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Abstract 

Survival analysis is used in different Engineering experiments for lifetime data 

analysis, reliability analysis or time to event analysis. One of the difficulties 

which arise in this area is the presence of censored data. The lifetime of an 

individual is censored when it cannot be exactly measured but partial 

information is available. Different circumstances can produce different types of 

censoring. The two most common censoring schemes used in life testing 

experiments are Type-I and Type-II censoring schemes. Hybrid censoring 

scheme is mixture of Type-I and Type-II censoring schemes. In this paper we 

have considered the hybrid censored lifetime data when the life time follows 

two parameter Weibull distribution. The parameters are estimated by the 

Maximum Likelihood and Bayesian Estimation methods. It is observed that the 

maximum likelihood estimates cannot be obtained in closed form. We obtain 

the maximum likelihood estimates of the unknown parameters using R 

Software. The Fisher information matrix has been obtained. 

Keywords: Survival analysis, Hybrid censoring scheme, Weibull distribution, 

maximum likelihood estimates, Monte Carlo Simulation Technique. 

 

1. INTRODUCION 

Survival analysis is a branch of engineering experiments for lifetime data analysis, 

reliability analysis or time to event analysis. That focuses on analyzing the expected 

duration until one or more events happen, such as death in biological organisms or 

failure in mechanical systems. It is used in a variety of fields including medicine, 

biology, engineering, and social sciences. This refers to the time duration until an event 

of interest occurs. The event can be anything like death, relapse of a disease, or failure 

of a machine. In many cases, the event of interest may not be observed within the study 



190 Uma Srivastava and Harish Kumar 

 

period for all subjects. Censoring occurs when we have incomplete information about 

the event time. The two most common censoring schemes used in life testing 

experiments are Type-I and Type-II censoring schemes. Hybrid censoring scheme is 

mixture of Type-I and Type-II censoring schemes. They can be briefly described as 

follows. Suppose n units are put on a life test. In type-I censoring, experiment continues 

up to a pre-specified integer time say t0 elapsed and the no. of item failed are say 𝑚 ≤
𝑛. Therefore, in Type–I censoring scheme, the number of failures is random and in 

Type–II censoring scheme the experimental time is random and test is terminated when 

pre– specified number of items say 𝑟 ≤ 𝑛 failed. A mixture of Type–I and Type–II 

schemes is known as the hybrid censoring scheme.  

The hybrid censoring scheme was first introduced by Epstein (1954, 1960).  But 

recently it becomes quite popular in the reliability and life testing experiments. Suppose 

n identical units are put on a life test. The test is terminated when a pre-specified number 

r, out of n units has failed or a pre-determined time 𝑡0, has been elapsed. Therefore, in 

hybrid censoring scheme, the experimental time and number of failures will not exceed 

𝑡0 and r respectively. It is clear that Type-I and Type-II censoring schemes can be 

obtained as special cases of hybrid censoring scheme by taking  𝑟 = 𝑛 and 𝑡0=∞ 

respectively. 

Epstein (1954) first introduced the hybrid censoring scheme and analyzed the data 

under the assumption of exponential lifetime distribution of the experimental units. He 

also proposed a two-sided confidence interval of the unknown parameter, without any 

formal proof. Fairbanks et al. (1982) modified slightly the proposition of Epstein (1954)   

and suggested a simple set of confidence intervals. Chen and Bhattacharya (1988) 

obtained the exact one-sided confidence interval based on the distribution of the 

maximum likelihood estimator of the experimental parameter. Draper and Guttmann 

(1987) also considered the same problem but from the Bayesian point of view, and 

obtained two-sided credible interval of the mean lifetime using the invented gamma 

prior. Comparisons and criticisms of the different methods can be found in Gupta and 

Kundu (1998). For some of the relevant references on hybrid censoring and related 

topics the readers are referred to Ebrahimi (1986, 1992),Basu and Ebrahimi(1991), 

Jeong et al (1996) childs et.al. (2003) Kundu (2007). It should be mentioned that though 

hybrid censoring schemes seems to be an important censoring scheme, but not much 

work has done.  

The Weibull has been extensively used in life testing and reliability problems. The 

distribution has been named after the Swedish scientist, Weibull(1939) proposed it for 

the first time in connection with has studies on strength of material. Weibull(1951) 

showed that the distribution is also useful in describing the ‘wear out’ or fatigue 

failures. 

