On t-Best Coapproximation in fuzzy anti-2-normed linear spaces

B. Surender Reddy
Department of Mathematics, University College of Science, Saifabad, Osmania University, Hyderabad-500004, AP, INDIA
E-mail: bsmathou@yahoo.com

Hemen Dutta
Department of Mathematics, Gauhati University, Kokrajhar Campus, Assam, INDIA
E-mail: hemen_dutta08@rediffmail.com

Abstract
In this paper, we study the concept of t-best coapproximation in fuzzy anti-2-normed linear spaces. We introduce the notion of t-best coapproximation, t-coproximinal sets, t-coChebyshev sets and t-orthogonality and prove some interesting theorems to characterization of t-best coapproximation elements.

AMS subject classification: 46S40, 41A50.
Keywords: Fuzzy anti-2-normed linear spaces, t-best coapproximation, t-coproximinal sets, t-coChebyshev sets, t-quasi-coChebyshev sets, t-orthogonality.

1. Introduction
The concept of best coapproximation was introduced by Franchetti and Furi [3], in order to study some characteristic properties of real Hilbert spaces, and such problems were considered further by Papini and Singer [9] and Rao and Saravanan [10]. The concept of 2-norm on a linear space has been introduced and developed by Gähler in [4, 5] and Gunawan and Mashadi [5]. The idea of fuzzy norm was initiated by Katsaras in [8]. In [7] Iqbal H. Jebril and Samanta introduced fuzzy anti-norm on a linear space depending on the idea of fuzzy anti-norm was introduced by Bag and Samanta [2] and investigated

In this paper, we consider the set of t-best coapproximation in fuzzy anti-2-normed linear spaces and then prove several theorems pertaining to this set.

2. Preliminaries

Definition 2.1. Let X be a real linear space of dimension greater than one and let $\|\cdot, \cdot\|$ be a real valued function on $X \times X$ satisfying the following conditions

1. $2N_1$: $\|x, y\| = 0$ if and only if x and y are linearly dependent
2. $2N_2$: $\|x, y\| = \|y, x\|$ for all $x, y \in X$
3. $2N_3$: $\|\alpha x, y\| = |\alpha| \|x, y\|$, for every $\alpha \in R$
4. $2N_4$: $\|x, y + z\| \leq \|x, y\| + \|x, z\|

Then the function $\|\cdot, \cdot\|$ is called a 2-norm on X and the pair $(X, \|\cdot, \cdot\|)$ is called a 2-normed linear space.

Example 2.2. Let $X = R^3$ be a real linear space. Define $\|\cdot, \cdot\| : X \times X \rightarrow R$ by $\|x, y\| = \max\{|x_1y_2 - x_2y_1|, |x_2y_3 - x_3y_2|, |x_3y_1 - x_1y_3|\}$, where $x = (x_1, x_2, x_3)$, $y = (y_1, y_2, y_3)$ are in R^3. Then $(X, \|\cdot, \cdot\|)$ is a 2-normed linear space.

Definition 2.3. Let X be a linear space over a real field F. A fuzzy subset N of $X \times X \times R$ is called a fuzzy 2-norm on X if the following conditions are satisfied for all $x, y, z \in X$.

1. $2N_1$: For all $t \in R$ with $t \leq 0$, $N(x, y, t) = 0$,
2. $2N_2$: For all $t \in R$ with $t > 0$, $N(x, y, t) = 1$ if and only if x, y are linearly dependent
3. $2N_3$: $N(x, y, t)$ is invariant under any permutation of x, y
4. $2N_4$: For all $t \in R$ with $t > 0$, $N(x, cy, t) = N\left(x, y, \frac{t}{|c|}\right)$ if $c \neq 0, c \in F$
5. $2N_5$: For all $s, t \in R$, $N(x, y + z, s + t) \geq \min\{N(x, y, s), N(x, z, t)\}$
6. $2N_6$: $N(x, y, t)$ is a non-decreasing function of $t \in R$ and $\lim_{t \to \infty} N(x, y, t) = 1$.

