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Abstract 

In this paper we reformulate Samuelson’s deterministic, closed-economy 

multiplier-accelerator model as a nonhomogeneous second-order recurrence 

relation in an open economy. We first derive a stochastic open-economy 

multiplier-accelerator model and show the existence and stability of the time 

path of the open-economy accelerator-multiplier. Most importantly, this study 

establishes a link between the stability of the multiplier-accelerator process and 

the stationarity of the system and proves that the oscillations of the multiplier-

accelerator process are stable if the variables in the second-order recurrence 

equation are stationary.  In order to give some empirical content to our model, 

we have estimated the structural equations using U.S. quarterly data (1947:I ~ 

2019:I) from the perspective of cointegration. We have found that the U.S. 

open-economy multiplier-accelerator exhibits a dampening oscillating process 

when the variables in the system are of the same order of integration and are 

cointegrated among them. 
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1. INTRODUCTION 

The introduction of the multiplier-accelerator model by Samuelson in 1939 brought 

business cycle theory into prominence. The principle of acceleration and the Keynesian 

multiplier were incorporated into a discrete-time model that generates endogenous 

business cycles. This gave an early look at the causal relationship for contractions and 

expansions of an economy without the need to introduce exogenous stimulating factors. 

Since then, researchers have made great strides in the expansion of the multiplier-

accelerator model by incorporating policy variables into the model whilst keeping the 

structural assumptions minimal.  

Within the tradition of the original multiplier-accelerator model, however, it has been 

common in the literature to assume a two- or three-sector model in a deterministic 

setting as opposed to a four-sector model in a stochastic framework with the foreign 

sector incorporated. With the U.S. economy being increasingly interrelated with the rest 

of the world, the investigation of the multiplier-accelerator model with foreign trade 

excluded renders the system of the national income identity incomplete.   

Furthermore, the existing literature lacks some empirical content on the link between 

the stability of the oscillating process of the multiplier-accelerator interaction and the 

stationarity of variables in the system. We have witnessed sophisticated advances in 

time series analysis of business cycles over the past several decades, which has made it 

necessary to recast the multiplier-accelerator model in light of new developments in 

time series analysis of business cycles.   

The purpose of this paper is two-fold:  First, this paper aims to derive a stochastic open-

economy multiplier-accelerator model and to show the existence and stability of the 

oscillating time path of the system. To the best of our knowledge, this study is the first 

attempt to derive a systematic link between the stability of the multiplier-accelerator 

time path as an oscillating process and the stationarity of the system.  

This paper also aims to provide empirical implications for the oscillating process of the 

multiplier-accelerator within the context of cointegration. We estimate the structural 

equations to investigate whether the business cycles of the U.S. economy that exhibit a 

dampening oscillating process are consistent with a cointegrating relation among 

variables. When the variables in the structural equations are cointegrated, this indicates 

that there is a long-run equilibrium relationship among the variables. Although in the 

short run there could be an equilibrium error in the system, which could be a source of 

short-run oscillations, cointegration among variables is likely to lead to the convergence 

of a time path with dampening oscillations in the long run. 

In order to estimate the model, we have used U.S. quarterly data spanning from 

1947:Q1 to 2019:Q1. We have demonstrated that the conditions for the existence, 

stability, and stationarity of the time path for the U.S. economy are empirically 

supported: the time path of the multiplier-accelerator process was oscillating and 

converged over time. Interestingly, the convergence conditions are satisfied when the 

variables in the system are of the same order of integration and are cointegrated among 

them. Our open-economy model of the multiplier-accelerator further indicates that the 
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size of the accelerator coefficient becomes smaller in an economy where the variables 

in the system are cointegrated. This finding implies that the amplitude of an oscillating 

business cycle is more or less mitigated in an economy characterized with cointegration. 

The paper is organized as follows:  Chapter 2 reviews the literature on the multiplier-

accelerator models. In chapter 3, we address the mathematical foundations of 

deterministic and stochastic recursive relations. Chapter 4 demonstrates the existence 

of the multiplier-accelerator time path as an oscillating process and derives sufficient 

conditions for the stability and stationarity of the relevant time path in an open-economy.  

Chapter 5 discusses the estimation of the multiplier-accelerator model in the context of 

unit roots and cointegration and presents the general solution of the model that is 

consistent with our empirical estimation results. Chapter 6 provides concluding remarks. 

 

2.  A REVIEW OF THE LITERATURE  

Modern business cycle theory has its origin in Samuelson’s (1939) multiplier-

accelerator model. By introducing the interaction between the accelerator and the 

Keynesian multiplier, Samuelson was able to derive endogenous fluctuations in a 

deterministic discrete-time three-sector economy. He formulated the investment 

function primarily as an interaction of the capital-output ratio with the first difference 

of consumption to achieve the desired level of capital stock. In the Samuelson model, 

economic fluctuations are associated with the deterministic nonhomogeneous second-

order linear recurrence relation with constant coefficients yielding complex conjugate 

roots for its corresponding characteristic polynomial. The stability of the time path for 

the business cycles is contingent on the sufficient condition that the modulus of the 

complex conjugate roots be less than unity.  

Samuelson’s multiplier-accelerator model has been further refined and extended in 

diverse ways with minimal assumptions employed and the adaptability of the model 

tailored to policy tools.  In the literature concerning the multiplier-accelerator 

interactions, there are two main differing assumptions made on the investment function. 

This reformulation was due to discrepancies in the upper and lower bounds of possible 

investment behavior.  

Hicks (1950), in his study of the multiplier-accelerator model, deduced that the 

accelerator-induced investment must have upper and lower bounds. These upper and 

lower bounds are primarily due to the inconsistencies found during the expansion and 

contraction phases of the endogenous oscillations. In the disinvestment phase, capital 

is used much faster than the depreciation rate, while in the investment phase capital is 

used at abnormally high rates. Hicks never materialized his proposed floor and ceiling 

functions. A later study by Puu et al. (2005), aiming to bridge growth theory and 

business cycle theory, formulated the maximum function on investment and linked the 

minimum function to national income.  

In his reformulation of the multiplier-accelerator model, Hicks also postulated the 

investment function as a mechanism between the accelerator and the first difference of 

the lag of national income, as opposed to the capital-output ratio with the first difference 
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of consumption. This yielded inhibited interactions between the marginal propensity to 

consume with the capital-output ratio. The resulting model is a second order 

nonhomogeneous deterministic linear recurrence relation with constant coefficients and 

endogenous cycles, but the sufficient conditions for stability differ from the original 

Samuelson model. Thus, we have encountered two different versions of the multiplier-

accelerator model based on the use of Samuelson’s or Hick’s assumptions.  

With a basic framework solidified in a three-sector economy, some extensions 

encompassing policy tools have become increasingly important to give a more complete 

picture of national income dynamics. One of such efforts to include monetary policy 

was driven by a motivation to dispel the argument against discretionary monetary 

policy. For example, Lovell and Prescott (1968) introduced money and interest rates 

into the multiplier-accelerator model of Samuelson with Hicks’ (1937) static IS-LM 

apparatus. Interest rates were proposed to be negatively related to investment, and a 

portion of the first difference on the lag of national income is denoted as the policy 

coefficient that corresponds to fluctuations in money. They argue that it is quite possible 

that the economy would be subject to even greater instability if discretionary monetary 

policy were replaced by the simple rule of keeping the money supply at a constant rate 

in both boom and recession phases.  

Kendrick and Shoukry (2013) isolated the effects of fiscal policy on the multiplier-

accelerator model and found quarterly fiscal adjustments to be optimal in the 

stabilization of endogenous cycles. This was carried out through implementation of 

Hick’s assumptions and specifications regarding taxes as well as government spending. 

The model was then converted to state space in which a Monte Carlo experiment was 

employed. The incorporation of fiscal or monetary policy drastically changes the 

stability conditions of the multiplier-accelerator model.  