The two parameters Weibull distribution widely used as a model for the failure time 

distribution is given by 

𝑓(𝑥) = 𝑝𝜃𝑥(𝑝−1)𝑒−𝜃𝑥𝑝
;          𝑥, 𝜃,    𝑝 > 0 ,                     (1.1) 

Here 𝜃 is referred as a scale parameter and   𝑝  as a shape parameter. Although we will 
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follow this practice, we note that 𝜃′ = 𝜃
1

𝑝 should be regarded as the scale parameter. 

The main aim of this paper is to provide different methods to first compute the point 

estimates of the unknown parameters. We have obtained the MLE’s of the unknown 

parameters accordingly. It is observed that the MLEs can be obtained by solving a non-

linear equation and we will use a simple iterative scheme to solve the non-linear 

equation. We also discuss the properties of the estimators by obtaining the variance 

covariance matrix. 

The second aim of this paper is to provide the Bayes estimates under the assumptions 

of non-informative and conjugate prior on the parameters. It is observed that the Bayes 

estimates cannot be computed explicitly, so we have used R software to compute the 

Bayes estimates. We compared the performances of the different methods of estimation 

by Monte Carlo simulation technique. 

 

2. Model Description. 

Suppose x is distributed as Weibull distribution with probability density function and 

the cumulative distribution function defined respectively as  

𝑓(𝑥) = 𝑃𝜃𝑥𝑃−1𝑒−𝜃𝑥𝑃
; 𝑥, 𝜃,    𝑝 > 0                                   (2.1) 

The reliability function is given by 

𝑅(𝑡) = 𝑒−𝜃𝑡𝑝
  ;                   𝑡 > 0 ,                               (2.2) 

The hazard rate function is given by 

𝐻(𝑡) = 𝑃𝜃𝑡𝑝−1   ;                  𝑡 > 0 ,                                (2.3) 

Where ′𝜃′the scale and ‘p’ is is the shape parameters and its cumulative density function 

is given as 

𝐹𝑥(𝑥) = 1 − exp(−𝜃𝑡P)  ;        𝑥 > 0 ,   𝜃 > 0 ,                  (2.4) 

The characteristics of the two -parameter Weibull distribution can be exemplified by 

examining the two parameters, p and  θ, and the effect they have on the p.d.f., reliability 

and failure rate functions. An extensive treatment on Weibull distribution is given by 

Johnson et al. (1994). 

 

3. Maximum Likelihood Estimator 

We will use maximum likelihood method to estimate the unknown parameters of 

Weibull distribution using hybrid censored sample. Suppose n identical units are put on 

life test. The test is terminated when a pre-chosen number ‘r’ out of ‘n’ items failed or 

when a pre-determined time 𝑡0  on test has been reached. It is assumed the failed items 

are not replaced under the under the hybrid scheme, it is also assumed that ‘r’ and ′𝑡0′ 
are known in advance. 

The likelihood function of censored data may be written as  
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𝐿(𝜃, 𝑝|𝑥) =
𝑛!

(𝑛−𝐷∗)!
𝑝𝐷∗

𝜃𝐷∗
∏ 𝑥𝑖

(𝑝−1)
𝑒−𝜃 ∑ 𝑥𝑖

𝑝𝐷∗

𝑖=1 [exp (−𝜃𝑥𝑝)](𝑛−𝐷∗)𝐷∗

𝑖=1 ;             (𝟑. 𝟏) 

Taking logarithm on both sides as 

log 𝐿(𝜃, 𝑝) = 𝑐𝑜𝑛𝑠𝑡𝑡. +𝐷∗ log 𝑝 + 𝐷∗ log 𝜃 + (𝑝 − 1) ∑ log 𝑥𝑖

𝐷∗

𝑖=1

− 𝜃 ∑ 𝑥𝑖
𝑝

𝐷∗

𝑖=1

− (n − D∗)𝜃𝑥𝑝 

Now partially differentiating the above equation with respect to 𝜃 and equating to zero, 

we get 

𝛿

𝛿𝜃
𝑙𝑜𝑔𝐿 =

𝐷∗

𝜃
− ∑ 𝑥𝑖

𝑝𝐷∗

𝑖=1 + (n − D∗)𝑥𝑝 = 0, 

Which provides 

𝜃 =
𝐷∗

∑ 𝑥𝑖
𝑝𝐷∗

𝑖=1 −(n−D∗)𝑥𝑝
,                                        (𝟑. 𝟐) 

