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Abstract

Survival analysis is used in different Engineering experiments for lifetime data
analysis, reliability analysis or time to event analysis. One of the difficulties
which arise in this area is the presence of censored data. The lifetime of an
individual is censored when it cannot be exactly measured but partial
information is available. Different circumstances can produce different types of
censoring. The two most common censoring schemes used in life testing
experiments are Type-l1 and Type-Il censoring schemes. Hybrid censoring
scheme is mixture of Type-I and Type-Il censoring schemes. In this paper we
have considered the hybrid censored lifetime data when the life time follows
two parameter Weibull distribution. The parameters are estimated by the
Maximum Likelihood and Bayesian Estimation methods. It is observed that the
maximum likelihood estimates cannot be obtained in closed form. We obtain
the maximum likelihood estimates of the unknown parameters using R
Software. The Fisher information matrix has been obtained.

Keywords: Survival analysis, Hybrid censoring scheme, Weibull distribution,
maximum likelihood estimates, Monte Carlo Simulation Technique.

1. INTRODUCION

Survival analysis is a branch of engineering experiments for lifetime data analysis,
reliability analysis or time to event analysis. That focuses on analyzing the expected
duration until one or more events happen, such as death in biological organisms or
failure in mechanical systems. It is used in a variety of fields including medicine,
biology, engineering, and social sciences. This refers to the time duration until an event
of interest occurs. The event can be anything like death, relapse of a disease, or failure
of a machine. In many cases, the event of interest may not be observed within the study
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period for all subjects. Censoring occurs when we have incomplete information about
the event time. The two most common censoring schemes used in life testing
experiments are Type-I and Type-Il censoring schemes. Hybrid censoring scheme is
mixture of Type-1 and Type-II censoring schemes. They can be briefly described as
follows. Suppose n units are put on a life test. In type-I censoring, experiment continues
up to a pre-specified integer time say to elapsed and the no. of item failed are say m <
n. Therefore, in Type-I censoring scheme, the number of failures is random and in
Type—Il censoring scheme the experimental time is random and test is terminated when
pre— specified number of items say r < n failed. A mixture of Type—I and Type-II
schemes is known as the hybrid censoring scheme.

The hybrid censoring scheme was first introduced by Epstein (1954, 1960). But
recently it becomes quite popular in the reliability and life testing experiments. Suppose
n identical units are put on a life test. The test is terminated when a pre-specified number
r, out of n units has failed or a pre-determined time t,, has been elapsed. Therefore, in
hybrid censoring scheme, the experimental time and number of failures will not exceed
to and r respectively. It is clear that Type-l and Type-1l censoring schemes can be
obtained as special cases of hybrid censoring scheme by taking r =n and ty=co
respectively.

Epstein (1954) first introduced the hybrid censoring scheme and analyzed the data
under the assumption of exponential lifetime distribution of the experimental units. He
also proposed a two-sided confidence interval of the unknown parameter, without any
formal proof. Fairbanks et al. (1982) modified slightly the proposition of Epstein (1954)
and suggested a simple set of confidence intervals. Chen and Bhattacharya (1988)
obtained the exact one-sided confidence interval based on the distribution of the
maximum likelihood estimator of the experimental parameter. Draper and Guttmann
(1987) also considered the same problem but from the Bayesian point of view, and
obtained two-sided credible interval of the mean lifetime using the invented gamma
prior. Comparisons and criticisms of the different methods can be found in Gupta and
Kundu (1998). For some of the relevant references on hybrid censoring and related
topics the readers are referred to Ebrahimi (1986, 1992),Basu and Ebrahimi(1991),
Jeong et al (1996) childs et.al. (2003) Kundu (2007). It should be mentioned that though
hybrid censoring schemes seems to be an important censoring scheme, but not much
work has done.

The Weibull has been extensively used in life testing and reliability problems. The
distribution has been named after the Swedish scientist, Weibull(1939) proposed it for
the first time in connection with has studies on strength of material. Weibull(1951)
showed that the distribution is also useful in describing the ‘wear out’ or fatigue
failures.