Karpetis and Varelas (2012) developed a discrete-time multiplier-accelerator model in 

which the money market and a balanced government budget constraint are incorporated 

into Samuelson’s model. The modified model has proved to be less stable, and the 

evolution of income around its equilibrium is more likely to exhibit a sinusoidal way of 

movement. They have concluded that the inclusion of both policy tools into the 

Samuelson model leads the oscillations in the time path of national income to be less 

stable 

Bohner et al. (2010) derived a linear second-order dynamic equation which describes 

the multiplier-accelerator model on time scales. They provided the general form of the 

dynamic equation, which includes both taxes and foreign trade and examined four 

special cases of the general multiplier-accelerator model:  (1) Samuelson’s basic 

multiplier-accelerator model; (2) Hicks’ extension of the basic multiplier-accelerator 

model; (3) an extended model with taxes; and (4) an extended model with foreign trade. 

For each of these models, they presented the dynamic equation in both expanded and 

self-adjoint form and gave examples of particular time scales.  

Finally, Chow (1990) has conducted an empirical investigation of Samuelson’s basic 

multiplier-accelerator model in the light of cointegration. In his 1968 paper, Chow 

investigated the acceleration principle and the nature of business cycles with no 
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government and foreign sectors. He reexamined his previous work with emphasis 

placed on the stationarity of variables under consideration and cointegration among the 

variables. He used annual and quarterly data from 1947 to 1989. He has found the 

existence of a long-run equilibrium relation, i.e., cointegrating relation between 

consumption and income, which was ruled out in his previous study and made the 

following remark: 

“I happened to be correct in imposing a unit root in the multiplier-accelerator model, 

but I was incorrect in placing it entirely in the consumption function. I did not know 

how to impose one unit root in a model of three equations, to be shared by them.” 

One of the main thrusts of this paper is to fill the gap in the literature by linking the 

time path stability of the accelerator-multiplier model with the stationarity of the system 

in a stochastic open economy.  

 

3.  THEORETICAL FOUNDATIONS OF DETERMINISTIC AND 

 STOCHASTIC RECURSIVE RELATIONS 

This study formulates the multiplier-accelerator model as a nonhomogeneous second-

order recurrence relation in the stochastic open-economy framework. Thus, it is 

essential to develop some mathematical formulations needed for analyzing an 

oscillating process that arises from stochastic nonhomogeneous second-order linear 

recurrence relations with constant coefficients.   

 

3.1 Classification of Recurrence Relations 

We begin by defining stochastic and deterministic recurrences and then proceed to 

define sub-classifications of recurrences.  

Definition 3.1.1: A stochastic recurrence relation is a relation that recursively defines a 

sequence for a random variable 𝑌𝑡  such that given the mapping 𝑓: ℕ × 𝑋𝑛 × ℝ → 𝑋 

and the set of initial conditions (𝑌0, … , 𝑌𝑛)𝜖𝑋, we have 

 𝑌𝑡 = 𝑓(𝑡, 𝑌𝑡−1, … . , 𝑌𝑡−𝑛, 𝜀𝑡) for 𝑡 > 𝑛                    (3.1) 

where 𝜀𝑡 is a random disturbance term that is the mapping 𝜀𝑡: Ω → ℝ, with  Ω as the 

sample space. Furthermore, we assume that 𝜀𝑡~𝑁(0, 𝜎2) and that 𝑋 = ℝ.  

Definition 3.1.2: A deterministic recurrence relation is a relation that recursively defines 

a sequence for the variable 𝑌𝑡 such that given the mapping 𝑓: ℕ × ℝ𝑛 → ℝ and the set 

of initial conditions (𝑌0, … , 𝑌𝑛)𝜖ℝ, we have: 

𝑌𝑡 = 𝑓(𝑡, 𝑌𝑡−1, … . , 𝑌𝑡−𝑛) for 𝑡 > 𝑛                     (3.2) 

Observe that a deterministic recurrence relation is a degenerate case of a stochastic 

recurrence relation.  
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Definition 3.1.3: A stochastic recurrence relation (3.1) is linear if it can be written in 

the form: 

𝑃0(𝑡)𝑌𝑡 + 𝑃1(𝑡)𝑌𝑡−1 + ⋯ + 𝑃𝑛−1(𝑡)𝑌𝑡−𝑛−1 + 𝑃𝑛(𝑡)𝑌𝑡−𝑛 = 𝐺(𝑡) + 𝜀𝑡        (3.3)    

with the force function 𝐺(𝑡) as the mapping 𝐺: ℕ → ℝ. Additionally, we note that the 

set of sequences {𝑃(𝑡)}0
𝑛 represents the mappings 𝑃𝑛: ℕ → ℝ that are linear in t, but are 

disjoint to 𝜀𝑡 and the set of sequences {𝑌}𝑡−𝑛
𝑡 .  

Definition 3.1.4: A linear stochastic recurrence relation (3.3) has constant coefficients 

if the set of sequences {𝑃(𝑡)}0
𝑛 and the force function 𝐺(𝑡) are constants such that: 

𝑃0𝑌𝑡 + 𝑃1𝑌𝑡−1 + ⋯ + 𝑃𝑛−1𝑌𝑡−𝑛−1 + 𝑃𝑛𝑌𝑡−𝑛 = 𝐺 + 𝜀𝑡   with 𝑃0 ≠ 0.             (3.4) 

Definitions 3.1.3 through 3.1.4 follow for deterministic reoccurrences as well. 

 

3.2 Solutions of Linear Recurrence Relations with Constant Coefficients 

We now aim to classify the family of solutions for recurrence relations. This will then 

be followed by a methodology showing when such solutions exist for the linear 

recurrence with constant coefficients of order two.  

Definition 3.2.1: The sequence 𝑌ℎ: ℕ → ℝ is a homogenous solution to (3.3), if  𝑌ℎ(𝑡) 

solves (3.3) when ∀𝑡 ∈ ℕ(𝐺(𝑡) = 0 =  𝜀𝑡).    

Definition 3.2.2: The sequence 𝑌𝑝: ℕ → ℝ is a particular solution of (3.3), if  𝑌𝑝(𝑡) 

solves (3.3) for ∀𝑡 ∈ ℕ(𝐺(𝑡) ∧  𝜀𝑡).    

Definition 3.2.3: The sequence 𝑌𝑔: ℕ → ℝ  is the general solution to (3.3), if 𝑌𝑔(𝑡) 

solves (3.3) for both the homogenous and nonhomogeneous cases such that 𝑌𝑔(𝑡) =

𝑌ℎ(𝑡) + 𝑌𝑝(𝑡). 

Now that we have classified the different solutions to a recurrence relation we now 

proceed to proving their existence for the second-order case exhibiting an oscillating 

process. We will make use of the characteristic polynomial of the recurrence relation 

for the homogenous solution. Then we will use the method of undetermined coefficients 

to determine the particular solution. Thus, let us now consider the standardized 

stochastic nonhomogeneous second-order linear recurrence relation with constant 

coefficients: 

                       𝑌𝑡 + 𝑃1̃𝑌𝑡−1 + 𝑃2̃𝑌𝑡−2 = 𝐺̃ + 𝜀𝑡̃                             (3.5) 

       where   𝑃1̃ = 𝑃1/𝑃0, 𝑃2̃ = 𝑃2/𝑃0, 𝐺̃ =
𝐺

𝑃0
, 𝜀𝑡̃ =

𝜀𝑡

𝑃0
. 
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Proposition 1: Suppose 𝜆′  and 𝜆′′  are homogenous solutions to (3.5), then (𝑐1𝜆′ +
𝑐2𝜆′′) is also a homogenous solution to (3.12) for 𝑐1, 𝑐2 arbitrary. 

