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Abstract

We find Survival rate estimates, parameter estimates, variance-covariance
matrices for the Logistic probability distribution model using least-squares
estimation methods without having partial derivatives, namely the simplex
optimization Methods (Nelder and Meads ([13]), and Hooke and Jeeves ([16]))
and having partial derivatives namely, the Quasi — Newton optimization
Methods (Davidon-Fletcher-Powel (DFP, ([6, 7])) and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS, ([2, 7, 9, 17])). The medical data sets of 21 Leukemia
cancer patients with time span of 35 weeks ([5, 10, 12]) were used.
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1.  Introduction

The method of linear least-squares requires that a straight line be fitted to a set of data
points such that the sum of squares of the vertical deviations from the points to be
minimized ([16]).

Adrien Merie Legendre (1752-1833) is generally credited for creating the basic ideas
of the method of least squares. Some people believe that the method was discovered
at the same time by Karl F. Gauss (1777-1855), Pierre S. Laplace (1749-1827) and
others. Furthermore, Markov's name is also included for further development of these
ideas. In recent years, ([3], [6]) an effort have been made to find better methods of
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fitting curves to the given data, but the least-squares method remained dominant, and
is used as one of the important methods of estimating the parameters. The least-
squares method ([1]) consists of finding those parameters that minimize a particular
objective function based on squared deviations.
It is to be noted that for the least-squares estimation method, ([4]), we are interested to
minimize some function of the residual, that is, we want to find the best possible
agreement between the observed and the estimated values. To define the objective
function F, we set up a vector of residuals

ro= oy -y i=12,m, (1.1)
Then the objective function is a sum of squared residuals-the term ‘least-squares’
derives from the function:

F=). = BLOP ey 12
i=1

The objective function is the sum of the squares of the deviations between the
observed values and the corresponding estimated values ([12]). The maximum
absolute discrepancy between observed and estimated values is minimized using quasi
Newton optimization methods.

We treated Kaplan-Meier estimates (KM (t;)) ([11]) as the observed values (yiobs) of
the objective function and the survivor rate estimates (S(t;)) of Logistic ([10], [18])

probability distribution model as the estimated value (y') of the objective function F

([3, 12]).

We considered the objective function for the model of the form
F= Zfi (KM (t,)-S(t,))? (1.3)
i=1

where f, is the number of failures at time t; and m is the number of failure groups.

We used the following procedure:

. Note that the Kaplan-Meier ([11]) method is independent of parameters, so for a
particular value of time t; we find the value of the Kaplan-Meier estimate
KM (t; ) of the survival function.

. We suppose that the survivor function of Logistic probability distribution model
at time t; are S(t;;a,b), and with the starting value of the parameters (a,,b,) ,
we can find the value of the survivor function 5(t; ay, by).

. From the numerical values of the Kaplan-Meier estimates KM(t;), and the
survivor function S(t;;a, b) of the Logistic probability distribution model at
time t;, we can evaluate errors |5(t;a, b) — KM (t;)].

. The function value with a suitable starting point (a,,b,) is given by

F(t;a,b,) = miaxls (t;:30,b,) — KM (t,)].
. We find numerical value of the function Fat initial point (a,,b,) and this

function value can be used in numerical optimization search methods to find the
minimum point (a",b") (optimal value of the parameters).
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For practical applications of least square method, we considered some medical data
sets ([8]). The drug 6-mercaptopurine (6-MP) was compared to a placebo to maintain
remission in acute leukemia patients. The following table gives remission times for
two groups of twenty-one patients each; one group was given the placebo and was
given the other the drug 6-MP.

Length of remission (in weeks) of leukemia patients
6-MP for 21 patients 6, 6, 6, 67,7, 97,10, 107, 117, 13, 16, 177, 197 207, 22,
23, 25%, 32%,32%,34%,35°

Placebo for 21 patients |1, 1, 2, 2, 3,4, 4,5,5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22,
23

* Censored observations

We considered only the data of twenty-one patients who were given 6-MP drug and
there were 7 failures at times 6, 7, 10, 13, 16, 22 and 23; and 12 of the 21 patients
were censored. The data of twenty-one leukemia patients were used for assessing the
appropriateness of Logistic model to find the survivor rate estimates. The results of
each Logistic probability distribution model using Least-Squares method and
applying simplex methods and Quasi-Newton methods are presented by giving the
values of the variance-covariance matrices, parameter estimates and other related
information in tables 1, table 2 and table 3.

2. Logistic Probability Distribution Model using Least-Squares Methods and
Applying Nelder and Meads and Hooke and Jeeves Search Methods

Nelder and Meads ([13]) and Hooke and Jeeves ([16]) are simplex methods and are
useful for optimizing the nonlinear programming problems. These are numerical
methods without calculating the derivatives of the objective function. These
optimization methods do not require first partial derivatives (gradients), so may
converge very slow or even may diverge at all ([14], [15]). The numerical results of
Logistic distribution model using Nelder and Mead’s and Hooke and Jeeves search
methods have been presented in this paper. The results include function values,
parameter estimates, survivor-rate estimates; Kaplan-Meier estimates ([11], [12]) and
other information have been presented in Table-1 and Table-2.
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Numerical Results for Logistic Probability Distribution Model using Least-

Squares Methods and Applying Nelder and Mead’s (NM) and Hooke and Jeev’s
(HJ) Methods

Table-1: Comparison of Survival Rate Estimates for Logistic Model

Failure Time|Number of Nelder and Meads Hooke and Jeeves
(Weeks) | Failures |Logistic Model|Kaplan Meier|Logistic Model|[Kaplan Meier
6 3 0.848025 0.85714 0.8350666 0.85714
7 1 0.834104 0.80722 0.8208283 0.80722
10 1 0.786240 0.75294 0.7724099 0.75294
13 1 0.729052 0.69019 0.7154432 0.69019
16 1 0.663120 0.62745 0.6506663 0.62745
22 1 0.513012 0.53815 0.5054921 0.53815
23 1 0.486965 0.44817 0.4805022 0.44817

Table-2: Parameter Estimates and Optimal Function Value for Logistic Model

Logistic Probability Distribution

NM Model

HJ Model

Parameters Estimates

2.3443738 0.10419653

2.2219694192 9.999999E-02

Optimal Functional value

3.885607324E-02

3.2322992E-02
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4.  Logistic distribution model using Least-Squares Methods and Applying
Quasi-Newton Methods (DFP and BFGS Methods)

We know that the survivor function for the two-parameter Logistic distribution model
IS

S(t) = 1/(1 + exp(bt - a)) (4.1)
To find the parameter estimates for the Logistic distribution model using least-squares
estimation procedures, we consider the function

E = ifi (S(t;) — KM(t;))?
2 (4.2)

Where KM (t) is the Kaplan-Meier estimate for the failure time t.

We used the DFP and the BFGS optimization methods to find the parameter
estimates.

To apply these optimization methods, we need to find the first partial derivatives of

the objective function F(a,b).
Thus, from eq.(4.2) we have

F_
=

Zifi(s(ti) — KM(t; ))%
= (4.3)
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and
F \ A1)
— =22 fi(S(t) - KM()) ==
d ia ( : , (4.4)
where
a0 _ 2
~ = exp(ot-a) (S(t))
and
a0 _ _ 2
S = tex(t a) (S(t)) |

Using eq.( 4.2), eq.( 4.3) and eq.( 4. 4) in the DFP or the BFGS optimization method,
we can find the estimated value of the parameters for which the least-squares function
gives the minimum value.

5. Numerical Results for Logistic Probability Distribution Model using Least-
Squares Methods and Applying Quasi Newton Methods

Table-3
Logistic Probability Distribution
Quasi Methods DFP Model BFGS Model
Parameters Estimates 2.25454 0.10352 2.25455 0.10353

Optimal Functional value | 0.49873371E-02 0.498733692E-02

-0.55248E-07
The Variance-Covariance 9.4488 0.51724 9.55447 0.53117
at Optimal (a*,b*) 0.5172 0.03349 0.53117 0.03537

5. Conclusion

The Survival rate estimates for the 21 Leukemia patients for the period of 35 week
under observations were compared using parametric Logistic distribution model
([18]), and Non-parametric Kaplan Meier Model ([11]). We found that the results
(like the survival rate estimates) for the Logistic distribution model were
approximately same for both the cases when the derivatives of an objective function
were not available (Using the Hooke and Jeeves, and Nelder and Meads method) and
when first partial derivatives of the objective function were available (using Quasi-
Newton methods like DFP and BFGS methods). Using Quasi Newton optimization
methods, we also found parameter estimates, optimal function, gradient at the optimal
point and the variance-covariance matrices without evaluating the second derivatives

of the objective function F.
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