The two parameters Weibull distribution widely used as a model for the failure time
distribution is given by

fx) =pox®PVe=0",  x0, p>o0, (1.1)
Here 0 is referred as a scale parameter and p as a shape parameter. Although we will
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follow this practice, we note that 8’ = 8» should be regarded as the scale parameter.

The main aim of this paper is to provide different methods to first compute the point
estimates of the unknown parameters. We have obtained the MLE’s of the unknown
parameters accordingly. It is observed that the MLESs can be obtained by solving a non-
linear equation and we will use a simple iterative scheme to solve the non-linear
equation. We also discuss the properties of the estimators by obtaining the variance
covariance matrix.

The second aim of this paper is to provide the Bayes estimates under the assumptions
of non-informative and conjugate prior on the parameters. It is observed that the Bayes
estimates cannot be computed explicitly, so we have used R software to compute the
Bayes estimates. We compared the performances of the different methods of estimation
by Monte Carlo simulation technique.

2. Model Description.

Suppose x is distributed as Weibull distribution with probability density function and
the cumulative distribution function defined respectively as

f(x) = POxP1e %", x 0, p>0 (2.1)
The reliability function is given by
R(t) = e~ 0" ; t>0, (2.2)
The hazard rate function is given by
H(t) = PotP1 t>0, (2.3)

Where '6'the scale and “p’ is is the shape parameters and its cumulative density function
is given as

E(x)=1-—exp(-60t%) ; x>0, 6>0, (2.4)

The characteristics of the two -parameter Weibull distribution can be exemplified by
examining the two parameters, p and 6, and the effect they have on the p.d.f., reliability
and failure rate functions. An extensive treatment on Weibull distribution is given by
Johnson et al. (1994).

3. Maximum Likelihood Estimator

We will use maximum likelihood method to estimate the unknown parameters of
Weibull distribution using hybrid censored sample. Suppose n identical units are put on
life test. The test is terminated when a pre-chosen number ‘r’ out of ‘n” items failed or
when a pre-determined time t, on test has been reached. It is assumed the failed items
are not replaced under the under the hybrid scheme, it is also assumed that ‘r’ and 't,’
are known in advance.

The likelihood function of censored data may be written as
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D* . s
L(0,p]x) = o5 p” 0 T, 2P Ve @2 [exp(—629)] 205 (3.1)
Taking logarithm on both sides as
D* D*
log L(8,p) = constt.+D*logp + D*logf + (p — 1)2 log x; — Binp — (n—D")OxP
i=1 i=1

Now partially differentiating the above equation with respect to 8 and equating to zero,
we get

logL ———Zl 1 %P+ (M —D")xP =0,
Which provides
~ D*
0= P xP—(n-D*)xP’ (3.2)
Again partially differentiating with respect to p and equating to zero, we get
6 P (p-1)
SplogL = —+210gx — 02x; logx; — (n—D")OpxP~" =0
The MLE’s of 8 and P are the solutions of the equations given below as
D*
2 log x; = B3x” logx; + (n — D*)@pxP~1 — )
A D* .
P= OZX logxj+(n-D")9px®-V-32" logx;’ (3.3)
And 8 = > (3.4)

21 1xll’ (n—-D* )xlJ
Now to obtain the MLE’s of § and p the computer simulation is required.

The asymptotic variance- covariance matrix of (6,p) is obtained by inverting the
information matrix with elements that are negative of expected values of the second
order derivatives of logarithms of the likelihood function. In the present situation it
seems appropriate to approximate the expected values by their maximum likelihood
estimate. Accordingly, we have the following appropriate variance- covariance matrix

5%logL  &82%logl

562 866p oA
5%logL &8%logl to=0p=p, (3.5)

566p op?