Again partially differentiating with respect to p and equating to zero, we get 

𝛿

𝛿𝑝
log 𝐿 =

𝐷∗

𝑝
+ ∑ log 𝑥𝑖

𝐷∗

𝑖=1

− 𝜃Σxi
𝑝 log xi − (n − D∗)𝜃𝑝𝑥(𝑝−1) = 0 

The MLE’s of 𝜃 and 𝑃̂ are the solutions of the equations given below as 

∑ log 𝑥𝑖

𝐷∗

𝑖=1

= 𝜃Σxi
𝑝 log xi + (n − D∗)𝜃𝑝̂𝑥(𝑝−1) −

𝐷∗

𝑝̂
 

𝑝̂ =
𝐷∗

𝜃̂Σx
i
𝑝̂

log xi+(n−D∗)𝜃̂𝑝𝑥(𝑝̂−1)−∑ log 𝑥𝑖
𝐷∗
𝑖=1

;                               (𝟑. 𝟑) 

And 𝜃 =
𝐷∗

∑ 𝑥𝑖
𝑝̂𝐷∗

𝑖=1 −(n−D∗)𝑥𝑝̂
;                                         (𝟑. 𝟒) 

Now to obtain the MLE’s of 𝜃 and 𝑝̂ the computer simulation is required. 

The asymptotic variance- covariance matrix of (𝜃, 𝑝) is obtained by inverting the 

information matrix with elements that are negative of expected values of the second 

order derivatives of logarithms of the likelihood function. In the present situation it 

seems appropriate to approximate the expected values by their maximum likelihood 

estimate. Accordingly, we have the following appropriate variance- covariance matrix 

𝐼(𝜃, 𝑝) = − |

𝛿2 log 𝐿

𝛿𝜃2

𝛿2 log 𝐿

𝛿𝜃𝛿𝑝

𝛿2 log 𝐿

𝛿𝜃𝛿𝑝

𝛿2 log 𝐿

𝛿𝑝2

| 𝑎𝑡  𝜃 = 𝜃, 𝑝 = 𝑝,̂               (𝟑. 𝟓) 

The elements of fisher information matrix are given as follows 

−
𝛿2𝑙

𝛿𝜃2
|𝜃̂,𝑝̂ =

𝐷∗

𝜃2
 and 

𝛿2 log 𝐿

𝛿𝑝2
|𝜃̂,𝑝̂ =

𝐷∗

𝑝2
− (𝑛 − 𝐷∗)𝜃𝑥(𝑝−1) 

𝛿2𝑙

𝛿𝜃𝛿𝑝
|𝜃̂,𝑝 = Σ𝑥𝑖𝑙𝑜𝑔𝑥𝑖 − (𝑛 − 𝐷∗)𝑝𝑥(𝑝−1) and 

𝛿2𝑙

𝛿𝜃𝛿𝑝
|𝜃̂,𝑝 = Σ𝑥𝑖𝑙𝑜𝑔𝑥𝑖 − (𝑛 − 𝐷∗)𝑝𝑥(𝑝−1) 
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4. Bayesian Inference 

To obtain the Bayes estimates of the unknown parameters for two parameter Weibull 

distribution eqn.(1.1), assume that the two-parameter 𝜃 and p are independent and let 

the non-informative prior (NIP), the function for p and 𝜃  are respectively given by 

𝜋(𝑝)𝛼𝛿𝑘−1 ;                     𝑝 > 0, 𝑘 > 0                                      (4.1) 

𝜋(𝜃)𝛼𝜃−1 ;                      𝜃 > 0,                                       (4.2) 

Hence the joint prior density of 𝜃 and p will be 

𝜋(𝜃, 𝑝) = 𝜃−1𝑝𝑘−1   ;      𝑝 > 0, 𝑘 > 0, 𝜃 > 0                (4.3) 

Combining the eqns. (3.1) and (4.3), the joint posterior density function of 𝜃 and p 

under hybrid censored sampling scheme will be  

𝜌(𝜃, 𝑝|𝑥) =  
𝜃(𝐷∗−1)𝑝(𝐷∗+𝑘−1){∏ 𝑥𝑖

(𝑝−1)
𝑒−𝜃 ∑ 𝑥𝑖

𝑝𝐷∗
𝑖=1 }  [exp (−𝜃𝑥𝑝)](𝑛−𝐷∗)𝐷∗

𝑖=1

𝜙
 ;   𝜃 > 0, 𝑝 > 0         (4.4) 

