On Q-Fuzzy N-Subgroup and Q-Fuzzy Ideal of An N-Group

Gopi Kanta Barthakur and Jugal Khargharia

Department of Mathematics, G. K. B. College, Morigaon, Assam, India
gopik2003@gmail.com
Department of Mathematics, S. P. P. college, Sivasagar, Assam, India

Abstract

In this paper, we shall study Q-fuzzy N-subgroup, Q-fuzzy normal subgroup and Q-fuzzy ideal of a near-ring group and investigate some of there properties.

Keywords: Near-ring, N-group, Q-fuzzy set, Q-fuzzy N-subgroup, Q-fuzzy ideal.

1. Introduction

2. Preliminaries:

2.1. Definition: Let N be a near-ring and E an additive group. Then E is said to be a near-ring group or an left N-group if there exist a mapping $N \times E \rightarrow E$, $(n, e) \rightarrow ne$

Such that

(i) $(n + m)e = ne + me$
(ii) $(nm)e = n(me)$
(iii) $1.e = e$ for all $n, m \in N$ and $e \in E$.
Unless otherwise stated we denote the zero element of E by 0. Note that N can be considered as an N-group denoted by \(N^N\).

Throughout our discussion by an N-group we mean left N-group.

A subset S of N-group E is called an N-subgroup of E if S is a subgroup of (E, +) and \(NS \subseteq S\). A subgroup S of E is called normal subgroup if \(x + y - x \in S\) for all \(y \in S\), \(x \in E\) and a normal subgroup S of E is called an ideal of E if for \(n \in N\), \(x \in S\), a\(\in E\), \(n(a + x) - na \in S\).

2.2. Definition:[2] Let X be a non-empty set. A function \(\mu : X \rightarrow [0,1]\) is called a fuzzy subset of X.

2.3. Definition: If \(\mu\) is a fuzzy subset of a set X then the set \(\{x \in X : \mu(x) > 0\}\) is said to be support of \(\mu\) and is denoted by \(\mu^*\), and the set \(\{x \in X : \mu(x) \geq t, t \in [0,1]\}\), denoted by \(\mu_t\), is called level subset of X.

2.4. Definition: [7] A fuzzy subset \(\mu\) of an N-group E is said to be a fuzzy subgroup of E if for all \(x, y \in E\), the following holds:
(i) \(\mu(x + y) \geq \mu(x) \land \mu(y)\)
(ii) \(\mu(-x) \geq \mu(x)\)

2.5. Definition:[7] A fuzzy subgroup \(\mu\) of an N-group E is said to be a fuzzy N-subgroup of E if for all \(n \in N\), \(x \in E\) the following hold:
\(\mu(nx) \geq \mu(x)\)

2.6. Definition:[7] A fuzzy subset \(\mu\) of an N-group E is said to be a fuzzy ideal of E if for all \(n \in N\), \(a, x, y \in E\) the following holds:
(i) \(\mu(x - y) \geq \mu(x) \land \mu(y)\)
(ii) \(\mu(x) = \mu(y + x - y)\)
(iii) \(\mu(n(a + x) - na) \geq \mu(x)\)

2.7. Definition: Let \(\mu\) and \(\theta\) be two fuzzy subsets of E. We define fuzzy subset \(\mu + \theta\) of E as follows:
\((\mu + \theta)(x) = \bigvee_{a+b=x} \{ \mu(a) \land \theta(b) : a, b \in E\}\)

2.8. Definition: Let E and F be two N-groups. Then a mapping \(f : E \rightarrow F\) is called an N-homomorphism if
(i) \(f(x + y) = f(x) + f(y)\)
(ii) \(f(nx) = nf(x)\)
for all \(n \in N\) and \(x, y \in E\).
An N-homomorphism f is called a N-monomorphism if f is onto. An N-homomorphism f is called an N-epimorphism if f is surjective.

2.9.**Definition:** Let Q and N denote a set and a near-ring respectively. A mapping $\mu: N \times Q \rightarrow [0,1]$ is called a Q-fuzzy set in N.