The elements of fisher information matrix are given as follows

821 D* 8%logl
~ezlap =z and =55

lop = D—: — (n—D")ex®P~V

521
608p

lap = Zx;logx; — (n — D* )px®~1 and m lap = Zx;logx; — (n — D*)px @~V
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4. Bayesian Inference

To obtain the Bayes estimates of the unknown parameters for two parameter Weibull
distribution egn.(1.1), assume that the two-parameter 8 and p are independent and let
the non-informative prior (NIP), the function for p and 6 are respectively given by

n(p)ad Tt p>0k>0 (4.1)
n(0)ad™!; 6 >0, (4.2)

Hence the joint prior density of 6 and p will be
n(,p) =0"'p*' ;. p>0k>06>0 (4.3)

Combining the egns. (3.1) and (4.3), the joint posterior density function of 6 and p
under hybrid censored sampling scheme will be

* * * - D* *
@ —1)p(D +k-1){l—[1i3=1xl§p 1)e—ezi:1xip} [exp(_exp)](n—D )

p(6,plx) = 7

Where ¢ is the normalizing constant equals to

; 6>0,p>0 (4.49)

¢ = [ [ 00 -Dp@ kIR P e=0 NP Y [exp(~02P)| P )dodp;  (4.5)

The joint mode of the posterior distribution eqn.(4.4) may be considered as Bayes
estimates clearly if k=1 and & = 1 maximum likelihood estimates will be the same as
the joint posterior mode.

Now the marginal posteriors of any parameter is obtained by integrating the joint
posterior distribution with respect to the other parameters, so the marginal posterior
probability density functions of 8 is given as

(0" +k=1) [ 0" V(D" P =OT 15" [exp(~0xP)|mPap,

p(6lp.x) == ” ,

Similarly integrating the joint posterior distribution with respect to the p, we get the
marginal posterior probability density functions of p is given as

(4.6)

g0 = [ p®" kIR (PDe0X21 %) [exp(-6x7)" P ap,

p(8lp.x) = P ' (4.7)

It is well known that under a squared error function the Bayes estimator of a parameter
will be its posterior expectation and posterior variance will be the Bayes risk. To obtain
the posterior mean and variance a numerical integration is required.

Then the posterior mean and variance of the scale and shape parameter (6,p) are
expressed as follows

0 = E(6|p, x);
0=1["J" 0P p@ DI, x}P*)e—@Zf’;xi”} [exp(—6xP)] ™27 dpde; (4.8)
Now the variance of 8 of the scale parameter 6 is given by

v(8lp,x) = [ (62 — 6)260" - Dp@"+k-D(Y, xPV-0S15PY [exp(—0x7)]" 2D dpde  (4.9)
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Similarly we can find the posterior mean and variance of the shape parameter p as
p=Jy Iy 0 DpC IR, xP Ve 0SEx) [exp(—0x7)]| "7 dOdp; (4.10)

Var (p|6,x) = [° [ — p)? 6@ ~Dp@ kDY xPDe-03Lix"y [exp(~0xP)] PV dodp; (4.11)

Equations (4.9) to (4.11) are very difficult to evaluate theoretically. A numerical
procedure is needed to solve these equations numerically. R Software is used for the
estimation of the scale and shape parameter(6, p).

5. Numerical Results

The numerical simulations have been carried out by comparing the performances of the
MLE’s and the Bayes estimators. The different choices of n, r and T values have been
taken for simulation. It is clear that, there are no complete solutions for obtaining new
estimators either in both non-Bayesian and Bayesian approaches. So we have taken
random data, and applied numerical integration for the solution through computer
programming. We have illustrated the results numerically which are obtained in the
previous sections like the maximum likelihood estimators and their variance-covariance
matrix for the unknown parameters of Weibull distribution under hybrid censored
sample obtained with following procedures

1. The random sample of size 10, 20, 30, 40and 50 are generated from Weibull
distribution by Monte Carlo random number generation method. The selected
values of the true parameters are 8= (3, 5) and p = (2.5, 3.5).