Proof: Suppose homogenous solutions 𝜆′ and 𝜆′′ for (3.5) such that 

                        𝜆t
′ + 𝑃1̃𝜆t−1

′ + 𝑃2̃𝜆𝑡−2
′ = 0                              (3.6a) 

                       𝜆t
′′ + 𝑃1̃𝜆t−1

′′ + 𝑃2̃𝜆𝑡−2
′′ = 0                             (3.6b) 

Now let 𝑐1, 𝑐2  be arbitrary. We multiply (3.6a) by 𝑐1  and (3.6b) by 𝑐2 . Clearly the 

resulting equations will still be singular. Now we sum the results to form: 

               𝑐1(𝜆t
′ + 𝑃1̃𝜆t−1

′ + 𝑃2̃𝜆𝑡−2
′ ) + 𝑐2(𝜆t

′′ + 𝑃1̃𝜆t−1
′′ + 𝑃2̃𝜆𝑡−2

′′ ) = 0           (3.7) 

where (3.7) is singular and holds since 𝑐1, 𝑐2 are arbitrary.  

Lemma 1: There exists a homogenous solution to (3.5) exhibiting an oscillating process. 

Proof:  We utilize proposition 1 and infer that the second-order case will be of form: 

                          𝑌ℎ(𝑡) = 𝑐1(𝜆1)𝑡 + 𝑐2(𝜆2)𝑡                            (3.8) 

where 𝜆1 and 𝜆2 are roots of the characteristic polynomial for the recurrence relation. 

Let us assume the homogenous recurrence of (3.5) shifted forward two periods: 

                           𝑌𝑡+2 + 𝑃1̃𝑌𝑡+1 + 𝑃2̃𝑌𝑡 = 0                            (3.9) 

where we let 𝑌𝑡+𝑛 = 𝜆𝑛 such that (3.9) can now be restated as 

                           𝑐ℎ𝑎𝑟(𝜆) = 𝜆2 + 𝑃1̃𝜆 + 𝑃2̃ = 0                      (3.10)  

where 𝑐ℎ𝑎𝑟(𝜆) is the characteristic polynomial whose roots solve for the singular case 

of (3.5). Solving for (3.9) via the quadratic equation produces the roots:  

                             −
𝑃1̃

2
±

√𝑃1̃
2

−4𝑃2̃

2
                             (3.11)  

Thus, the homogenous solution of (3.5) will take different forms contingent on the 

magnitude of 𝑃1 compared to √4𝑃0𝑃2. Since we are interested only in a homogenous 

solution exhibiting an oscillating process, we consider only the case yielding complex 

conjugate roots. Consider the case of 𝑃1 < √4𝑃0𝑃2, which results in a pair of complex 

conjugate roots with value 𝜆1 = −
𝑃1̃

2
+

√𝑃1̃
2

−4𝑃2̃

2
𝑖 and 𝜆2 = −

𝑃1̃

2
−

√𝑃1̃
2

−4𝑃2̃

2
𝑖. It then 

follows that 
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 𝑌ℎ(𝑡) = 𝑘1 (−
𝑃1̃

2
+

√𝑃1̃
2

−4𝑃2̃

2
𝑖)

𝑡

+ 𝑘2 (−
𝑃1̃

2
−

√𝑃1̃
2

−4𝑃2̃

2
𝑖)

𝑡

      (3.12a)  

                     = 𝑘1[𝑟(cos ∅ + 𝑖 sin ∅)]𝑡 + 𝑘2[𝑟(cos ∅ − 𝑖 sin ∅)]𝑡  

             = 𝑘1𝑟𝑡(cos ∅𝑡 + 𝑖 sin ∅𝑡) + 𝑘2𝑟𝑡(cos ∅𝑡 − 𝑖 sin ∅𝑡)                    (3.12b) 

Equation (3.12b) results from the use of the polar form of a complex number and De 

Moivre’s theorem. We note that 𝑘1, 𝑘2  are arbitrary constants and 𝑟 = |𝜆1𝜆2| is the 

modulus of the complex conjugate roots. Notice also that (3.12b) is a complex-valued 

homogenous solution; we need a real-valued homogenous solution. We then use 

proposition 1 once more to partition (3.12b) into its real and imaginary components: 

                           𝑌ℎ𝑅𝑒
(𝑡) = 𝑘1𝑟𝑡 cos ∅𝑡 + 𝑘2𝑟𝑡 cos ∅𝑡               

                                             = 𝑐1𝑟𝑡 cos ∅𝑡                                                        (3.13a) 

                           𝑌ℎ𝐼𝑚
(𝑡) = 𝑘1𝑟𝑡𝑖 sin ∅𝑡 − 𝑘2𝑟𝑡𝑖 sin ∅𝑡              

                                            = 𝑐2𝑟𝑡 sin ∅𝑡                            (3.13b) 

Now summing (3.13a) and (3.13b) together gives rise to 

                             𝑌ℎ(𝑡) = 𝑌ℎ𝑅𝑒
(𝑡) + 𝑌ℎ𝐼𝑚

(𝑡)  

                                       = 𝑐1𝑟𝑡 cos ∅𝑡 + 𝑐2𝑟𝑡 sin ∅𝑡                  (3.14) 

 where the homogenous solution (3.14) is as required and ∅ = tan−1 𝐼𝑚(𝜆1)

𝑅𝑒(𝜆2)
=

2𝜋

𝐿
 is the 

frequency of the oscillations. The results then follow.  

Lemma 4: There exists a particular solution to (3.5) when it exhibits an oscillating 

process. 

Proof: Suppose (3.5), we will make use of the method of undetermined coefficients. 

Let  𝑌𝑡 = 𝑌𝑡−1 = 𝑌𝑡−2 = 𝐴 such that (3.5) can be restated as: 

 𝐺̃ + 𝜀𝑡̃ = 𝐴 + 𝑃1̃𝐴 + 𝑃2̃𝐴                                    (3.15a) 

                              → 𝐴 =
𝐺̃+𝜀𝑡̃

1+𝑃1̃+𝑃2̃
 =

𝐺̃

1+𝑃1̃+𝑃2̃
+ ∑ 𝑞𝑗𝜀𝑡−𝑗̃∞

𝑗=0     

                        → 𝑌𝑝(𝑡) =
𝐺̃

1+𝑃1̃+𝑃2̃
 + ∑ 𝑞𝑗𝜀𝑡−𝑗̃∞

𝑗=0                      (3.15b) 

with ∑ 𝑞𝑗
∞
𝑗=0 =

1

1+𝑃1̃+𝑃2̃
. We now must find the coefficients for the series ∑ 𝑞𝑗𝜀𝑡−𝑗̃∞

𝑗=0 . 
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Plugging the latter into 𝑌𝑡 + 𝑃1̃𝑌𝑡−1 + 𝑃2̃𝑌𝑡−2 = 𝜀𝑡̃ we see that 

      ∑ 𝑞𝑗𝜀𝑡−𝑗̃𝑡
𝑗=0 + 𝑃1̃ ∑ 𝑞𝑖𝜀𝑡−1−𝑗̃𝑡−1

𝑗=0 + 𝑃2̃ ∑ 𝑞𝑗𝜀𝑡−2−𝑗̃𝑡−2
𝑗=0 = 𝜀𝑡̃        (3.16)  

Solving (3.16) when 𝑡 = 0 and 𝑡 = 1 yields initial conditions of 𝑞0 = 1 and 𝑞1 = −𝑃1̃ 

respectively. A further inspection of (3.16) reveals that for 𝑡 ≥ 2 the coefficients can 

be found via 

                               𝑞𝑗 + 𝑃1̃𝑞𝑗−1 + 𝑃2̃𝑞𝑗−2 = 0                   (3.17) 