2.10. **Definition:** If μ is a Q-fuzzy set in N, then the set $\{ x \in N, q \in Q : \mu(x, q) > 0 \}$ is said to be Q-support of μ and is denoted by μ^*.

2.11. **Definition:** If μ is a Q-fuzzy set in N, then the set $\{ x \in N, q \in Q : \mu(x, q) \geq t, t \in [0,1] \}$ is said to be Q-level subset of μ and denoted by μ_t.

2.12. **Definition:** A Q-fuzzy set μ in a near-ring N is called Q-fuzzy sub near-ring of N if

(i) $\mu(x - y, q) \geq \mu(x, q) \land \mu(y, q)$

(ii) $\mu(xy, q) \geq \mu(x, q) \land \mu(y, q)$ for all $x, y \in N$ and $q \in Q$.

2.13. **Definition:** A Q-fuzzy set μ in a near-ring N is called Q-fuzzy ideal of N if

(i) $\mu(x - y, q) \geq \mu(x, q) \land \mu(y, q)$

(ii) $\mu(xn, q) \geq \mu(x, q)$

(iii) $\mu(y+x-y, q) \geq \mu(x, q)$

(iv) $\mu(n(y+x) - ny, q) \geq \mu(x, q)$ for all $x, y, n \in N$ and $q \in Q$.

2.14. **Definition:** Let f be a mapping from a set S to a set R. Let μ and θ be Q-fuzzy set in S and R respectively. Then $f(\mu)$ the image of μ is a Q-fuzzy set in R defined as

$f(\mu)(y, q) = \sup_{x=f^{-1}(y)} \mu(x, q) : f^{-1}(y) \neq \emptyset$

$= 0$ otherwise.

Also the pre-image of θ under f is denoted by $f^{-1}(\theta)$ is a Q-fuzzy set of S and defined as

$[f^{-1}(\theta))(x, q) = \theta(f(x), q)$, for all $x \in S, y \in R$ and $q \in Q$.

3. **Q-fuzzy ideal of an N-group.**

3.1. **Definition:** Let Q and E denote a set and an N-group respectively. A mapping $\mu: E \times Q \rightarrow [0,1]$ is called a Q-fuzzy set in E.

3.2. **Definition:** Let μ be a Q-fuzzy set of an N-group E. Then μ is called Q-fuzzy N-subgroup of E if

(i) $\mu(x + y, q) \geq \mu(x, q) \land \mu(y, q)$

(ii) $\mu(x, q) = \mu(-x, q)$
(iii) \(\mu (nx, q) \geq \mu (x, q) \) for all \(x, y \in E, n \in N, q \in Q \).

Conditions (i) and (ii) are equivalent to \(\mu (x - y, q) \geq \mu (x, q) \land \mu (y, q) \).

3.3. **Remarks:** If \(\mu \) is a Q-fuzzy N-subgroup of N-group \(E \). Then for all \(x \in E, q \in Q \) the following are equivalent:

(i) \(\mu (-x, q) \geq \mu (x, q) \)

(ii) \(\mu (-x, q) \leq \mu (x, q) \)

(iii) \(\mu (x, q) = \mu (-x, q) \)

3.4. **Lemma:** If \(\mu \) is a Q-fuzzy N-subgroup of N-group \(E \). Then for all \(x \in E, q \in Q \) the following are equivalent:

(i) \(\mu (-x, q) \geq \mu (x, q) \)

(ii) \(\mu (-x, q) \leq \mu (x, q) \)

(iii) \(\mu (x, q) = \mu (-x, q) \)

3.5. **Theorem:** A Q-fuzzy set \(\mu \) of \(E \) is a Q-fuzzy N-subgroup of \(E \) if and only if \(\mu_t \), \(t \in [0,1] \) is an N-subgroup of \(E \).

Proof: Straightforward.

3.6. **Theorem:** A Q-fuzzy set \(\mu \) of an N-group \(E \) is a Q-fuzzy N-subgroup of \(E \) if and only if

(i) \(\mu (0, q) \geq \mu (x, q) \)

(ii) \(\mu (mx + ny, q) \geq \mu (x, q) \land \mu (y, q) \), for all \(m, n \in N \) and \(x, y \in E, q \in Q \).