2. For hybrid censored sample, we have chosen the censoring time T and the number
of failed items r.

3. The equations (3.4) and (3.5) are solved in order to obtain the maximum likelihood
estimators @ and p of 6 and p respectively.

4. The variance covariance matrix of (8 ,p) is obtained by using egn. (3.5).

The results are presented in Table (1) .From Table (1), we note that as we increase the
sample size the standard deviation starts decreasing, similarly the maximum likelihood
estimator of the parameters has the same behaviors when the sample size becomes large
and the properties of two parameters fand p at (2.5 and 3.5) respectively is better than
the other values. To obtain the posterior mean and the posterior variance of 8 and p, the
numerical procedures is described as follow:

Step 1 and 2 is repeated as above, then

2: For hybrid censored sample, we have chosen the censoring time T’ and the number
of failed items r’.

3: The equations (4.8) and (4.9) are solved to obtain non linear Bayes estimator and its
posterior variance of the scale and shape parameter (6, p).

5: The posterior mean and the posterior variance of the estimators for the shape and
scale parameter (68, p) for all sample size and for sets of parameters were obtained.
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Numerical results are summarized in Table (2), it is noted that the posterior mean
decreases when n is increasing. Similarly, the posterior variance of the parameters
has the same behaviors when the sample size becomes large.

ssss For the value of D*, we have to take decision as
H terminate the experiment at min (T,X¢) ).

H%1JfH=mo_

0,if H=T ; and k: The prior

Table 1: The maximum likelihood Estimator, the standard deviation and covariance
of the Weibull distribution with two parameter under hybrid censored sample when

(6 =2.5,p=235)
n|r|T/|H 6 p Cov(0.,p)
MLE S.D. MLE S.D. '
05 0 | 3.4824 | 1.3045 | 3.5145 | 1.3409 | 30.3834
' 1 ]3.9811 | 1.9705 | 4.4062 | 1.2235
10 5 10 1| 3.2515 | 1.3682 | 3.7270 | 1.3092 9.3277
' 0 | 25197 | 1.1177 | 2.6503 | 1.9687
05 0 | 2.1638 | 1.0369 | 2.2837 | 1.8507 | 27.9243
' 0| 24211 | 1.1438 | 2.6012 | 1.9098
20 | 10 10 1]1.9782 | 0.9496 | 2.1778 | 0.9999 | 25.7656
' 1 ]1.6297 | 1.9988 | 1.7024 | 1.0689
05 0 | 1.4290 | 2.5402 | 1.4785 | 2.3713 | 22.0097
' 113102 | 2.6347 | 1.5573 | 2.2051
30120110 1] 1.1966 | 3.0196 | 1.2907 | 1.7087 | 20.0079
0 | 1.1199 | 3.0312 | 1.3328 | 1.4849
05 110715 | 3.7478 | 1.1500 | 1.3203 | 20.0079
' 1 |1.0708 | 3.7199 | 1.4505 | 1.2196
40 | 30 10 1 | 1.0551 | 3.3374 | 1.4040 | 1.2196 | 20.0079
' 0 | 1.0412 | 3.1931 | 1.3357 | 1.1286

Table 1(continued): The maximum likelihood Estimator, the standard deviation and
covariance of the Weibull distribution with two parameter under hybrid censored
sample when (6 =3, p=14)

~

n|r | T/|H 0 p Cov(8,p)
MLE S.D. MLE S.D.
1.7221 | 2.9368 | 3.1010 | 2.2290 9.1721
1.6301 | 2.9159 | 3.1311 | 2.3897
1.6150 | 2.9014 | 2.6216 | 1.9925 | 16.0421
1.5452 | 2.9009 | 2.7201 | 1.9434
15157 | 2.8632 | 2.2884 | 1.8363 | 24.7854
1.4638 | 2.8415 | 2.3656 | 1.1358