Where 𝜑 is the normalizing constant equals to 

𝜙 = ∫ ∫ 𝜃(𝐷∗−1)𝑝(𝐷∗+𝑘−1){∏ 𝑥𝑖
(𝑝−1)

𝑒−𝜃 ∑ 𝑥𝑖
𝑝𝐷∗

𝑖=1 }[exp (−𝜃𝑥𝑝)](𝑛−𝐷∗)𝑑𝜃𝑑𝑝 ;  𝐷∗

𝑖=1
∞

0

∞

0
       (4.5) 

The joint mode of the posterior distribution eqn.(4.4)  may be considered as Bayes 

estimates clearly if k=1 and 𝜃 = 1 maximum likelihood estimates will be the same as 

the joint posterior mode. 

Now the marginal posteriors of any parameter is obtained by integrating the joint 

posterior distribution with respect to the other parameters, so the marginal posterior 

probability density functions of 𝜃 is given as 

𝜌(𝜃|𝑝, 𝑥) =
𝑝(𝐷∗+𝑘−1) 

∫ 𝜃(𝐷∗−1){∏ 𝑥𝑖
(𝑝−1)

𝑒−𝜃 ∑ 𝑥𝑖
𝑝𝐷∗

𝑖=1 }  [exp (−𝜃𝑥𝑝)](𝑛−𝐷∗)𝐷∗

𝑖=1 𝑑𝜃
∞

0

𝜙
;                       (4.6) 

Similarly integrating the joint posterior distribution with respect to the p, we get the 

marginal posterior probability density functions of 𝑝 is given as 

𝜌(𝜃|𝑝, 𝑥) =
𝜃(𝐷∗−1) 

∫ 𝑝(𝐷∗+𝑘−1){∏ 𝑥𝑖
(𝑝−1)

𝑒−𝜃 ∑ 𝑥𝑖
𝑝𝐷∗

𝑖=1 }  [exp (−𝜃𝑥𝑝)](𝑛−𝐷∗)𝐷∗

𝑖=1 𝑑𝑝
∞

0

𝜙
;                       (4.7) 

It is well known that under a squared error function the Bayes estimator of a parameter 

will be its posterior expectation and posterior variance will be the Bayes risk. To obtain 

the posterior mean and variance a numerical integration is required. 

Then the posterior mean and variance of the scale and shape parameter (𝜃, 𝑝) are 

expressed as follows 

𝜃 = 𝐸(𝜃|𝑝, 𝑥); 

𝜃̂ = ∫ ∫  𝜃𝐷∗
𝑝(𝐷∗+𝑘−1){∏ 𝑥𝑖

(𝑝−1)
𝑒−𝜃 ∑ 𝑥𝑖

𝑝𝐷∗

𝑖=1 }  [exp (−𝜃𝑥𝑝)](𝑛−𝐷∗)𝐷∗

𝑖=1 𝑑𝑝𝑑𝜃;
∞

0

∞

0
                         (4.8) 

Now the variance of 𝜃  of the scale parameter 𝜃 is given by 

𝑣(𝜃|𝑝, 𝑥) = ∫ ∫ (𝜃2 − 𝜃)2𝜃(𝐷∗−1)𝑝(𝐷∗+𝑘−1){∏ 𝑥𝑖
(𝑝−1)

𝑒−𝜃 ∑ 𝑥𝑖
𝑝𝐷∗

𝑖=1 }  [exp (−𝜃𝑥𝑝)](𝑛−𝐷∗)𝐷∗

𝑖=1 𝑑𝑝𝑑𝜃
∞

0

∞

0
      (4.9) 



194 Uma Srivastava and Harish Kumar 

 

Similarly we can find the posterior mean and variance of the shape parameter 𝑝 as 

𝑝̂ = ∫ ∫  𝜃(𝐷∗−1)𝑝(𝐷∗+𝑘){∏ 𝑥𝑖
(𝑝−1)

𝑒−𝜃 ∑ 𝑥𝑖
𝑝𝐷∗

𝑖=1 }  [exp (−𝜃𝑥𝑝)](𝑛−𝐷∗)𝐷∗

𝑖=1 𝑑𝜃𝑑𝑝;
∞

0

∞

0
                      (4.10) 