It follows from lemma 1 that (3.17) has a homogenous solution. Additionally, the 

characteristic polynomial of (3.17) is identical to that of (3.5). We now state the form 

of the homogenous solution with complex conjugate roots as needed. Furthermore we 

solve for uniqueness since initial conditions are known and such identification of this 

solution will be needed in the discussion of stability and stationarity. Given  

that 𝑃1 < √4𝑃0𝑃2 the homogenous solution is of form: 

                            𝑞ℎ(𝑗) = 𝑐1𝑟𝑗 cos ∅𝑗 + 𝑐2𝑟𝑗 sin ∅𝑗                  (3.18) 

Now solving the system when 𝑞ℎ(0) = 1 and 𝑞ℎ(1) = −𝑃1̃ for (3.18) generates the 

unique solution: 

 𝑞𝑐(𝑗) = 𝑟𝑗 cos ∅𝑗 + [
−𝑃1̃−𝑟 cos ∅

𝑟 sin ∅
]𝑟𝑗 sin ∅𝑗                            (3.19) 

 With the coefficients uniquely found for our relevant case, we now substitute  

𝑞𝑐(𝑗) into (3.15b): 

                             𝑌𝑝(𝑡) =
𝐺̃

1+𝑃1̃+𝑃2̃
+ ∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞

𝑗=0                   (3.20) 

Thus the result for a particular solution holds when (3.5) follows an oscillating process.  

Theorem 3.2.2: There exists a general solution to the second-order stochastic 

nonhomogeneous linear recurrence relation with constant coefficients (3.5) that 

exhibits an oscillating process: 

Proof: By lemma 1 and lemma 2 we know homogenous and particular solutions exist 

for (3.5) when it exhibits an oscillating process. Thus by definition 3.2.3 it follows that 

𝑌𝑔(𝑡) = 𝑌ℎ(𝑡) + 𝑌𝑝(𝑡), and the result holds.  

We observe that the general solution to (3.5) is 𝑌𝑔(𝑡) = 𝑌ℎ(𝑡) + 𝑌𝑝(𝑡) . We may 

partition 𝑌𝑝(𝑡) as 𝑌𝑝(𝑡) = 𝑌𝑝1
(𝑡) + 𝑌𝑝2

(𝑡) where 𝑌𝑝1
(𝑡) corresponds to the particular 

solution in regards to the force function and 𝑌𝑝2
(𝑡) as the particular solution with 

respect to the random disturbance term. We then observe that the deterministic 

counterpart to (3.5) has a general solution of 𝑌𝑔(𝑡) = 𝑌ℎ(𝑡) + 𝑌𝑝1
(𝑡). 
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3.3 Stability of Deterministic Recurrence Relations 

After having established the methodology for finding oscillating solutions to second-

order nonhomogeneous linear recurrence relations with constant coefficients in the 

stochastic and deterministic cases, we now turn to the limiting behavior of these 

recurrences. This section will then be devoted to the stability analysis of the 

deterministic case. The following section will address the stationarity of the stochastic 

case and prove that stability implies stationarity under certain conditions. We now focus 

on the standardized deterministic nonhomogeneous second-order linear recurrence 

relation with constant coefficients: 

                       𝑌𝑡 + 𝑃1̃𝑌𝑡−1 + 𝑃2̃𝑌𝑡−2 = 𝐺̃                          (3.21) 

Definition 3.3.1: A deterministic recurrence relation (3.2) is stable, if for an arbitrary 

𝜀 ∈ ℝ++ , there exists a 𝑡𝜖ℕ  such that whenever 𝑡 ≥ 𝑇  we also have that |𝑌𝑔(𝑡) −

𝑌𝑝1
(𝑡)| < 𝜀, where 𝑌𝑝1

(𝑡) is the steady state of the sequence. 

Theorem 3.3.1: Given a deterministic recurrence relation (3.21) with 𝑌𝑔(𝑡)  oscillating, 

we argue that the recurrence is stable at 𝑌𝑝1
(𝑡) if and only if max(|𝜆1|, |𝜆2|) < 1 for the 

characteristic polynomial. 

Proof: →)  Suppose that (3.21) holds with  𝑌𝑔(𝑡)  oscillating and that as 𝑡  becomes 

sufficiently large it must be that |𝑌𝑔(𝑡) − 𝑌𝑝1
(𝑡)| < 𝜀 for 𝜀 ∈ ℝ++. Expanding the latter 

portion of our stability definition reveals that  

                            |𝑌𝑔(𝑡) − 𝑌𝑝1
(𝑡)| < 𝜀                                                              (3.22a)  

                           → |𝑌ℎ(𝑡) + 𝑌𝑝1
(𝑡) − 𝑌𝑝1

(𝑡)| < 𝜀  

        → |𝑌ℎ(𝑡)| < 𝜀                                            (3.22b) 

Eq. (3.22b) amounts to showing that the homogenous solution of the recurrence is 

smaller than an arbitrary 𝜀 ∈ ℝ++. To this end we suppose that max(|𝜆1|, |𝜆2|) ≥ 1 for 

the roots of the recurrence and see that for our case with oscillations this amounts to 

lim
𝑡→∞

𝑌ℎ(𝑡) = lim
𝑡→∞

( 𝑐1𝑟𝑡𝑐𝑜𝑠𝜃𝑡 + 𝑐2𝑟𝑡𝑠𝑖𝑛𝜃𝑡) ≠ 0 , and thus it must be that 

max(|𝜆1|, |𝜆2|) < 1 for  lim
𝑡→∞

𝑌ℎ(𝑡) = 0 due to 𝑟𝑡 being degenerate in its limit for this 

case. 

Proof: ←)  We prove the contrapositive of the statement. Assuming that (3.21) holds 

with  𝑌𝑔(𝑡)  oscillating and that definition 3.3.1 does not hold, we want to show 

max(|𝜆1|, |𝜆2|) ≥ 1. Since 3.3.1 is not stable, it is the case that for some 𝜀 ∈ ℝ++, 

|𝑌𝑔(𝑡) − 𝑌𝑝1
(𝑡)| > 𝜀 holds for any 𝑡 ≥ 𝑇. As a consequence, the results of the proof 

follow similarly to the proof for Theorem 3.3.1. Thus, the results follow.  
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With the conditions for stability now known, we conclude this section with a proof for 

the set of values for 𝑃1̃ and 𝑃1̃ that ensure stability of the oscillations.   

Theorem 3.3.2: 𝑐ℎ𝑎𝑟(𝜆) = 𝜆2 + 𝑃1̃𝜆 + 𝑃2̃   with  𝑃1̃
2

− 4𝑃2̃ < 0  satisfies 

max(|𝜆1|, |𝜆2|) < 1 when |𝑃2̃| < 1 holds. 

Proof: Suppose char(λ) = λ2 + P1̃λ + P2̃  with P1̃
2

− 4P2̃ < 0  and  

max(|λ1|, |λ2|) < 1. We know that the roots of char(λ) are complex conjugates with 

values  𝜆1 = −
𝑃1̃

2
+

√P1̃
2

−4P2̃

2
𝑖 and 𝜆2 = −

𝑃1̃

2
−

√P1̃
2

−4P2̃

2
𝑖. Comparing the magnitude 

of the modulus  𝑟 = |𝜆1𝜆2| with respect to one we see that 

                    |(−
𝑃1̃

2
+

√P1̃
2

−4P2̃

2
𝑖)(−

𝑃1̃

2
−

√P1̃
2

−4P2̃

2
𝑖)| < 1                               (3.23a) 

                                  → |𝑃2̃| < 1                                                                      (3.23b) 

And the result follows. 

3.4 Stationarity of Stochastic Recurrence Relations 

In the previous section we found that the second-order nonhomogeneous linear 

deterministic recurrence relation with constant coefficients exhibiting an oscillating 

process is stable when its homogenous solution is degenerate at the limit. This turned 

out to be equivalent to the characteristic polynomial of the recurrence having a modulus 

less than one in absolute magnitude. We now would like to express an analog to the 

latter result in the stochastic setting. Thus, this section will discuss the stationarity of 

the oscillating process in the stochastic case. 