0.5

10| 5 | 1.0

0.5

O Ok |k O
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20 |10 | 1.0 | 1 | 1.4239 | 2.7233 | 2.0050 | 1.0660 | 30.7062
1| 13860 | 2.7017 | 2.0633 | 1.0822

05| 0| 1.3389 | 2.6927 | 1.7645 | 1.0874 | 32.8731
1| 13121 | 2.6466 | 1.8069 | 1.0705

30 {20 | 1.0 | 1 | 1.2603 | 2.6424 | 1.5602 | 1.1058 | 22.2539
0 | 1.2421 | 2.5820 | 1.5897 | 1.1573

05| 1| 11875 | 2.5530 | 1.3862 | 1.5252 | 19.7964
111760 | 2.5052 | 1.4054 | 1.6696

40 |30 | 1.0 | 1 | 1.1202 | 2.4650 | 1.2376 | 1.7484 | 11.4555
0 | 1.1137 | 2.4346 | 1.2487 | 1.0086

Table 1(continued): The maximum likelihood Estimator, the standard deviation and
covariance of Weibull distribution with two parameter under hybrid censored sample
when (8 = 3.5, p=4.5)

n|r | T/|H 0 p Cov(8 ,p)
MLE S.D. MLE S.D.

05| 0 | 20625 | 2.3290 | 7.4247 | 3.2258 13.2442
0 | 19852 | 2.2897 | 6.2610 | 3.0956

10| 5 |10 | 1 | 19922 | 22925 | 7.1729 | 3.3960 24.5450
0 | 1.9667 | 2.2434 | 5.1460 | 2.8817

05| 0 | 19272 | 2.1363 | 5.0463 | 2.5227 25.7779
0 | 1.9018 | 2.0358 | 4.1047 | 1.9619

20110 | 1.0 | 1 | 1.8843 | 1.0660 | 3.6978 | 1.5699 35.9740
1| 1.7993 | 1.0002 | 3.2509 | 1.5781

05| 0| 16912 | 0.9999 | 2.8028 | 1.1017 34.9265
1| 1.6713 | 0.9999 | 2.5888 | 1.0169

30 (20 | 1.0 | 1 | 1.6282 | 0.9998 | 2.1870 | 0.9946 23.5734
0 | 1.5303 | 0.9973 | 2.0849 | 0.8633

05| 1| 15186 | 0.9952 | 1.7489 | 0.7239 12.5127
1] 1.3866 | 0.7696 | 1.7015 | 0.6966

40 | 30 | 1.0 | 1 | 1.4134 | 0.9484 | 1.4277 | 0.5451 11.7491
0 | 1.2476 | 0.7086 | 1.4076 | 0.5206

Table 1(continued): The maximum likelihood Estimator, the standard deviation and
covariance of Weibull distribution with two parameter under hybrid censored sample
when (8 = 3.5, p=4.5)

~

n|r | T|H 0 p Cov(8 ,p)
MLE S.D. MLE S.D.
6.3230 | 1.5380 | 5.7167 | 2.1952 13.0083

0.5 5.5561 | 1.3152 | 5.6993 | 2.1863
10| 5 |10 5.5173 | 1.4325 | 4.8784 | 1.9663 | 22.7741

4.8450 | 1.2747 | 3.7624 | 1.8905
44352 | 1.3221 | 4.3947 | 1.7594 | 22.9455
3.9359 | 1.2211 | 4.9769 | 2.0930

O OO |k O

0.5
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20110 | 1.0 | 1 | 3.8882 | 1.2121 | 3.9922 | 1.9770 | 32.1153
1 | 25487 | 1.5880 | 3.0878 | 1.8938

0 | 2.8643 | 1.6602 | 3.3050 | 1.5287 | 21.7955
05| 1] 23707 | 1.2887 | 4.9214 | 2.0928

30120 10| 1 | 22212 | 1.1067 | 2.6056 | 1.1363 | 19.5155
0 | 21638 | 1.0166 | 3.3589 | 1.7901