Then the pair (X, N) is called a fuzzy 2-normed linear space (briefly F-2-NLS).

Example 2.4. Let $(X, \|\cdot, \cdot\|)$ be a 2-normed linear space. Define

$$N(x, y, t) = \begin{cases} \frac{t}{t + \|x, y\|}, & \text{if } t > 0, \ t \in R, \ x, y \in X \\ 0, & \text{if } t \leq 0, \ t \in R, \ x, y \in X. \end{cases}$$

Then (X, N) is a fuzzy 2-normed linear space.
Definition 2.5. Let X be a linear space over a real field F. A fuzzy subset N of $X \times X \times R$ is called a fuzzy anti-2-norm on X if the following conditions are satisfied for all $x, y, z \in X$:

1. $(a - 2 - N_1)$: For all $t \in R$ with $t \leq 0$, $N(x, y, t) = 1$,
2. $(a - 2 - N_2)$: For all $t \in R$ with $t > 0$, $N(x, y, t) = 0$ if and only if x, y are linearly dependent,
3. $(a - 2 - N_3)$: $N(x, y, t)$ is invariant under any permutation of x, y,
4. $(a - 2 - N_4)$: For all $t \in R$ with $t > 0$, $N(cx, y, t) = N(x, y, \frac{t}{|c|})$ if $c \neq 0, c \in F$,
5. $(a - 2 - N_5)$: For all $s, t \in R$, $N(x, y + z, s + t) \leq \max\{N(x, y, s), N(x, z, t)\}$,
6. $(a - 2 - N_6)$: $N(x, y, t)$ is a non-increasing function of $t \in R$ and $\lim_{t \to \infty} N(x, y, t) = 0$.

Then the pair (X, N) is called a fuzzy anti-2-normed linear space (briefly Fa-2-NLS).

Remark 2.6. From $(a - 2 - N_3)$, it follows that in Fa-2-NLS,

1. $(a - 2 - N_4)$: For all $t \in R$ with $t > 0$, $N(cx, y, t) = N(x, y, \frac{t}{|c|})$ if $c \neq 0, c \in F$,
2. $(a - 2 - N_5)$: For all $s, t \in R$, $N(x + z, y, s + t) \leq \max\{N(x, y, s), N(z, y, t)\}$.

Example 2.7. Let $(X, \|\cdot, \cdot\|)$ be a 2-normed linear space. Define

$$N(x, y, t) = \left\{ \begin{array}{ll} \frac{\|x, y\|}{t + \|x, y\|}, & \text{if } t > 0, \ t \in R, \ x, y \in X \\
1, & \text{if } t \leq 0, \ t \in R, \ x, y \in X. \end{array} \right.$$

Then (X, N) is a Fuzzy anti-2-normed linear space.

Definition 2.8. A sequence $\{x_k\}$ in a fuzzy anti-2-normed linear space (X, N) is said to be t-convergent to $x \in X$ if given $t > 0, 0 < r < 1$, there exists an integer $n_0 \in N$ such that $N(x_1, x_k - x, t) < r$, for all $k \geq n_0$.

Theorem 2.9. In a fuzzy anti-2-normed linear space (X, N), a sequence $\{x_k\}$ is t-convergent to $x \in X$ if and only $\lim_{k \to \infty} N(x_1, x_k - x, t) = 0, \forall t > 0$.

Definition 2.10. Let (X, N) be a fuzzy anti-2-normed linear space. Let $\{x_k\}$ be a sequence in X then $\{x_k\}$ is said to be t-Cauchy sequence if $\lim_{k \to \infty} N(x_1, x_{k+p} - x_k, t) = 0, \forall t > 0$ and $p = 1, 2, 3, \ldots$.

A fuzzy anti-2-normed linear space (X, N) is said to be complete if every Cauchy sequence in X is convergent. A complete fuzzy anti-2-normed linear space (X, N) is called a fuzzy anti-2-Banach space. The open ball $B(x, r, t)$ and the closed ball $B[x, r, t]$ with the center $x \in X$ and radius $0 < r < 1, t > 0$ are defined as follows:

$$B(x, r, t) = \{y \in X : N(x_1, x - y, t) < r\}$$

$$B[x, r, t] = \{y \in X : N(x_1, x - y, t) \leq r\}.$$
A subset A of X is said to be t-open if there exists $r \in (0, 1)$ such that $B(x, r, t) \subset A$ for all $x \in A$ and $t > 0$. A subset A of X is said to be t-closed if for any sequence $\{x_k\}$ in A converges to $x \in A$. i.e., $\lim_{k \to \infty} N(x_1, x_k - x, t) = 0$, for all $t > 0$ implies that $x \in A$. A subset A of X is said to be t-compact if for every sequence $\{x_k\}$ in A has a subsequence $\{x_{n_k}\}$ which t-converges to an element $x_0 \in A$.

3. t-Best Coapproximation

Definition 3.1. Let A be a nonempty subset of fuzzy anti-2-normed linear space (X, N) and $t > 0$. For $x \in X$, an element $y_0 \in A$ is said to be a t-best coapproximation of x from A if $N(x, y_0 - y, t) \leq N(x, x - y, t)$, for all $y \in A$.

The set of all elements of t-best coapproximation of x from A is denoted by $R^t_A(x)$ and is defined as

$$R^t_A(x) = \{y_0 \in A : N(x, y_0 - y, t) \leq N(x, x - y, t), \forall y \in A\}$$

For $t > 0$ putting

$$\hat{A}_t^x = \{x \in X : N(x, y, t) \leq N(x, x - y, t), \forall y \in A\} = (R^t_A)^{-1}(0).$$

It is clear $y_0 \in R^t_A(x)$ if and only if $x - y_0 \in \hat{A}_t^x$.

Definition 3.2. Let A be a non empty subset of a fuzzy anti-2-normed linear space (X, N). If for $t > 0$ and each $x \in X$ has at least (respectively exactly) one t-best coapproximation in A, then A is called a t-coproximinal (respectively t-coChebyshev) set. Also A is called t-quasi-coChebyshev set if $R^t_A(x)$ is a t-compact set.

Theorem 3.3. Let (X, N) be a fuzzy anti-2-normed linear space, and A be a subspace of X and $t > 0$. Then for each $x \in X$

(i) A is a t-coproximinal if and only if $X = A + \hat{A}_t^x$.

(ii) A is a t-coChebyshev subspace if and only if $X = A \oplus \hat{A}_t^x$.

Proof. (i) (\Rightarrow) Assume that A is t-coproximinal, $x \in X$ and $y_0 \in R^t_A(x)$. Then $x - y_0 \in \hat{A}_t^x$. Now, $x = y_0 + (x - y_0) \in A + \hat{A}_t^x$. Hence $X = A + \hat{A}_t^x$.

(\Leftarrow) Let $x \in X = A + \hat{A}_t^x$. Then $x = y_0 + \tilde{y}$, $y_0 \in A$, $\tilde{y} \in \hat{A}_t^x$ and so $0 \in R^t_A(\tilde{y}) = R^t_A(x - y_0)$. Since, $N(x_1, 0 - (x - y_0), t) \leq N(x_1, y - (x - y_0), t)$, so $N(x_1, y_0 - x, t) \leq N(x_1, (y + y_0) - x, t)$, where $y + y_0 \in A$; hence $y_0 \in R^t_A(x)$. Therefore A is t-coproximinal.

(ii) (\Rightarrow) Suppose that A is t-coChebyshev subspace, $x \in X$, and $x = y_1 + \tilde{y}_1 = y_2 + \tilde{y}_2$, where $y_1, y_2 \in A$ and $\tilde{y}_1, \tilde{y}_2 \in \hat{A}_t^x$. We show that $y_1 = y_2$ and $\tilde{y}_1 = \tilde{y}_2$. Since $x = y_1 + \tilde{y}_1 = y_2 + \tilde{y}_2$, then $x - y_1 = y_2, x - y_2 = \tilde{y}_2$, this implies that $y_1, y_2 \in R^t_A(x)$. Therefore $y_1 = y_2$, it follows that $\tilde{y}_1 = \tilde{y}_2$. Thus $X = A \oplus \hat{A}_t^x$.

