑦1 = 0.98, 𝑦2 = 0, 

𝑧 = 0.17 
−3.280 

0.02 
𝑦1 = 0.97, 𝑦2 = 0, 

𝑧 = 0.17 
−3.225 

0.05 
𝑦1 = 0.948, 𝑦2 = 0, 

𝑧 = 0.164 
−3.145 

0.06 
𝑦1 = 0.942, 𝑦2 = 0, 

𝑧 = 0.16 
−3.119 

0.07 
𝑦1 = 0.936, 𝑦2 = 0, 

𝑧 = 0.163 
−3.094 
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Fig. 2: Comparison of solutions 

From this diagram it is clear that the decision obtained by developed 

methodology discussed in this article is most satisfactory in the fuzzy 

chance constrained decision making arena over the existing 

methodology. Also the proposed methodology is more flexible than 

the existing methodology as the value of α can be modified according 

to the requirement of the DMs. Thus, the proposed methodology is 

more acceptable to the DMs than the existing methodology for 

solving LFP problems in hybrid uncertain environment. 

5. Conclusions 
In this article an innovative methodology for solving linear fractional 

programming problem with HFNs or exponentially distributed FRVs 

as parameters is proposed in hybrid uncertain decision making 

environment. A crisp counterpart nonlinear programming model is 

developed using 𝛼 −cut of fuzzy numbers and by introducing new 

variables. The proposed model can be extended in a hybrid uncertain 

decision making environment in which all the parameters of the model 

would be represented by FRVs following various continuous 

probability distributions. The developed methodology can be applied 

to solve hybrid uncertain bilevel or multilevel, multiobjective 

programming problems. Furthermore, the proposed methodology can 

also be applied to various real life applications related to fractional 

programming problems, viz., production planning, financial and 

corporate planning, health care, hospital management, etc. Finally, it is 

hoped the proposed methodology may open up new dimensions into 

the way of solving fractional programming problems under the joint 

occurrence of fuzziness and randomness simultaneously. 
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