1| 2.0163 | 0.9148 | 2.0237 | 1.0070 | 16.2796
0.5 1 ] 19909 | 0.9442 | 2.3548 | 1.2057

40 | 30 1| 1.5523 | 1.8311 | 1.5782 | 1.6967 | 11.0848
10] 0 ] 15416 | 1.8735 | 1.7123 | 1.8916

197

Table 2: The posterior mean and posterior variance of the Weibull distribution under
hybrid censored sample when (6 = 2.5, p = 3.5, k=2)

n|r | TIH 0
posterior | posterior | posterior | posterior
mean variance mean variance
05| 0 1.0190 2.0064 2.0341 1.3151
10 | 5 0 1.4956 2.5633 2.0322 1.8718
10]1 1.2199 2.1550 1.8594 1.5932
0 2.0642 0.9024 1.8588 2.5400
05| 0 1.4305 2.2570 1.7047 1.8614
20 | 10 0 2.8129 1.3091 1.7049 3.3141
10]1 1.6148 2.8610 1.5675 2.0445
1 3.5482 1.9576 1.5681 3.8708
050 1.7229 1.7437 1.4454 2.0692
30 | 20 1 3.7965 2.0467 1.4461 3.7949
1 1.7168 2.0088 1.3363 1.9240
10| 0 3.3309 1.6636 1.3370 13.1500
05| 1 1.5988 1.6251 1.2385 1.6708
1 2.5491 1.6657 1.2391 2.3834
40 130|101 1.4097 1.3126 1.1507 1.3897
0 1.8532 1.5572 1.1511 1.7530

Table 2(continued): The posterior mean and posterior variance of the Weibull

distribution under hybrid censored sample when (6 = 3, p = 4, k=2)

n(r |T |H 7] p
posterior | posterior posterior | posterior
mean variance mean variance

5105|0 4.1338 1.2290 10.6634 1.2290

10 0 4.2152 2.3897 15.7899 2.3897

71101 3.3754 1.1925 8.2480 1.1925

0 3.4296 2.2434 10.9033 2.2434

10|105] 0 2.7926 1.1363 5.9877 1.1363

20 0 2.8267 2.0358 7.1931 2.0358
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151101 2.3398 1.0660 4.3274 1.0660

1 2.3637 1.8022 4.8721 1.8022

20105| 0 1.9835 0.9874 3.1901 0.9874

30 1 1.9991 1.5705 3.4435 1.5705
25 1 1.6996 0.9058 2.4145 0.9058
10]0 1.7095 1.3573 2.5350 1.3573

1 1.4704 0.8252 1.8756 0.8252

30]05|1 1.4764 1.1696 1.9325 1.1696

40 1 1.2833 0.7484 1.4915 0.7484
35[10]0 1.2865 1.0086 1.5165 1.0086

Table 2(continued): The posterior mean and posterior variance of the Weibull
distribution under hybrid censored sample when (6 = 3.5, p =4.5k=2)

nir | T]|H 0 p
posterior posterior posterior posterior
mean variance mean variance

5 0 0.8117 1.6881 1.4346 0.8679
05| 1 0.8425 1.8349 1.3322 1.3917

10| 7 1 1.1671 0.9693 1.3797 0.8368
10| 0 1.2624 0.8121 1.3000 1.3159
10|/05]| 0 1.7577 0.7491 1.3262 0.8014
20 0 2.0374 1.0066 1.2656 1.2309
15110 1 2.7245 1.3280 1.2743 0.7632

1 3.5333 1.8588 1.2295 1.1415

20105| 0 3.9178 2.0061 1.2241 0.7233
30 1 5.9265 2.7294 1.1922 1.0517
251101 4.3580 2.1839 1.1757 0.6827