(\Leftarrow) Let $X = A \oplus \hat{A}_t^x$, and suppose for $x \in X$, there exists $y_1, y_2 \in R^t_A(x)$. Then $x - y_1,$
Theorem 3.4. Let \(A \) be a non empty subset of a fuzzy anti-2-normed linear space \((X, N)\). Then for \(t > 0 \) and each \(x \in X \),

(i) \(R^t_{A+y}(x + y) = R^t_A(x) + y \), for every \(x, y \in X \).

(ii) \(R^t_{\alpha A}(\alpha x) = \alpha R^t_A(x) \), for every \(x \in X \) and \(\alpha \in R \setminus \{0\} \).

(iii) \(A \) is \(t \)-coproximinal (respectively \(t \)-coChebyshev) if and only if \(A + y \) is \(t \)-coproximinal (respectively \(t \)-coChebyshev), for any \(y \in X \).

(iv) \(A \) is \(t \)-coproximinal (respectively \(t \)-coChebyshev) if and only if \(\alpha A \) is \(|\alpha|t \)-coproximinal (respectively \(|\alpha|t \)-coChebyshev), for any given \(\alpha \in R \setminus \{0\} \).

Proof. (i) For any \(x, y \in X, t > 0, y_0 \in R^t_{A+y}(x+y) \) if and only if \(N(x_1, y_0-(a+y), t) \leq N(x_1, x+y-(a+y), t) \) for all \((a+y) \in A+y \) if and only if \(N(x_1, (y_0-y)-a, t) \leq N(x_1, x-a, t) \) for all \(a \in A \), if and only if, \((y_0-y) \in R^t_A(x), \) i.e., \(y_0 \in R^t_A(x) + y \).

(ii) For any \(x \in X, \alpha \in R \setminus \{0\} \) and \(t > 0, y_0 \in R^t_{\alpha A}(\alpha x) \) if and only if, \(N(x_1, (y_0-\alpha a), |\alpha|t) \leq N(x_1, (\alpha x-\alpha a), |\alpha|t) \) for all \(a \in A \) if and only if

\[
N \left(x_1, \frac{1}{|\alpha|} y_0 - a \right), |\alpha|t \right) \leq N(x_1, (x-a), t)
\]

for all \(a \in A \) if and only if \(\frac{1}{|\alpha|} y_0 \in R^t_A(x) \) if and only if \(y_0 \in \alpha R^t_A(x) \). Therefore

\(R^t_{\alpha A}(\alpha x) = \alpha R^t_A(x) \)

(iii) The proof is an immediate consequence of (i).

(iv) The proof is an immediate consequence of (ii).

Corollary 3.5. Let \(M \) be a nonempty subspace of a fuzzy anti-2-normed linear space \((X, N)\). Then for \(t > 0 \) and each \(x \in X \),

(i) \(R^t_M(x + y) = R^t_M(x) + y \), for every \(x, y \in X \),

(ii) \(R^t_M(\alpha x) = \alpha R^t_M(x) \), for every \(x \in X \) and \(\alpha \in R \setminus \{0\} \).

Proof. The proof is an immediate consequence of theorem 3.4 and this fact that \(M + y = M \) and \(\alpha M = M \) for all \(y \in M \) and \(\alpha \in R \setminus \{0\} \).

Definition 3.6. For \(x \in X, a \in A, 0 < r < 1, \) and \(t > 0, \) define \(e^r_t(a) = N(x_1, x-a, t) \).

Theorem 3.7. Let \((X, N)\) be a fuzzy anti-2-normed linear space, \(A \) be a subset of \(X \), \(x \in X \setminus \overline{A} \) and \(t > 0 \). Then we have

\[
R^t_A(x) = \bigcap_{a \in A} B[a, e^r_t(a), t] \bigcap A.
\]
Theorem 3.10. For each \(a \in A \) we have \(R^1_A(x) \subseteq \{ B[a, e^t_a(x), t] \} \bigcap A \). Therefore \(R^1_A(x) \subseteq \bigcap_{a \in A} B[a, e^t_a(x), t] \bigcap A \). Conversely, let \(y \in \bigcap_{a \in A} B[a, e^t_a(x), t] \bigcap A \), then we have \(y \in A \), and for each \(a \in A \), \(N(x_1, a - y, t) \leq e^t_a(x) = N(x_1, x - a, t) \), which implies that \(y \in R^1_A(x) \). So \(\bigcap_{a \in A} B[a, e^t_a(x), t] \bigcap A \subseteq R^1_A(x) \), which completes the proof.

Corollary 3.8. Let \((X, N)\) be a fuzzy anti-2-normed linear space, \(A\) be a subset of \(X\), \(x \in X \setminus A\) and \(t > 0\). Then

(i) The set \(R^t_A(x) \) is \(t \)-bounded.

(ii) If \(A \) is \(t \)-closed then \(R^t_A(x) \) is \(t \)-closed.

Theorem 3.9. Let \((X, N)\) be fuzzy anti-2-normed linear space. For each \(x \in X \) and \(t > 0 \), if \(A \) is a convex subset of \(X \), then \(R^t_A(x) \) is a convex subset of \(A \) (for \(R^t_A(x) \neq \emptyset \)).

Proof. Let \(z_1, z_2 \in R^t_A \), then for \(t > 0 \) and each \(x \in X \), \(N(x_1, y - z_1, t) \leq N(x_1, x - y, t) \) and \(N(x_1, y - z_2, t) \leq N(x_1, x - y, t) \) for all \(y \in A \). Now for each \(\lambda \in (0, 1) \) we have

\[
N(x_1, y - (\lambda z_1 + (1 - \lambda)z_2), t) = N(x_1, \lambda y - \lambda z_1 + y - \lambda y - z_2 + \lambda z_2, t) \\
= N(x_1, \lambda(y - z_1) + (1 - \lambda)(y - z_2), \lambda t + (1 - \lambda)t) \\
\leq \max \left\{ N\left(x_1, y - z_1, \frac{\lambda t}{\lambda}\right), N\left(x_1, y - z_2, \frac{(1 - \lambda)t}{1 - \lambda}\right) \right\} \\
\leq \max \left\{ N\left(x_1, x - y, \frac{\lambda t}{\lambda}\right), N\left(x_1, x - y, \frac{(1 - \lambda)t}{1 - \lambda}\right) \right\} \\
\leq N(x_1, x - y, t).
\]

So \(\lambda z_1 + (1 - \lambda)z_2 \in R^t_A(x) \) and \(R^t_A(x) \) is convex.

Theorem 3.10. For \(t > 0 \) and each \(x \in X \). Let \(A \) be a \(t \)-coproximinal subspace of fuzzy anti-2-normed linear space \((X, N)\). Then

(i) If \(\tilde{A}^t_x \) is a \(t \)-compact set then \(A \) is \(t \)-quasi-CoChebyshev.

(ii) If \(\tilde{A}^t_x \) is a \(t \)-closed set then \(R^t_A(x) \) is \(t \)-closed, for every \(x \in X \).

Proof. (i) Suppose \(x \in X \) and \(\{y_n\} \) is a sequence in \(R^t_A(x) \). Since \(x - y_n \in \tilde{A}^t_x \) and \(\tilde{A}^t_x \) is a \(t \)-compact set, there exists a subsequence \(\{x - y_{n_k}\} \) that \(t \)-convergent to \(x - y_0 \in \tilde{A}^t_x \). Consequently, \(\{y_n\} \) has a subsequence \(y_{n_k} \rightarrow y_0 \in R^t_A(x) \) and hence \(A \) is \(t \)-quasi-CoChebyshev.

(ii) The proof is similar to (i).
Definition 3.11. A subset A of a fuzzy anti-2-normed linear space (X, N) is said to be t-boundedly compact if every t-bounded sequence in A has a subsequence t-converging to an element of X.

Theorem 3.12. Suppose for some $t > 0$ and each $x \in X$, A is a t-boundedly compact and t-closed subset of a fuzzy anti-2-normed linear space (X, N) then A is t-quasi-coChebyshev.

Proof. Let $\{y_n\}$ be any sequence in $R^t_A(x)$. Then $N(x_1, y_n - y, t) \leq N(x_1, x - y, t)$ for every $y \in A$. Since $R^t_A(x)$ is t-bounded, $\{y_n\}$ is a t-bounded sequence in A, and so $\{y_n\}$ has a t-convergent subsequence $\{y_{n_k}\}$, let $y_{n_k} \rightarrow y_0 \in A$, as A is t-closed. Consider $N(x_1, y_0 - y, t) = \lim_{k} N(x_1, y_{n_k} - y, t) \leq N(x_1, x - y, t)$, for every $y \in A$.

So $y_0 \in R^t_A(x)$, which implies that A is t-quasi-coChebyshev. \[\blacksquare\]

Definition 3.13. Let (X, N) be a fuzzy anti-2-normed linear space and A be a subset of X. For $t > 0$ and an element $x \in X$ is said to be t-orthogonal to an element $y \in X$ and we denote it by $x \perp^t_y$, if $N(x_1, x + \lambda y, t) \geq N(x_1, x, t)$ for all scalar $\lambda \in R, \lambda \neq 0$. We say $A \perp^t_y$ if $x \perp^t_y$ for every $x \in A$.

Theorem 3.14. For $t > 0$ and each $x \in X$ and $y_0 \in A$, let (X, N) be a fuzzy anti-2-normed linear space and A be a subspace of X. If $A \perp^t_x x - y_0$ then $y_0 \in R^t_A(x)$.

Proof. Suppose $t > 0, x \in X$ and $A \perp^t_x x - y_0$. Then $N(x_1, a + \lambda(x - y_0), t) \geq N(x_1, a, t)$ for all $a \in A$ and all scalar $\lambda \in R, \lambda \neq 0$. Then $N \left(x_1, x - y_0 + \frac{t}{|\lambda|} a', \frac{t}{|\lambda|} \right) \geq N \left(x_1, \lambda^{-1} a, \frac{t}{|\lambda|} \right)$. Hence $N \left(x_1, x - a', \frac{t}{|\lambda|} \right) \geq N \left(x_1, y_0 - a', \frac{t}{|\lambda|} \right)$, where $a' = y_0 - \lambda^{-1} a$. Now if $\lambda = 1$ then, $N(x_1, y - y_0, t) \geq N(x_1, x - y, t)$ for all $y \in A$ and so $y_0 \in R^t_A(x)$. \[\blacksquare\]

4. **F-Best coapproximation**

Definition 4.1. Let A be a nonempty subset of a fuzzy anti-2-normed linear space (X, N). An element $y_0 \in A$ is said to be an F-best coapproximation of x from A if it is a t-best coapproximation of x from A, for every $t > 0$, i.e., $y_0 \in \bigcap_{t \in (0, \infty)} R^t_A(x)$.

The set of all elements of F-best coapproximation of x from A is denoted by $FR^t_A(x)$, i.e., $FR^t_A(x) = \bigcap_{t \in (0, \infty)} R^t_A(x)$.

If each $x \in X$ has at least (respectively exactly) one F-best coapproximation in A, then A is called F-coproximinal (respectively F-coChebyshev) set.
Example 4.2. Let $X = R^3$. Define $N : X \times X \times X \times [0, \infty) \rightarrow [0, 1]$ by

\[
N(x_1, x_2, x_3, t) = \frac{\|x_1, x_2, x_3\|}{t} \quad \text{if } t > 0, \quad t \in R, \quad x_1, x_2, x_3 \in X
\]

\[
= 1 \quad \text{if } t \leq 0, \quad t \in R, \quad x_1, x_2, x_3 \in X,
\]

where $\|x_1, x_2, x_3\| = \min_{1 \leq i \leq 3} \sum_{j=1}^{3} |x_{ij}|$. Then (X, N) is a fuzzy anti-3-normed linear space. Let

\[
A = \left\{(a, b, c) \in R^3 : a^2 + b^2 \leq 1, \quad 0 \leq c \leq a^2 + b^2\right\}
\]

and $x_1 = (1, 0, 0), x_2 = (0, 1, 0), x = (0, 0, 4)$ are in X. Let $a_0 = (0, -1, 1)$ and $a_1 = (0, 1, 1)$ are in A. Hence $a_0 = (0, -1, 1)$ and $a_1 = (0, 1, 1)$ are F-best coapproximations of $x = (0, 0, 4)$ from A. Then $(0, -1, 1), (0, 1, 1) \in FR^*_A(0, 0, 4)$. So, A is not a F-coChebyshev set.

Theorem 4.3. Let $\{\|\cdot, \cdot\|_\alpha^* : \alpha \in (0, 1]\}$ be a descending family of α-2-norm on X corresponding to the fuzzy anti-2-norm on X. Then $y_0 \in A$ is a best coapproximation to $x \in X$ in the descending family of α-2-norm on X corresponding to the fuzzy anti-2-norm on X if and only if y_0 is a F-best coapproximation to x in the fuzzy anti-2-normed linear space (X, N).

Proof. For each $x \in X$, y_0 is a best coapproximation to $x \in X$ in the descending family of α-2-norm on X corresponding to the fuzzy anti-2-norm on X if and only if $\|x_1, y - y_0\|_\alpha^* \leq \|x_1, x - y\|_\alpha^*$, for every $y \in A$, if and only if

\[
t \geq \frac{t + \|x_1, y - y_0\|_\alpha^*}{t + \|x_1, x - y\|_\alpha^*}
\]

for every $y \in A$ and $t \in (0, \infty)$, if and only if $N(x_1, y - y_0, t) \leq N(x_1, x - y, t)$ for every $y \in A$ and $t \in (0, \infty)$ if and only if $y_0 \in FR^*_A(x)$. $lacksquare$

Definition 4.4. Let (X, N) be a fuzzy anti-2-normed linear space and A be a subset of X. For each element $x \in X$ is said to be F-orthogonal to an element $y \in X$ and we denote it by $x \perp^F y$, if for every $t > 0, x \perp^F_t y$. We say $A \perp^F y$ if $x \perp^F_t y$ for every $x \in A$.

Theorem 4.5. Let $\{\|\cdot, \cdot\|_\alpha^* : \alpha \in (0, 1]\}$ be a descending family of α-2-norm on X corresponding to the fuzzy anti-2-norm on X. Then $x \in X$ is Brikhoff orthogonal to $y \in X$ in the descending family of α-2-norm on X corresponding to the fuzzy anti-2-norm on X if and only if x is a F-orthogonal to y in the fuzzy anti-2-normed linear space (X, N).

Proof. For each $x \in X$, x is a Brikhoff orthogonal to $y \in X$ in the descending family of α-2-norm on X corresponding to the fuzzy anti-2-norm on X if and only if $\|x_1, x\|_\alpha^* \leq \|x_1, x + \lambda y\|_\alpha^*$, for every $\lambda \in R \setminus \{0\}$, if and only if

\[
t \geq \frac{t}{t + \|x_1, x\|_\alpha^*} \geq \frac{t}{t + \|x_1, x + \lambda y\|_\alpha^*}
\]
for every $\lambda \in R\backslash\{0\}$ and $t > 0$, if and only if $N(x_1, x + \lambda y, t) \leq N(x_1, x, t)$ for every $\lambda \in R\backslash\{0\}$ and $t > 0$ if and only if $x \perp_{F} y$.

Remark 4.6. The converse of theorem 3.14 is true, if we replace t-orthogonality with F-orthogonality.

5. Conclusion

In this paper, we introduced the concept of t-best coapproximation and F-best coapproximation in fuzzy anti-2-normed linear spaces and then prove several theorems pertaining to this sets.

References