𝑉𝑎𝑟 (𝑝|𝜃, 𝑥) = ∫ ∫ (𝑝̂ − 𝑝)2∞

0
 𝜃(𝐷∗−1)𝑝(𝐷∗+𝑘−1){∏ 𝑥𝑖

(𝑝−1)
𝑒−𝜃 ∑ 𝑥𝑖

𝑝𝐷∗

𝑖=1 }  [exp (−𝜃𝑥𝑝)](𝑛−𝐷∗)𝐷∗

𝑖=1 𝑑𝜃𝑑𝑝
∞

0
;    (4.11) 

 

Equations (4.9) to (4.11) are very difficult to evaluate theoretically. A numerical 

procedure is needed to solve these equations numerically. R Software is used for the 

estimation of the scale and shape parameter(𝜃, 𝑝). 

 

5. Numerical Results 

The numerical simulations have been carried out by comparing the performances of the 

MLE’s and the Bayes estimators. The different choices of n, r and T values have been 

taken for simulation. It is clear that, there are no complete solutions for obtaining new 

estimators either in both non-Bayesian and Bayesian approaches. So we have taken 

random data, and applied numerical integration for the solution through computer 

programming. We have illustrated the results numerically which are obtained in the 

previous sections like the maximum likelihood estimators and their variance-covariance 

matrix for the unknown parameters of Weibull distribution under hybrid censored 

sample obtained with following procedures 

1. The random sample of size 10, 20, 30, 40and 50 are generated from Weibull 

distribution by Monte Carlo random number generation method. The selected 

values of the true parameters are 𝜃= (3, 5) and p = (2.5, 3.5). 

2. For hybrid censored sample, we have chosen the censoring time T and the number 

of failed items r. 

3. The equations (3.4) and (3.5) are solved in order to obtain the maximum likelihood 

estimators 𝜃 and 𝑝̂  𝑜𝑓  𝜃  and 𝑝 respectively.  

4. The variance covariance matrix of (𝜃 ,𝑝̂) is obtained by using eqn. (3.5). 

The results are presented in Table (1) .From Table (1), we note that as we increase the 

sample size the standard deviation starts decreasing, similarly the maximum likelihood 

estimator of the parameters has the same behaviors when the sample size becomes large 

and the properties of two parameters 𝜃and p at (2.5 and 3.5) respectively is better than 

the other values. To obtain the posterior mean and the posterior variance of 𝜃 and p, the 

numerical procedures is described as follow: 

Step 1 and 2 is repeated as above, then 

2: For hybrid censored sample, we have chosen the censoring time ‘T’ and the number 

of failed items ‘r’. 

3: The equations (4.8) and (4.9) are solved to obtain non linear Bayes estimator and its 

posterior variance of the scale and shape parameter (𝜃, p).  

5: The posterior mean and the posterior variance of the estimators for the shape and 

scale parameter (𝜃, p) for all sample size and for sets of parameters were obtained. 



Bayesian Estimation of the parameter of Weibull… 195 

 

Numerical results are summarized in Table (2), it is noted that the posterior mean 

decreases when n is increasing. Similarly, the posterior variance of the parameters 

has the same behaviors when the sample size becomes large. 

ssss For the value of D*, we have to take decision as 

H terminate the experiment at min (T,X(r) ). 

H={  
1 , 𝑖𝑓 𝐻 = X(r) 
0 , 𝑖𝑓 𝐻 = T       

 ;    and   k: The prior 

 

Table 1: The maximum likelihood Estimator, the standard deviation and covariance 

of the Weibull distribution with two parameter under hybrid censored sample when  

(𝜃 = 2.5, p = 3.5) 

n r T H 
𝜽̂ 𝒑̂ 

Cov(𝜽̂,𝒑̂) 
MLE S.D. MLE S.D. 