Proof: Let \(\mu \) be a Q-fuzzy N-subgroup of \(E \).

Clearly \(\mu (0, q) = \mu (x - x, q) \geq \mu (x, q) \land \mu (-x, q) = \mu (x, q) \), for all \(x \in E, q \in Q \).

Also \(\mu (mx + ny, q) \geq \mu (mx, q) \land \mu (ny, q) \).
On Q-Fuzzy N-Subgroup and Q-Fuzzy Ideal of An N-Group

\[\geq \mu(x, q) \land \mu(y, q), \text{ for all } m, n N \text{ and } x, y \in E. \]

Conversely, we assume conditions (i) and (ii).
Now \(\mu(x + y, q) = \mu(1x + 1y, q) \geq \mu(x, q) \land \mu(y, q) \)
And \(\mu(-x, q) = \mu(-1x + 0, q) \geq \mu(x, q) \land \mu(0, q) \)
\[= \mu(x, q) \]
Also \(\mu(nx, q) = \mu(nx + m0, q) \geq \mu(x, q) \land \mu(0, q) \)
\[= \mu(x, q) \]
Thus \(\mu \) is a Q-fuzzy N-subgroup of E.

3.7. Theorem: Let E and F be two N-groups and \(f : E \rightarrow F \) be an N-epimorphism. Let \(\mu \) be a Q-fuzzy N-subgroup of E. Then \(f(\mu) \) is a Q-fuzzy N-subgroup of F.

Proof: Given \(\mu \) is a Q-fuzzy N-subgroup of E.
Let \(u, v \in F \) and \(q \in Q \). Then there exist \(x, y \in E \) such that \(f(x) = u \) and \(f(y) = v \)
Now \[f(\mu)(u + v, q) = \bigvee_{f(w) = u + v} \mu(w, q) \]
\[= \bigvee_{f(x + y) = u + v} \mu(x + y, q) \]
\[= \bigvee_{f(x) = u, f(y) = v} \mu(x + y, q) \]
\[\geq \bigvee_{f(x) = u, f(y) = v} [\mu(x, q) \land \mu(y, q)] \]
\[\geq [\bigvee_{f(x) = u} \mu(x, q)] \land [\bigvee_{f(y) = v} \mu(y, q)] \]
\[\geq [f(\mu)](u, q) \land [f(\mu)](v, q) \]
Also it is clear that \(f(\mu)(-x, q) \geq f(\mu)(x, q) \)
Now let \(y \in F \), \(n \in N \) and \(q \in Q \).

Then there exist \(z \in E \) such that \(f(z) = y \) and hence \(f(nz) = ny \)
Now \[f(\mu)(ny, q) = \{ \bigvee_{f(x) = ny} \mu(x, q) : x \in E, q \in Q \} \]
\[= \{ \bigvee_{f(nx) = ny} \mu(nx, q) : nx \in E, q \in Q \} \]
\[= \{ \bigvee_{nf(z) = nz} \mu(nz, q) : nz \in E, q \in Q \} \]
\[\geq \{ \bigvee_{f(z) = y} \mu(z, q) : z \in E, q \in Q \} \]
\[= f(\mu)(y, q) \]
Thus \(f(\mu) \) is a Q-fuzzy N-subgroup of F.
3.8. **Theorem**: Let E and F be two N-groups and $f : E \rightarrow F$ be an N-homomorphism. Let μ be a Q-fuzzy N-subgroup of F. Then $f^{-1}(\mu)$ is a Q-fuzzy N-subgroup of E.