Definition 3.4.1: A stochastic recurrence relation (3.1) is weakly stationary if the 

following properties hold: 

1. The mean of (3.1) is independent of time.   

                              Ε[𝑌𝑡] = Ε[𝑌𝑡−𝑠]                              (3.24) 

2. The variance of (3.1) is finite and independent of time. 

                           𝑣𝑎𝑟(𝑌𝑡) = 𝑣𝑎𝑟(𝑌𝑡−𝑠) < ∞                        (3.25) 

3. The covariance function of (3.1) is a function of (𝑡 − 𝑠)  but not of 𝑡  nor 𝑠 

exclusively. 

                       𝑐𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑠) = 𝑐𝑜𝑣(𝑌𝑡−𝑣, 𝑌𝑡−𝑣−𝑠) = 𝜏(𝑠)                  (3.26) 

Theorem 3.4.1: Given the stochastic recurrence relation (3.5) exhibiting an oscillating 

general solution, then Equation (3.5) is stable, if its deterministic counterpart (3.5) is 

stable.  
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Proof: Suppose that (3.5) and (3.21) hold with  𝑌𝑔(𝑡) oscillating. Additionally, suppose 

that (3.21) is stable. By theorem 3.2.2 we know that the general solution exists for both. 

Furthermore by theorem 3.3.1 we know that the modulus of characteristic polynomial 

is less than one in absolute value such that lim
𝑡→∞

𝑌𝑔(𝑡) = 𝑌𝑝1
(𝑡) =

𝐺̃

1+𝑃1̃+𝑃2̃
 for (3.21). If 

we apply the same methodology to (3.5) we see that 

                          lim
𝑡→∞

𝑌𝑔(𝑡) = 𝑌𝑝1
(𝑡) + 𝑌𝑝2

(𝑡)                      (3.27) 

                                                       =
𝐺̃

1+𝑃1̃+𝑃2̃
+ ∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞

𝑗=0             (3.28)  

where 
𝐺̃

1+𝑃1̃+𝑃2̃
 and ∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞

𝑗=0  are finite since 𝑞𝑐(𝑗)  is stable such that 

∑ 𝑞𝑐(𝑗)∞
𝑗=0 =

1

1+𝑃1̃+𝑃2̃
 is a geometric series. Our next task is to show that (3.28) satisfies 

the three properties of a weakly stationary process.  

 

Property 1: Ε[𝑌𝑡] = Ε[𝑌𝑡−𝑠] 

Taking the expectations of (3.28) we see that:     

                       Ε [lim
𝑡→∞

𝑌𝑔(𝑡)] = Ε [
𝐺̃

1+𝑃1̃+𝑃2̃
+ ∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞

𝑗=0 ]             (3.29) 

                                                       = Ε [
𝐺̃

1+𝑃1̃+𝑃2̃
] + Ε[∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞

𝑗=0 ]  

                                                      =
𝐺̃

1+𝑃1̃+𝑃2̃
                            (3.30) 

It is clear that (3.30) is time independent. 

 

Property 2: 𝑣𝑎𝑟(𝑌𝑡) = 𝑣𝑎𝑟(𝑌𝑡−𝑠) < ∞ 

Taking the variance of (3.28) we see that: 

           𝑣𝑎𝑟 (lim
𝑡→∞

𝑌𝑔(𝑡)) = 𝑣𝑎𝑟(
𝐺̃

1+𝑃1̃+𝑃2̃
+ ∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞

𝑗=0 )                     (3.31) 

                        = Ε [(
𝐺̃

1+𝑃1̃+𝑃2̃
+ ∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞

𝑗=0 − Ε [
𝐺̃

1+𝑃1̃+𝑃2̃
] − Ε[∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞

𝑗=0 ])
2

]  

                        = Ε [(∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞
𝑗=0 − Ε[∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞

𝑗=0 ])
2

]  

                         = 𝑣𝑎𝑟(∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞
𝑗=0 )  

                         = 𝜎𝜀
2 ∑ 𝑞𝑐(𝑗)2∞

𝑗=0                                         (3.32) 

where (3.32) is time-independent and finite as required.  
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Property 3: 𝑐𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑠) = 𝑐𝑜𝑣(𝑌𝑡−𝑣, 𝑌𝑡−𝑣−𝑠) = 𝜏(𝑠) 

Applying the definition of covariance to (3.28) we see that 

  𝑐𝑜𝑣(lim
𝑡→∞

𝑌𝑔(𝑡), lim
𝑡→∞

𝑌𝑔(𝑡 − 𝑠) 

= Ε [(
𝐺̃

1+𝑃1̃+𝑃2̃
+ ∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞

𝑗=0 −
𝐺̃

1+𝑃1̃+𝑃2̃
− Ε[∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑠−𝑗̃∞

𝑗=0 ])
2

]  

            = 𝑐𝑜𝑣(∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑗̃∞
𝑗=0 , ∑ 𝑞𝑐(𝑗)𝜀𝑡−𝑠−𝑗̃∞

𝑗=0 )  

      = 𝜎𝜀
2 ∑ 𝑞𝑐(𝑗)∞

𝑗=0 𝑞𝑐(𝑠 + 𝑗)                                                   (3.33) 

It is clear that (3.33) is a function of (𝑡 − 𝑠). Since all three properties were satisfied, 

the proposition that stability imply stationarity for (3.5) with 𝑌𝑔(𝑡) oscillating follows.  

We now have the tools necessary for deriving a stochastic open-economy multiplier-

accelerator model and analyzing its oscillating time path. 

 

4.  CONDITIONS FOR THE STABILITY OF THE MULTIPLIER-

 ACCELERATOR TIME PATH  

In this chapter we derive a stochastic open-economy multiplier-accelerator model using 

the tools we developed in chapter 3. The aim of the model is to examine national income 

as a weakly stationary oscillating process. We proceed by imposing structural 

assumptions on the national income identity, then solving the resulting recurrence 

relation, noting the stability conditions, and lastly examining the properties of national 

income as a weakly stationary oscillating process. 

 

4.1 Structural Assumptions 

This section is devoted to laying out the structure on an open economy from which a 

stochastic open-economy multiplier-accelerator model can be derived. Consider an 

open economy over a denumerable set of time given by the national income accounting 

identity: 

                          𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 + 𝐺𝑡 + 𝐸𝑥𝑡 − 𝐼𝑚𝑡                            (4.1) 

where 𝑌𝑡  represents national income,  𝐶𝑡  consumption expenditures, 𝐼𝑡  investment 

spending, 𝐺𝑡  government purchases,  𝐸𝑥𝑡  exports, and 𝐼𝑚𝑡  imports. The following 

assumptions are maintained: 

1.  Current consumption expenditures are a stochastic process that consists of an 

autonomous component (𝛼0) plus a portion of previous national income. 

𝐶𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝜀𝑐,𝑡   with  𝛼0𝜖ℝ, 𝛼1𝜖(0,1), and 𝜀𝑐,𝑡~ 𝑁(0, 𝜎𝑐
2).        (4.2) 
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2.  Current investment spending is a stochastic process that consists of an autonomous 

component (𝛽0) plus the first difference in consumption expenditures. 

                    𝐼𝑡 = 𝛽0 + 𝛽1∆𝐶𝑡 + 𝜀𝐼,𝑡 with  𝛽0𝜖ℝ, 𝛽1𝜖ℝ++ , and 𝜀𝐼,𝑡~𝑁(0, 𝜎𝐼
2).        (4.3) 

                       = 𝛽0 + 𝛼1𝛽1∆𝑌𝑡−1 + 𝛽1∆𝜀𝑐,𝑡 + 𝜀𝐼,𝑡                           (4.4) 

3.  Government expenditures are autonomous in all periods. 

                                 𝐺𝑡 = 𝐺̅   with 𝐺̅𝜖ℝ.                           (4.5) 

4.  Exports are autonomous in all periods. 

                                 𝐸𝑥𝑡 = 𝐸𝑥̅̅̅̅    with 𝐸𝑥̅̅̅̅ 𝜖ℝ.             (4.6)  

5.  Current imports are a stochastic process that consists of an autonomous component 

(𝛾0) plus a portion of previous national income. 

𝐼𝑚𝑡 = 𝛾0 + 𝛾1𝑌𝑡−1 + 𝜀𝐼𝑚,𝑡  with 𝛾0𝜖ℝ, 𝛾1𝜖(0,1), and 𝜀𝐼𝑚,𝑡~ 𝑁(0, 𝜎𝐼𝑚
2 ).  (4.7) 

Now that structural assumptions have been imposed on each of the components of 

national income, we substitute the structural equations into the national income identity 

to obtain 

 𝑌𝑡 − (𝛼1 + 𝛼1𝛽1 − 𝛾1)𝑌𝑡−1 + 𝛼1𝛽1𝑌𝑡−2 

= 𝜓 + 𝜀𝑐,𝑡 + 𝜀𝑐,𝑡𝛽1 − 𝛽1𝜀𝑐,𝑡−1 + 𝜀𝐼,𝑡 − 𝜀𝐼𝑚,𝑡          (4.8) 

where  𝜓 = 𝛼0 + 𝛽0 − 𝛾0 + 𝐺̅ + 𝐸𝑥̅̅̅̅ . Notice that (4.8) is a stochastic nonhomogeneous 

second-order linear recurrence relation with constant coefficients.  We can now apply 

the tools we developed in chapter 3 to derive the time path of (4.8). 

 

4.2 Oscillating General Solution 

In this section we derive the oscillating general solution to the recurrence relation (4.8). 

Proposition 4.2.1: Let there be some open economy over a denumerable set of time. If 

assumptions 1-5 are maintained such that we obtain (4.8) with a negative discriminate, 

then there exists a general solution for national income as an oscillating process. 

Proof: Suppose assumptions 1-5 hold such that we yield (4.8) and that  

(−(𝛼1 + 𝛼1𝛽1 − 𝛾1))
2

− 4𝛼1𝛽1 < 0 . By lemma 1 we know (4.8) has a homogenous 

solution of form: 

𝑌ℎ(𝑡) = 𝐶1(𝑟)𝑡 cos(𝜃𝑡) + 𝐶2(𝑟)𝑡 sin(𝜃𝑡)                                                   (4.9)  
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By lemma 2 we know that a particular solution exists and is of form: 

𝑌𝑝(𝑡) =
𝜓

1−𝛼1+𝛾1
+ ∑ 𝑞𝑐(𝑗)𝜀𝑌,𝑡−𝑗

∞
𝑗=0                                                (4.10)  

Where  ∑ 𝑞𝑐(𝑗)𝜀𝑌,𝑡−𝑗
∞
𝑗=0 = ∑ 𝑞𝑐(𝑗)𝜀𝑐,𝑡−𝑗

∞
𝑗=0 + 𝛽1∆ ∑ 𝑞𝑐(𝑗)𝜀𝑐,𝑡−𝑗

∞
𝑗=0 +

∑ 𝑞𝑐(𝑗)𝜀𝐼,𝑡−𝑗
∞
𝑗=0 − ∑ 𝑞𝑐(𝑗)𝜀𝐼𝑚,𝑡−𝑗

∞
 𝑗=0   for compactness of notation.        

 

Lastly by theorem 3.2.2 we can show that a general solution to (4.8) exists by use of 

lemma 1 and lemma 2, where the general solution is 𝑌𝑔(𝑡) = 𝑌ℎ(𝑡) + 𝑌𝑝(𝑡). Thus, the 

results follow.  

 

4.3 Stability Conditions  

In the previous section we have derived the oscillating general solution to (4.8). We are 

now concerned with finding the conditions that ensures (4.8) is weakly stationary in 

addition to being an oscillating process. By theorem 3.4.1 we have demonstrated that 

stability implies a weakly stationary process. Thus, we need only examine the stability 

conditions. 

Finding the stability conditions for (4.8) requires the examination of its characteristic 

polynomial. Theorem 3.3.1 establishes that a deterministic recurrence relation is stable 

when its modulus is less than one in absolute magnitude. By applying the results of 

theorem 3.3.2 we see that the latter condition holds when |𝛼1𝛽1| < 1. 

With stability conditions now expressed in terms of the parameters of (4.8) we will 

discuss the implications of the parameter restrictions imposed. Looking at the condition 

|𝛼1𝛽1| < 1 this implies that the accelerator coefficient is less than one in absolute 

magnitude. Since the accelerator coefficient is always positive, the absolute magnitude 

may be ignored. Restating this condition in terms of the individual parameters, the 

condition holds when the marginal propensity to consume (𝛼1) dominates the capital 

output ratio (𝛽1) such that their product is less than unity. This condition will almost 

surely hold for developed economies. The rationale is that as time progresses, an 

economy will utilize its capital more effectively which corresponds to small capital 

output ratios. Sufficiently small capital output ratios can be scaled to less than unity by 

the marginal propensity to consume. 

 

4.4 National Income as a Weakly Oscillating Process 

From the derived recurrence relation (4.8) we have shown that when the general 

solution is an oscillating process, the process is weakly stationary through its stability 

conditions.  We have also confirmed that when the marginal propensity to consume 

dominates the capital output ratio, the relevant stability condition is met. In this section 

we examine the weakly stationary oscillating general solution of (4.8). 

For Equation (4.8) to have a weakly stationary general solution that exhibits an 
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oscillating process we maintain the restrictions of a negative discriminate additionally 

and an accelerator less than one, both of which will then lead to an explicit 

representation of the general solution which is of form: 

𝑌𝑔(𝑡) = 𝐶1(𝑟)𝑡 cos(∅𝑡) + 𝐶2(𝑟)𝑡 sin(∅t) +
𝜓

1−𝛼1+𝛾1
+ ∑ 𝑞𝑐(𝑖)𝜀𝑌,𝑡−𝑗

∞
𝑗=0         (4.11)  

as found in section 4.2.  

We now examine the implications of (4.11). The oscillations of this solution are driven 

by the trigonometric functions imbedded in its homogenous solution where the 

frequency was noted to be ∅ = tan−1 𝐼𝑚(𝜆1)

𝑅𝑒(𝜆2)
=

2𝜋

𝐿
. The oscillations are dampened due 

to the stationarity of the second-order recurrence equation (4.8). Thus, the process 

converges to its particular solution which is the sum of multiple disturbance terms and 

the mean value of the process. The disturbance terms entered the general solution 

through the structural assumptions imposed on consumption expenditures, investment 

spending, and imports. 

We see that the disturbances entering through consumption expenditures and imports 

are less volatile than the investment spending disturbances as expected. In general these 

disturbances will cause volatility in the dampened oscillations and will have the 

associated coefficients of 𝑞𝑐(𝑖) = 𝑟𝑖 cos ∅𝑖 + [
−𝑃1̃−𝑟 cos ∅

𝑟 sin ∅
]𝑟𝑖 sin ∅𝑖 . Now taking 

expectations of the limiting behavior of (4.11) we obtain Ε [lim
𝑡→∞

𝑌𝑔(𝑡)] =
𝜓

1−𝛼1+𝛾1
. This 

has the implication that an economy with a higher mean national income value at their 

limit will on average be better off. Economies will have differing mean national income 

values based on their domestic multiplier as well as the sum of their autonomous 

components.  

We then see that the spread of national income is 𝑣𝑎𝑟 (lim
𝑡→∞

𝑌𝑔(𝑡)) = 𝜎𝜀𝑌
2 ∑ 𝑞𝑐(𝑗)2∞

𝑗=0  

and an associated covariance structure of 𝑐𝑜𝑣(lim
𝑡→∞

𝑌𝑔(𝑡), lim
𝑡→∞

𝑌𝑔(𝑡 − 𝑠) =

𝜎𝜀𝑌
2 ∑ 𝑞𝑐(𝑗)∞

𝑗=0 𝑞𝑐(𝑠 + 𝑗). With the coefficients and properties of (4.11) established we 

now have sufficient information on national income as a weakly stationary oscillating 

process, which will be examined in our empirical analysis of the model.        

 

5. EMPIRICAL ANALYSIS 

5.1. Methodology 

In this chapter we estimate our model to provide empirical support for national income 

as a weakly stationary oscillating process. We estimate the structural equations from 

the perspective of cointegration among variables to investigate whether the U.S. 

economy exhibits a dampening oscillating business cycle. The main purpose of 

estimating the structural equations in the context of cointegration is to establish a link 

between the stability of the time path and the stationarity of the oscillating process of 

the multiplier-accelerator.   
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When the variables in the structural equations are cointegrated, this indicates that there 

is a long-run equilibrium relationship among the variables. Although in the short run, 

there could be an equilibrium error in the system, which could be a source of short-run 

oscillations, cointegration among variables is likely to lead to a dampening oscillating 

time path in the long run. Furthermore, in order to obtain more precise estimates in the 

context of the oscillating path of the accelerator-multiplier model, we must address the 

stationarity of the variables. In order to estimate the model, we have used U.S. quarterly 

data spanning from 1947:Q1 to 2019:Q1. We have obtained the data from the Federal 

Reserve Bank of St. Louis and the Bureau of Economic Analysis. 

The model of interest for estimation is the stochastic nonhomogeneous second-order 

linear recurrence relation with constant coefficients that stems from the structural 

equations. Structural equations (4.2)-(4.7) are substituted into the national income 

identity to form (4.8). Note that national income appears on both the left-hand and right-

hand sides of the equations. This endogenous feedback effect must be addressed after 

integration order diagnostics are checked. To remedy the endogenous feedback, we 

implement a two-stage least squares method by regressing 𝑌𝑡  against the exogenous 

variables 𝐺𝑡 and 𝐸𝑥𝑡 to obtain consistent estimates of national income.  

In order to estimate the model, we first conduct unit root tests.  If the variables contain 

a unit root, we next investigate whether the variables in the system are cointegrated. If 

there is a cointegrating relation among the variables, we could estimate the structural 

equations in level form. After we perform stationarity and cointegration tests on the 

variables, we estimate the equations using two different approaches. We first estimate 

the equations individually assuming that the errors in the equations are not 

contemporaneously related to each other, and then estimate the equations as a system 

using seemingly unrelated regression (SUR) to fully take advantage of interactions of 

the system. As a final step, we use the estimated coefficients to investigate whether the 

conditions for convergence are satisfied in the U.S. economy. The structural equations 

are given as follows: 

                                   𝐶𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝜀2𝑡 

    𝐼𝑡 = 𝛽0 + 𝛽1∆𝑌𝑡−1 + 𝜀3𝑡 

                                     𝐼𝑀𝑡 = 𝛾0 + 𝛾1𝑌𝑡−1 + 𝜀4𝑡 

 

5.2. Tests for Unit Roots and Cointegration  

We have performed the augmented Dickey-Fuller test on each variable to examine 

whether the variables used in this study are stationary or nonstationary. The test results 

are reported in Tables 1A and 1B. As expected, we have failed to reject the null 

hypothesis, indicating that all the variables contain a unit root. Next we have conducted 

the same test on the first-differenced variable, and we have been able to reject the null 

hypothesis for all the differenced variables. Thus, the first-differenced variables are 

stationary. This implies that each variable is of the same order of integration. Thus, we 

are concerned with cointegration among the variables in the system.  
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Table 1A:  Augmented Dickey-Fuller Test 

 Variable  Obs  Test 

Statistic 

 Critical       

Value(5%)   

 Critical 

Value (10% 

 𝑌𝑡 288 -2.313 -2.878 -2.570 

 𝐶𝑡 288 -1.536 -2.878 -2.570 

 𝐼𝑡 288 -0.785 -2.878 -2.570 

 𝐺𝑡 288 -1.180 -2.878 -2.570 

 𝐸𝑥𝑡 288 -2.091 -2.878 -2.570 

 𝐼𝑚𝑡 288 -0.631 -2.878 -2.570 

 Δ𝑌𝑡 287 -30.127 -2.879 -2.570 

 Δ𝐶𝑡 287 -36.031 -2.897 -2.570 

 Δ𝐼𝑡 287 -16.733 -2.879 -2.570 

 Δ𝐺𝑡 287 -35.552 -2.879 -2.570 

 Δ𝐸𝑥𝑡 287 -16.003 -2.879 -2.570 

 Δ𝐼𝑚𝑡 287 -15.184 -2.879 -2.570 

 

Table 1B:  Engle-Granger Cointegration Test 

 Variable Obs Test 

Statistic 

Critical Value   

(5%) 

Critical 

Value (10%) 

 𝑒𝐶,𝑌 288 -5.852 -3.368 -3.067 

 𝑒𝐼,𝑌 288 -5.145 -3.368 -3.067 

 𝑒𝐼𝑚,𝑌 288 -3.119 -3.368 -3.067 

 𝑒𝑌,𝐶,𝐼,𝐼𝑚 288 -6.001 -4.154 -3.853 

 

We have performed a cointeration test on the sample residuals using the Augmented 

Engle-Granger (AEG) test to check whether the residuals contain a unit root. The test 

statistic for the cointegration of income with consumption (C) is -5.852, with 

investment (I) is -5.145, and with imports (IM) is -3.119. These statistics are all greater 

than the Engle-Yoo critical value at the 5 percent level of significance, which leads to 

the rejection of the null hypothesis that the sample residuals contain a unit root.  (The 

test statistic for imports is significant at the 6% level.) Thus, we conclude that the 

variables in the system are cointegrated and have a long-run equilibrium relationship. 

 

5.3. Model Estimation:  Individual Equations 

Since all the variables in the structural equations are cointegrated, we estimate the 

equations in level form. In order to ensure the robustness of the estimation results, we 
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estimate the structural equations using various estimation methods. First, we estimate 

the equations individually using OLS and 2SLS. Next we estimate the equations as a 

system using OLS and 2SLS. 

The result of the individual estimation of the structural equations is presented in Table 

2A and 2B. 

Table 2A:  Structural Equation Regression Results: OLS 

    (1) (2) (3) 

    𝐶𝑡 𝐼𝑡 𝐼𝑚𝑡 

 𝑌𝑡−1 0.686***  0.163*** 

   (0.002)  (0.002) 

 ∆𝑌𝑡−1  0.917***  

    (0.251)  

 Intercept -0.114*** 0.889*** -0.159*** 

   (0.015) (0.050) (0.012) 

 Obs. 288 287 288 

 R-squared  0.997 0.045 0.972 

 

Standard errors are in parenthesis  

*** p<0.01, ** p<0.05, * p<0.1  
 

Table 2B:  Structural Equation Regression Results: 2SLS 

    (1) (2) (3) 

    𝐶𝑡 𝐼𝑡 𝐼𝑚𝑡 

 𝑌𝑡−1 0.687***  0.164*** 

   (0.002)  (0.002) 

 ∆𝑌𝑡−1  0.937***  

    (0.302)  

 Intercept -0.116*** 0.888*** -0.164*** 

   (0.015) (0.050) (0.012) 

 Obs. 288 287 288 

 R-squared  0.997 0.045 0.972 

 

Instrumented Var:(Y), Instrument Vars:(G,EX) 

Standard errors are in parenthesis 

*** p<0.01, ** p<0.05, * p<0.1 
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The OLS and 2SLS estimations of the consumption function were comparable both in 

coefficient magnitude as well as the standard error size. The marginal propensity to 

consume (MPC) was approximately .68 in both cases and statistically significant at the 

1 percent level. The investment function was also fairly comparable across the two 

estimations where the OLS estimates were slightly more precise as expected. In both 

cases the accelerator coefficient was found less than one and statistically significant at 

the 1 percent level.  

Lastly, the import function was roughly the same across the specifications both in 

magnitude and standard errors. The marginal propensity to import (MPI) was 

approximately .16 in both cases and statistically significant at the 1 percent level. Upon 

further inspection of the estimates it can be seen that estimated recurrence relation 

follows a stable oscillating process for each case. We now turn to the SUR estimation 

of the model as a system.  

 

5.4. Model Estimation: Seemingly Unrelated Regression 

In order to take advantage of the interrelated error structure, we have now estimated the 

structural equations as a system using seemingly unrelated regression (SUR) with OLS 

(SUR-OLS) and 2SLS (SUR-2SLS) employed, respectively. The system estimation 

gave rise to coefficient estimates fairly similar to the individual structural estimates. 

We further note that both estimated recurrence relations also follow an oscillating time 

path but only the SUR-2SLS estimation is stable due to its accelerator coefficient 

of .957 while the SUR-OLS estimation is unbounded due to its accelerator coefficient 

being 1.179 which is above unity in magnitude. Thus, three of the four specifications 

lend empirical support for national income as a weakly stationary oscillating process. 

Table 3A:  Seemingly Unrelated Regression Results: SUR-OLS 

    (1) (2)   (3) 

       𝐶𝑡    𝐼𝑡    𝐼𝑚𝑡 

 𝑌𝑡−1 0.682***  0.162*** 

   (0.002)  (0.001) 

 ∆𝑌𝑡−1  1.179***  

    (0.248)  

 Intercept -0.094*** 0.874*** -0.155*** 

   (0.014) (0.049) (0.011) 

 Obs. 287 287 287 

 R-squared  0.997 0.041 0.972 

 

Standard errors are in parenthesis  

*** p<0.01, ** p<0.05, * p<0.1  
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Table 3B:  Seemingly Unrelated Regression Results: SUR-2SLS 

      (1)   (2)   (3) 

       𝐶𝑡    𝐼𝑡    𝐼𝑚𝑡 

 𝑌𝑡−1 0.673***  0.162*** 

   (0.003)  (0.001) 

 ∆𝑌𝑡−1  0.957***  

    (0.238)  

 Intercept -0.050** 0.890*** -0.156*** 

   (0.025) (0.049) (0.010) 

 Obs. 287 287 287 

 R-squared  0.991 0.029 0.977 

 

Standard errors are in parenthesis  

*** p<0.01, ** p<0.05, * p<0.1 
 

In the next section, we present further empirical support to the convergence conditions 

by substituting the structural estimates into the particular and homogeneous solutions. 

This gives empirical content to the theoretical link between the stability of the time path 

and the stationarity of the oscillating processes of the variables. 

 

5.5. Numerical Values of the Particular and Homogeneous Solutions  

Using the estimates from the structural OLS estimates of section 5.3 we will 

demonstrate the deterministic form of the model and its general solution.  

 

Table 4: Estimated Coefficients 

𝛼0 = −.114 𝛼1 = .686 𝛼1𝛽1 = .917 𝜓 = 2.531 

𝛽0 = .889   𝛽1 = 1.336 𝐺̅ = 1.037 ∅ = .228𝜋 

𝛾0 = −.159   𝛾1 = .163 𝐸𝑥̅̅̅̅ = .560 𝑟 = .956 

  

We substitute the estimated parameters into the structural equations to obtain the 

following results: 

  𝐶𝑡 = −.114 + .686𝑌𝑡−1                        (7.1) 

 𝐼𝑡 = .889 + .917∆𝑌𝑡−1                                      (7.2) 
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 𝐼𝑀𝑡 = −.159 + .163𝑌𝑡−1                          (7.3) 

 𝐺𝑡 = 1.037                (7.4) 

 𝐸𝑋𝑡 = .560                (7.5) 

Rearranging (7.1) ~ (7.5) yields: 

𝑌𝑡 − (1.44)𝑌𝑡−1 + (. 917)𝑌𝑡−2 = 2.531                                   (7.6) 

The particular solution of (7.6) is 

  𝑌𝑝(𝑡) = 5.306                                (7.7) 

Solving for the homogenous solution of (7.6) produces 

               𝑌ℎ(𝑡) = 𝑐1(. 956)𝑡 cos(. 228𝜋𝑡) + 𝑐2(. 956)𝑡 sin(228𝜋𝑡)      (7.8)  

Combining the homogenous solution with the particular solution gives the general 

solution: 

𝑌𝑔(𝑡) = 𝑐1(. 956)𝑡 cos(. 228𝜋𝑡) + 𝑐2(. 956)𝑡 sin(228𝜋𝑡) + 5.306       (7.9) 

Here it is worth noting that (7.9) is stable such that 𝐸 [lim
𝑡→

𝑌𝑔(𝑡)] = 5.306 which is 

approximately the sample mean of national income in the data set which was of  

value 5.342. 

 

6. CONCLUSION 

We have extended Samuelson’s multiplier-accelerator model as a nonhomogeneous 

second-order recurrence relation in a stochastic framework which includes the foreign 

sector. We have first derived the conditions for the existence and stability of a stochastic 

time path of the model and then obtained the general solution for the second-order 

recurrence relation in the complete model.  

We have demonstrated that the deterministic nonhomogeneous second-order linear 

recurrence relation with constant coefficients exhibiting an oscillating process is stable 

when its homogenous solution is degenerate at the limit. We have further proved that 

when the variables in the model are weakly stationary, then the oscillating process in 

the stochastic case is stable. The most important contribution of this study may be found 

in its attempt to establish a link between the stability of the time path of the multiplier-

accelerator and the stationarity of the system. 

In order to give a flavor of realism to the working of the accelerator-multiplier with 

emphasis on the link between the stability and stationarity of the model, we have 

performed an empirical investigation of our model in the context of cointegration. If 

the variables in the system are cointegrated, then the system converges to a long-run 

equilibrium relation.   
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We have employed SUR to estimate the structural equations as a system using U.S. 

quarterly data spanning from 1947:Q1 to 2019:Q1. We have found that all the variables 

in the system contain a unit root, and have the same order of integration. We have 

further confirmed that the variables in the system are cointegrated, indicating that they 

are on the same wavelength.  

We have found that the conditions for the existence, stability, and stationarity of the 

oscillating time path for the U.S. economy are empirically supported: the time path 

generated from the estimates was oscillating and converged over time. Interestingly, 

we have shown that the convergence conditions are empirically satisfied when the 

variables in the system are of the same order of integration and are cointegrated among 

them. We have provided a numerical illustration of the general solution and its expected 

limiting behavior using the parametric values obtained from the structural estimation 

of the system. We have confirmed that the multiplier-accelerator model is stable when 

the system is cointegrated.   

Finally we have found that the size of the accelerator-multiplier coefficient becomes 

smaller in an economy where the variables in the system are cointegrated. This finding 

indicates that the amplitude of a business cycle is more or less mitigated in an economic 

system characterized with the stability of the oscillating process of the multiplier-

accelerator and the stationarity of the business cycle variables. We conclude that an 

open-economy multiplier-accelerator in the context of cointegration provides support 

for the stability of national income as a weakly stationary oscillating process.  
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