0 6.7585 3.0991 1.541 0.9466

05| 1 3.4359 1.9915 1.1290 0.6424

40 | 30 1 45310 2.2683 1.1155 0.8820
101 2.2727 1.0091 1.0842 0.6030

35 0 2.5843 1.0974 1.0768 0.8052

Table 2(continued): The posterior mean and posterior variance of the Weibull
distribution under hybrid censored sample when (6 = 4.5, p = 5)

n|r | T]|H 0 P

posterior | posterior | posterior | posterior
mean variance mean variance

6 | 05| 0| 52147 1.2687 8.2480 4.2354

10 1| 409517 1.2312 6.2354 3.1002

8 | 10| 1| 4.2370 1.0121 5.2781 2.0090

0 | 3.9604 0.9991 4.6697 2.0074

141 05| 0 | 25215 1.3280 3.5077 1.9125

20 0| 23719 1.3988 2.5975 1.4998




Bayesian Estimation of the parameter of Weibull... 199

181101 1.9683 2.1294 1.5217 1.8210

1 1.5486 2.5839 1.4573 1.7989

221050 1.4001 2.5615 1.2672 1.6658

30 1 1.3368 2.7683 1.1956 1.4412
261101 1.2927 2.9347 1.8756 1.8991

0 1.2350 2.9170 1.9626 1.9995

30051 1.1817 3.0527 1.4915 1.6541

1 1.1257 3.1966 1.5165 1.5976
4036|101 1.1500 3.0070 1.2105 1.7421
0 1.1325 3.5650 1.2192 1.8897

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

Basu and Ebrahimi, N., (1991): Bayesian approach to life testing and reliability
estimation using asymmetric loss function, Journal of Statistical Planning and
Inference, Volume 29, Issues 1-2, September—October 1991, Pages 21-31.
Chen and Bhattacharya (1988): Exact confidence bounds for an exponential
parameter under hybrid censoring. Communications in Statistics - Theory and
Methods 17, 1857-1870.

Childs et.al. (2003): Exact inference based on type-I and type-11 hybrid censored
samples from the exponential distribution. Annals of the Institute of Statistical
Mathematicsb5, 319-330.

Draper and Guttmann (1987): Bayesian analysis of hybrid life tests with
exponential failure times. Annals of the Institute of Statistical Mathematics39,
219- 225.

Ebrahimi, N., (1986): Estimating the parameter of an exponential distribution
from hybrid life test. Journal of Statistical Planning and Inference, Volume 14,
Issues 2—3, 1986, Pages 255-261

Ebrahimi, N., (1992): Prediction intervals for future failures in exponential
distribution under hybrid censoring. IEEE Transactions on Reliability 41,127 -
132.Epstein (1954):

Epstein (1960): Estimation from life-test data, Technometrics, VVol. 2,447 - 454,
Epstein (1954): Truncated life tests in the exponential case. Annals of
Mathematical Statistics, 25, 555 - 564.

Fairbanks et al. (1982): A confidence interval for an exponential parameter from
a hybrid life test. Journal of the American Statistical Association 77, 137 - 140.
Gupta and Kundu (1998): Hybrid censoring schemes with exponential failure
distribution. Communications in Statistics - Theory and Methods 27, 3065 -
3083.Inference 23, 255 - 261.

Jeong et al (1996): Development of (r, T) hybrid sampling plans for exponential
lifetime distributions. Journal of Applied Statistics 23, 601 - 607.

Johnson et al. (1994): Continuous univariate distributions. VVol. 1, Wiley Series
in Probability and Mathematical Statistics: Applied Probability and Statistics
(2nd ed.), New York: John Wiley & Sons, ISBN 978-0-471-58495-7,
MR1299979



200 Uma Srivastava and Harish Kumar

[13] Kundu (2007): On hybrid censored Weibull distribution. Journal of Statistical
Planning and Inference, 2127-2142.

[14] Weibull, W. (1939): “A statistical theory of the strength of materials." Ing. Vele.
Ak. H.151: 1-45.

[15] Weibull, W. (1951): "A Statistical distribution function of wide applicability
J.Appl.Mech.18, pp 293-297.



Bayesian Estimation of the parameter of Weibull... 201