Proof: Let μ be a Q-fuzzy N-subgroup of F. Let $x, y \in E$ and $q \in Q$. Then

\[
[f^{-1}(\mu)](x - y, q) = \mu(f(x - y), q) = \mu(f(x) - f(y), q) \geq \mu(f(x), q) \wedge \mu(f(y), q) \geq f^{-1}(\mu)(x, q) \wedge f^{-1}(\mu)(y, q)
\]

Also $f^{-1}(\mu)(nx, q) = \mu(f(nx), q) = \mu(nf(x), q) \geq \mu(f(x), q) = f^{-1}(\mu)(x, q)$

Therefore $f^{-1}(\mu)$ is a Q-fuzzy N-subgroup of E.

3.9. **Theorem**: The intersection of a non-empty family of Q-fuzzy N-subgroup of an N-group is again a Q-fuzzy N-subgroup of E.

Proof: Straightforward.

3.10. **Definition**: Let μ be a Q-fuzzy set of an N-group E. Then μ is called a Q-fuzzy normal subgroup of E. If

(i) $\mu(x - y, q) \geq \mu(x, q) \wedge \mu(y, q)$.

(ii) $\mu(y + x - y, q) \geq \mu(x, q)$, for all $x, y \in E$, $q \in Q$.

3.11. **Definition**: Let μ be a Q-fuzzy set of an N-subgroup E. Then μ is called a Q-fuzzy ideal of E. If

(i) μ is a Q-fuzzy normal subgroup of E.

(ii) $\mu[n(a + x) - na, q] \geq \mu(x, q)$, for all $x, a \in E$, $n \in N$, $q \in Q$.

3.12. **Theorem**: A Q-fuzzy normal subgroup μ of an group E is a Q-fuzzy ideal of E if

(i) $\mu[-na + n(a + x), q] \geq \mu(x, q)$

(ii) $\mu[-na + n(x + a), q] \geq \mu(x, q)$ for all $x, a \in E$, $n \in N$, $q \in Q$.

Proof: Straightforward.

3.13. **Lemma**: Let μ be a Q-fuzzy ideal of E. Then following holds:

(i) $\mu(0, q) \geq \mu(x, q)$, for all $x \in E$, $q \in Q$.

(ii) \(\mu(x, q) = \mu(-x, q) \), for all \(x \in E \).

(iii) \(\mu^{*} \) is an ideal of \(E \).

Proof: Straightforward.

3.14.**Theorem**: The intersection of non empty family of Q-fuzzy ideal of \(E \) is again a Q-fuzzy ideal of \(E \).

3.15.**Theorem**: A Q-fuzzy set \(\mu \) of \(E \) is a Q-fuzzy ideal of \(E \) if and only if \(\mu_{t} \), for all \(t \in [0,1] \), is an ideal of \(E \).

Proof: Straightforward.

3.16.**Theorem**: Let \(E \) and \(F \) be two N-groups. Let \(f : E \rightarrow F \) be an N-homomorphism. Let \(\mu \) and \(\theta \) be Q-fuzzy ideal of \(E \) and \(F \) respectively. Then

(i) \(f(\mu) \) is a Q-fuzzy ideal of \(F \), if \(f \) is onto.

(ii) \(f^{-1}(\theta) \) is a Q-fuzzy ideal of \(E \).

Proof: (i) let \(x, y \in F \). Then there exist \(a, b \in E \) such that \(f(a) = x \), \(f(b) = y \) and \(q \in Q \). Then by theorem 3.7., \(f(\mu) \) is a Q-fuzzy subgroup of \(E \).

Now \(f(\mu)(y + x - y, q) = \bigvee_{f(a) = x} \mu(a, q) \)
\(\geq \mu(b + a - b, q) \), as \(y + x - y = f(b + a - b) \)
\(\geq \mu(a, q) \), whenever \(f(a) = x \)
\(f(\mu)(y + x - y, q) \geq \bigvee_{f(a) = x} \mu(a, q) \)
\(= f(\mu)(x, q) \)

Also let \(n \in N \) and \(x, y \in F \). since \(f \) is onto ,there exist \(a, b \in E \) such that \(f(a) = x \), \(f(b) = y \)

Now \(f(\mu)(n(x + y) - nx, q) = \bigvee_{f(a) = n(x + y) - nx} \mu(a, q) \)
\(\geq \mu(n(a + b) - na, q) \), as \(n(x + y) - nx = f[n(a + b) - na] \)

Thus \(f(\mu)(n(x + y) - nx, q) \geq \mu(b, q) \) whenever \(f(b) = y \)
\(\geq \bigvee_{f(b) = y} \mu(b, q) \)
\(= f(\mu)(y, q) \)

\(\therefore f(\mu) \) is a Q-fuzzy ideal of \(F \).