 

 

10 

 

 

5 

 

0.5 
0 

1 

3.4824 

3.9811 

1.3045 

1.9705 

3.5145 

4.4062 

1.3409 

1.2235 

30.3834 

 

1.0 
1 

0 

3.2515 

2.5197 

1.3682 

1.1177 

3.7270 

2.6503 

1.3092 

1.9687 

9.3277 

 

 

20 

 

10 

0.5 
0 

0 

2.1638 

2.4211 

1.0369 

1.1438 

2.2837 

2.6012 

1.8507 

1.9098 

27.9243 

 

1.0 
1 

1 

1.9782 

1.6297 

0.9496 

1.9988 

2.1778 

1.7024 

0.9999 

1.0689 

25.7656 

 

 

 

30 

 

 

20 

0.5 
0 

1 

1.4290 

1.3102 

2.5402 

2.6347 

1.4785 

1.5573 

2.3713 

2.2051 

22.0097 

 

1.0 
1 

0 

1.1966 

1.1199 

3.0196 

3.0312 

1.2907 

1.3328 

1.7087 

1.4849 

20.0079 

 

 

40 

 

30 

0.5 
1 

1 

1.0715 

1.0708 

3.7478 

3.7199 

1.1500 

1.4505 

1.3203 

1.2196 

20.0079 

 

1.0 
1 

0 

1.0551 

1.0412 

3.3374 

3.1931 

1.4040 

1.3357 

1.2196 

1.1286 

20.0079 

 

 

Table 1(continued): The maximum likelihood Estimator, the standard deviation and 

covariance of the Weibull distribution with two parameter under hybrid censored 

sample when (𝜃 = 3, p = 4) 

n r T H 𝜽̂ 𝒑̂ Cov(𝜽̂,𝒑̂) 

MLE S.D. MLE S.D. 

 

 

10 

 

 

5 

0.5 0 

1 

1.7221 

1.6301 

2.9368 

2.9159 

3.1010 

3.1311 

2.2290 

2.3897 

9.1721 

 

1.0 1 

1 

1.6150 

1.5452 

2.9014 

2.9009 

2.6216 

2.7201 

1.9925 

1.9434 

16.0421 

 

 

 

 

 

0.5 0 

0 

1.5157 

1.4638 

2.8632 

2.8415 

2.2884 

2.3656 

1.8363 

1.1358 

24.7854 
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20 10 1.0 1 

1 

1.4239 

1.3860 

2.7233 

2.7017 

2.0050 

2.0633 

1.0660 

1.0822 

30.7062 

 

 

30 

 

 

20 

0.5 0 

1 

1.3389 

1.3121 

2.6927 

2.6466 

1.7645 

1.8069 

1.0874 

1.0705 

32.8731 

1.0 1 

0 

1.2603 

1.2421 

2.6424 

2.5820 

1.5602 

1.5897 

1.1058 

1.1573 

22.2539 

 

 

 

40 

 

 

30 

 

0.5 1 

1 

1.1875 

1.1760 

2.5530 

2.5052 

1.3862 

1.4054 

1.5252 

1.6696 

19.7964 

1.0 1 

0 

1.1202 

1.1137 

2.4650 

2.4346 

1.2376 

1.2487 

1.7484 

1.0086 

11.4555 

 

Table 1(continued): The maximum likelihood Estimator, the standard deviation and 

covariance of Weibull distribution with two parameter under hybrid censored sample 

when (𝜃 = 3.5, p = 4.5) 

n r T H 𝜽̂ 𝒑̂ Cov(𝜽̂ ,𝒑̂) 

MLE S.D. MLE S.D. 

 

 

10 

 

 

5 

0.5 0 

0 

2.0625 

1.9852 

2.3290 

2.2897 

7.4247 

6.2610 

3.2258 

3.0956 

13.2442 

 

1.0 1 

0 

1.9922 

1.9667 

2.2925 

2.2434 

7.1729 

5.1460 

3.3960 

2.8817 

24.5450 

 

 

 

20 

 

 

10 

0.5 0 

0 

1.9272 

1.9018 

2.1363 

2.0358 

5.0463 

4.1047 

2.5227 

1.9619 

25.7779 

 

1.0 1 

1 

1.8843 

1.7993 

1.0660 

1.0002 

3.6978 

3.2509 

1.5699 

1.5781 

35.9740 

 

 

 

30 

 

 

20 

 

0.5 0 

1 

1.6912 

1.6713 

0.9999 

0.9999 

2.8028 

2.5888 

1.1017 

1.0169 

34.9265 

 

1.0 1 

0 

1.6282 

1.5303 

0.9998 

0.9973 

2.1870 

2.0849 

0.9946 

0.8633 

23.5734 

 

 

 

40 

 

 

30 

 

0.5 1 

1 

1.5186 

1.3866 

0.9952 

0.7696 

1.7489 

1.7015 

0.7239 

0.6966 

12.5127 

 

1.0 1 

0 

1.4134 

1.2476 

0.9484 

0.7086 

1.4277 

1.4076 

0.5451 

0.5206 

11.7491 

 

 

Table 1(continued): The maximum likelihood Estimator, the standard deviation and 

covariance of Weibull distribution with two parameter under hybrid censored sample 

when (𝜃 = 3.5, p = 4.5) 

n r T H 𝜽̂ 𝒑̂ Cov(𝜽̂ ,𝒑̂) 

MLE S.D. MLE S.D. 

 

 

10 

 

 

5 

 

0.5 

0 

1 

6.3230 

5.5561 

1.5380 

1.3152 

5.7167 

5.6993 

2.1952 

2.1863 

13.0083 

 

1.0 1 

0 

5.5173 

4.8450 

1.4325 

1.2747 

4.8784 

3.7624 

1.9663 

1.8905 

22.7741 

 

 

 

 

 

 

0.5 

0 

0 

4.4352 

3.9359 

1.3221 

1.2211 

4.3947 

4.9769 

1.7594 

2.0930 

22.9455 
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20 10 1.0 1 

1 

3.8882 

2.5487 

1.2121 

1.5880 

3.9922 

3.0878 

1.9770 

1.8938 

32.1153 

 

 

 

30 

 

 

20 

 

 

0.5 

0 

1 

2.8643 

2.3707 

1.6602 

1.2887 

3.3050 

4.9214 

1.5287 

2.0928 

21.7955 

 

1.0 1 

0 

2.2212 

2.1638 

1.1067 

1.0166 

2.6056 

3.3589 

1.1363 

1.7901 

19.5155 

 

 

 

40 

 

 

30 

 

0.5 

1 

1 

2.0163 

1.9909 

0.9148 

0.9442 

2.0237 

2.3548 

1.0070 

1.2057 

16.2796 

 

 

1.0 

1 

0 

1.5523 

1.5416 

1.8311 

1.8735 

1.5782 

1.7123 

1.6967 

1.8916 

11.0848 

 

 

Table 2: The posterior mean and posterior variance of the Weibull distribution under 

hybrid censored sample when (𝜃 = 2.5, p = 3.5, k=2) 

n r T H 𝜽 𝒑 

posterior 

mean 

posterior 

variance 

posterior 

mean 

posterior 

variance 

 

10 

 

5 

0.5 0 

0 

1.0190 

1.4956 

2.0064 

2.5633 

2.0341 

2.0322 

1.3151 

1.8718 

1.0 1 

0 

1.2199 

2.0642 

2.1550 

0.9024 

1.8594 

1.8588 

1.5932 

2.5400 

 

20 

 

10 

0.5 0 

0 

1.4305 

2.8129 

2.2570 

1.3091 

1.7047 

1.7049 

1.8614 

3.3141 

1.0 1 

1 

1.6148 

3.5482 

2.8610 

1.9576 

1.5675 

1.5681 

2.0445 

3.8708 

 

30 

 

20 

0.5 

 

0 

1 

1.7229 

3.7965 

1.7437 

2.0467 

1.4454 

1.4461 

2.0692 

3.7949 

 

1.0 

1 

0 

1.7168 

3.3309 

2.0088 

1.6636 

1.3363 

1.3370 

1.9240 

13.1500 

 

 

40 

 

 

30 

0.5 1 

1 

1.5988 

2.5491 

1.6251 

1.6657 

1.2385 

1.2391 

1.6708 

2.3834 

1.0 1 

0 

1.4097 

1.8532 

1.3126 

1.5572 

1.1507 

1.1511 

1.3897 

1.7530 

 

Table 2(continued): The posterior mean and posterior variance of the Weibull 

distribution under hybrid censored sample when (𝜃 = 3, p = 4, k=2) 

n r T H 𝜽̂ 𝒑̂ 

posterior 

mean 

posterior 

variance 

posterior 

mean 

posterior 

variance 

 

10 

5 

 

7 

0.5 0 

0 

4.1338 

4.2152 

1.2290 

2.3897 

10.6634 

15.7899 

1.2290 

2.3897 

1.0 1 

0 

3.3754 

3.4296 

1.1925 

2.2434 

8.2480 

10.9033 

1.1925 

2.2434 

 

20 

10 

 

0.5 0 

0 

2.7926 

2.8267 

1.1363 

2.0358 

5.9877 

7.1931 

1.1363 

2.0358 
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15 1.0 1 

1 

2.3398 

2.3637 

1.0660 

1.8022 

4.3274 

4.8721 

1.0660 

1.8022 

 

30 

20 

 

25 

0.5 0 

1 

1.9835 

1.9991 

0.9874 

1.5705 

3.1901 

3.4435 

0.9874 

1.5705 

 

1.0 

1 

0 

1.6996 

1.7095 

0.9058 

1.3573 

2.4145 

2.5350 

0.9058 

1.3573 

 

 

40 

 

30 

 

35 

 

0.5 

1 

1 

1.4704 

1.4764 

0.8252 

1.1696 

1.8756 

1.9325 

0.8252 

1.1696 

 

1.0 

1 

0 

1.2833 

1.2865 

0.7484 

1.0086 

1.4915 

1.5165 

0.7484 

1.0086 

 

Table 2(continued): The posterior mean and posterior variance of the Weibull 

distribution under hybrid censored sample when (𝜃 = 3.5, p = 4.5,k=2 ) 

n r T H 𝜽 𝒑 

posterior 

mean 

posterior 

variance 

posterior 

mean 

posterior 

variance 

 

 

10 

5 

 

7 

 

0.5 

0 

1 

0.8117 

0.8425 

1.6881 

1.8349 

1.4346 

1.3322 

0.8679 

1.3917 

 

1.0 

1 

0 

1.1671 

1.2624 

0.9693 

0.8121 

1.3797 

1.3000 

0.8368 

1.3159 

 

20 

10 

 

15 

0.5 0 

0 

1.7577 

2.0374 

0.7491 

1.0066 

1.3262 

1.2656 

0.8014 

1.2309 

1.0 1 

1 

2.7245 

3.5333 

1.3280 

1.8588 

1.2743 

1.2295 

0.7632 

1.1415 

 

30 

20 

 

25 

0.5 

 

0 

1 

3.9178 

5.9265 

2.0061 

2.7294 

1.2241 

1.1922 

0.7233 

1.0517 

1.0 1 

0 

4.3580 

6.7585 

2.1839 

3.0991 

1.1757 

1.541 

0.6827 

0.9466 

 

40 

 

30 

 

35 

0.5 1 

1 

3.4359 

4.5310 

1.9915 

2.2683 

1.1290 

1.1155 

0.6424 

0.8820 

1.0 1 

0 

2.2727 

2.5843 

1.0091 

1.0974 

1.0842 

1.0768 

0.6030 

0.8052 

 

Table 2(continued): The posterior mean and posterior variance of the Weibull 

distribution under hybrid censored sample when (𝜃 = 4.5, p = 5) 

n r T H 𝜽 𝒑 

posterior 

mean 

posterior 

variance 

posterior 

mean 

posterior 

variance 

 

10 

6 

 

8 

0.5 

 

0 

1 

5.2147 

4.9517 

1.2687 

1.2312 

8.2480 

6.2354 

4.2354 

3.1002 

1.0 1 

0 

4.2370 

3.9604 

1.0121 

0.9991 

5.2781 

4.6697 

2.0090 

2.0074 

 

20 

14 

 

0.5 0 

0 

2.5215 

2.3719 

1.3280 

1.3988 

3.5077 

2.5975 

1.9125 

1.4998 
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18 

 

1.0 1 

1 

1.9683 

1.5486 

2.1294 

2.5839 

1.5217 

1.4573 

1.8210 

1.7989 

 

30 

22 

 

26 

0.5 0 

1 

1.4001 

1.3368 

2.5615 

2.7683 

1.2672 

1.1956 

1.6658 

1.4412 

1.0 1 

0 

1.2927 

1.2350 

2.9347 

2.9170 

1.8756 

1.9626 

1.8991 

1.9995 

 

 

40 

30 

 

36 

0.5 

 

1 

1 

1.1817 

1.1257 

3.0527 

3.1966 

1.4915 

1.5165 

1.6541 

1.5976 

1.0 1 

0 

1.1500 

1.1325 

3.0070 

3.5650 

1.2105 

1.2192 

1.7421 

1.8897 
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