(ii) By theorem 3.8., \(f^{-1}(\theta) \) is a Q-fuzzy subgroup of \(E \).

Let \(x, y \in E \) and \(q \in Q \). Then
\[f^{-1}(\theta)(y + x - y, q) = \theta(f(y) + f(x) - f(y), q) \]
\[\geq \theta(f(x), q) \]
\[= f^{-1}(\theta)(x, q) \]

Again let \(x, a \in E \), \(n \in \mathbb{N} \) and \(q \in \mathbb{Q} \). Then
\[f^{-1}(\theta)(n(a + x) - na, q) = \theta[nf(a + x) - nf(a), q] \]
\[\geq \theta(f(x), q) \]
\[= f^{-1}(\theta)(x, q) \]

\(f^{-1}(\theta) \) is a \(Q \)-fuzzy ideal of \(E \).

3.17. Theorem: If \(\mu \) is a \(Q \)-fuzzy ideal of \(E \) and \(\theta \) is a \(Q \)-fuzzy \(N \)-subgroup of \(E \). Then \(\mu + \theta \) is a \(Q \)-fuzzy \(N \)-subgroup of \(E \).

Proof: Let \(x, y \in E \), \(q \in \mathbb{Q} \). Then
\[(\mu + \theta)(x + y, q) = \vee_{x+y=a+b} \{ \mu(a, q) \land \theta(b, q) : a, b \in E, q \in \mathbb{Q} \} \]
\[= \vee_{x+y=(u+v)+(r+s)} \{ \mu(u + v, q) \land \theta(r + s, q) : u, v, r, s \in E, q \in \mathbb{Q} \} \]
\[= \vee_{x+y=r+v, y=v+s} \{ \mu(u + v + r - v, q), \land \theta(v + s, q) \} \]
\[\geq \vee_{x+y=r+v, y=v+s} \{ \mu(u, q) \land \mu(v + r - v, q) \} \land \{ \theta(v, q) \land \theta(s, q) \} \]

Next let \((\mu + \delta)(x, q) = t \) and \(\epsilon > 0 \)

Then \(t - \epsilon < \mu(c, q) \land \theta(d, q) \) for some \(x = c + d, c, d \in E \) and \(q \in \mathbb{Q} \)

\[= \mu(x - d, q) \land \theta(-d, q) \]
\[= \mu(-d + x, q) \land \theta(-d, q) \]
\[= \mu(-(-x + d), q) \land \theta(-d, q) \]
\[= \mu((-x + d), q) \land \theta(-d, q) \]
\[\leq \vee_{-x+d} \{ \mu(a, q) \land \theta(b, q) : a, b \in E \} \]
\[= (\mu + \delta)(-x, q) \]

\[\therefore (\mu + \theta)(-x, q) \geq (\mu + \theta)(x, q) \]
On Q-Fuzzy N-Subgroup and Q-Fuzzy Ideal of An N-Group

Again suppose $(\mu + \theta)(x, q) = m$. So for $\epsilon > 0$ there exist $a + b \in E$ with $x = a + b \in Q$ such that

$$m - \epsilon < \mu(a, q) \wedge \theta(b, q)$$

$$\leq \mu(n(b + a) - nb, q) \wedge \theta(nb, q)$$

$$= \mu(n(a + b) - nb, q) \wedge \theta(nb, q)$$

$$= \mu(r, q) \wedge \theta(s, q)$$

where $n(a + b) = r + s$

Hence $(\mu + \theta)(n x, q) \geq (\mu + \theta)(x, q)$

Thus $\mu + \theta$ is a Q-fuzzy N-subgroup of E.

Reference:
