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Abstract 
 

In this paper, we introduce a new class of functions called fuzzy completely γ-
irresolute functions between fuzzy topological spaces. We obtain several 
characterizations of this class and study its properties and investigate the 
relationship with known functions. 
 
Keywords- fuzzy γ- open set, fuzzy completely γ- irresolute, fuzzy completely 
weakly γ- irresolute, Fuzzy γ- continuous, fuzzy γ-connected. 
 
AMS Subject Classification 2000: 54A40. 

 
 
1.Introduction 
The concept fuzzy has invaded almost all branches of mathematics with the 
introduction of fuzzy sets by Zadeh [13] of 1965. The theory of fuzzy topological 
spaces was introduced and developed by Chang [6] and since then various notions in 
classical topology have been extended to fuzzy topological spaces. In 1989, M.N. 
Mukherjee and S.P. Sinha[9]introduced and studied the concept of fuzzy irresolute 
functions. In 2002 T. Noiri and O. R. Sayed[10], introduced and studied the concept 
of Fuzzy γ -open sets.In this paper we define fuzzy completely γ-irresolute function 
and give several characterizations and their properties. We also study these functions 
comparing with other types of already existing functions.  
 
 
2. Preliminaries 
Throughout this paper (X, ), (Y, ) and (Z, ) (or simply X, Y and Z) represent 
non-empty fuzzy topological spaces on which no separation axioms are assumed, 

  
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unless otherwise mentioned. 
 
Definition2.1 
Let (X, τ) be fuzzy topological space and  be any fuzzy set in X.  
 is called a fuzzy  -open set [11] if   int cl int   
 is called a fuzzy semi-open set [1] if   cl int   
 is called a fuzzy pre-open set [3] if   int cl   
 is called a fuzzy -open set [2] if    cl int cl   
 is called a fuzzy γ –open[10] (or) b- open set [4] if     cl int int cl    . 
 
 The complement of a fuzzy  -open (fuzzy semi-open, fuzzy -open, fuzzy γ -
open set, respectively) set iscalled a fuzzy  -closed (fuzzy semi-closed, fuzzy   - 
closed, fuzzy γ -open respectively). 
 
Definition: 2.2 A function :    f X Y  is called fuzzy completely continuous [5] if 

 1f  is fuzzy regular open in X for every fuzzy open set V of Y. 
 
Definition: 2.3A function :    f X Y  is called fuzzy γ-irresolute[4] (resp. fuzzy γ -

continuous) 1( )f   is fuzzy γ open in X for every fuzzy γ open (resp. fuzzy open) set 
V of Y. 
 
Definition: 2.4 A space ( , )X   is called fuzzy nearly compact[8] (resp.fuzzy γ -
compact ) if every fuzzy regular open (respectively fuzzy γ -open) cover of X has a 
finite subcover. 
 
Definition: 2.5 A space X is called fuzzy almost normal[12] if for each fuzzy closed 
set A and each fuzzy regular closed set B such that A B  , there exists disjoint 
fuzzy open sets U and V such that A U and B V . 
 
 
3. Fuzzy Completely   - Irresolute Function 
Definition3.1Let ( , )X   and ( , )Y   be a fuzzy topological spaces. A function 

   : ,  ,  f X Y   is said to be a fuzzy completely γ -irresolute function if 1f ( )  is 
fuzzy regular open in X for every fuzzy γ -open set  of Y. 
 
Remark 3.1 Every fuzzy strongly continuous function is fuzzy completely γ- 
irresolute, but the converse is not true. 
 
Example 3.1 Let X = {a, b, c}. Define fuzzy sets 1 2 3 4, , , : [0,1]X     such that  
 1 2 3 4( ) 0.6         ( ) 0.3     ( ) 0.6      ( ) 0.3a a a a        

 1 2 3 4( ) 0.5         ( ) 0.4      ( ) 0.5      ( ) 0.4b b b b        
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 1 2 3 4( ) 0.4         ( ) 0.5      ( ) 0.5       ( ) 0.4 c c c c        
 
 Let 1 2 3 4{0, , , , ,1}     and  2 30, , ,1 .   Let : ( , ) ( , )f X Y   be the identity 
function. Then f is fuzzy completely γ- irresolute but not fuzzy strongly continuous.  
 
Remark 3.2 Every completely γ- irresolute function is fuzzy γ-irresolute. But the 
converse is not true. 
 
Example 3.2 Let X = {a, b, c}. Define fuzzy sets 1 2 3 4, , , : [0,1]X      as 
 1 2 3 4( ) 0.6          ( ) 0.3      ( ) 0.6       ( ) 0.3a a a a      

  1 2 3 4( ) 0.5        ( ) 0.4      ( ) 0.5     ( ) 0.4b b b b      

  1 2 3 4( ) 0.4        ( ) 0.5      ( ) 0.5      ( ) 0.4. c c c c        
 
 Let 1 2 3 4{0, , , , ,1}     and  1 40, , ,1   . Let : ( , ) ( , )f X Y   be the 
identity function. Then f is fuzzy γ - irresolute but not fuzzy completely γ irresolute.  
 
Theorem3.1 If    : ,   ,  f X T Y S  is a fuzzycompletely γ - irresolute function A is 
any fuzzy open subset of X, then the restriction | :Af A Y is fuzzy completely γ-
irresolute. 
 
Proof: Let   be a fuzzy γ -open subset of Y. By hypothesis, 1( )f   t is fuzzy 
regular open in X hen. Since A is fuzzy open in X, by previous lemma 
  1 1| ( ) ( )Af f A     is fuzzy regular open in A. Therefore, |Af  is fuzzy completely 
γ - irresolute. 
 
Theorem3.2 The following hold for functions :f X Y and :g Y Z :  

a. If :f X Y  is fuzzy completely γ- irresolute and :g Y Z  is fuzzy γ -
irresolute, then :g f X Z is fuzzy completely γ -irresolute. 

b. If function :f X Y  is fuzzy completely continuous and :g Y Z is fuzzy 
completely γ -irresolute, then :g f X Z is fuzzy completely γ -irresolute. 

c. If :f X Y  is fuzzy completely γ -irresolute and :g Y Z is fuzzy γ -
continuous, then :g f X Z is fuzzy completely continuous. 

 
Proof: Obvious. 
 
Definition 3.2 A space X is said to be fuzzy γ –connected, if X cannot be expressed as 
the union of two nonempty fuzzy γ -open sets. 
 
Theorem3.3 If a mapping :f X Y is fuzzy completely γ -irresolute surjection and X 
is fuzzy almost connected then Y is fuzzy γ -connected. 
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Proof: Assume that X is fuzzy connected and Y is not fuzzy γ - connected. Then Y 
can be written as Y U V  such that U and V are disjoint nonempty fuzzy γ open 
sets. Since f is fuzzy completely γ –irresolute, 1( )f U and 1( )f V  are disjoint fuzzy 
regular open sets and 1 1( ) ( )X f U f V   . This shows that X is not fuzzy connected. 
This is a contradiction. 
 
Definition: 3.3 A space X is called fuzzy almost regular [7](resp. fuzzy strongly γ -
regular) if for any fuzzy regular closed (resp. fuzzy γ- closed) set F X and any point 
x X F  , there exists disjoint fuzzy open (resp. fuzzy γ- open ) sets U and V such 
that x U  and F V . 
 
Definition: 3.4 A function :    f X Y  is called fuzzy pre-γ-closed if the image of 
every fuzzy γ-closed subset of X is fuzzy γ-closed set in Y.  
 
Theorem: 3.4 If a mapping :    f X Y  is fuzzy pre-γ-closed, then for each subset B of 
Y and a fuzzy γ-open set U of X containing 1( )f B , there exists a fuzzy γ-open set V 
in Y containing B such that 1( )f V U  . 
 
Proof: Obvious. 
 
Theorem: 3.5 If f is fuzzy completely γ-irresolute γ-open from an almost regular 
space X onto a space Y, then Y is fuzzy strongly γ-regular. 
 
Proof: Let fbe fuzzy γ- closed set in Y with y F such that y=f(x). Since f is fuzzy 
completely γ-irresolute function, 1( )f F is fuzzy regular closed and so fuzzy closed set 
in X and hence 1( )x f F . By almost regularity of X there exists disjoint fuzzy open 
sets U and V such that x U  and 1( )f F V  . We obtain that ( ) ( )y f x f U   and 

( )F f V  such that f(U) and f(V) are disjoint fuzzy b-open sets. Thus Y is fuzzy 
strongly γ- regular. 
 
Definition: 3.5 A space X is called fuzzy strongly γ normal if for every pair of 
disjoint fuzzy γ closed subsets F1 and F2 of X there exists disjoint fuzzy γ open sets U 
and V such that 1F U and 2F V . 
 
Theorem: 3.6 If f is fuzzy completely γ-irresolute injective function from an fuzzy 
almost normal spaces X onto a space Y then Y is fuzzy strongly γ -normal. 
 
Proof: Let F1 and F2 be disjoint fuzzy γ-closed sets in Y. Since f is fuzzy completely 
γ-irresolute function 1

1( )f F  and 1
2( )f F are disjoint fuzzy regular closed and so 

fuzzy closed set in X. By fuzzy almost normality of X, there exists disjoint fuzzy open 
sets U and V such that 1

1( )f F U  and 1
2( )f F V  . We obtain that 1 ( )F f U and 
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2 ( )F f V such that f(U) and f(V) are disjoint fuzzy γ-open. Thus Y is fuzzy strongly 
γ-normal. 
 
Definition: 3.6 A fuzzy topological space ( , )X   is said to be fuzzy γ- T1 (resp.fuzzy 
r-T1) if for each pair of distinct points x and y of X, there exists fuzzy γ- open (resp. 
fuzzy regular open) sets U1 and U2 such that 1x U  and 2y U , 2x U  and 1y U  . 
 
Theorem: 3.7 If : ( , ) ( , )f X Y   is fuzzy completely γ- irresolute injective function 
and Y is fuzzy γ- T1 then X is fuzzy r-T1. 
 
Proof: Suppose that Y is fuzzy γ- T1. For any two distinct points x and y of X, there 
exists fuzzy γ- open sets F1 and F2 in Y such that 1( )f x F , 2( )f y F , 2( )f x F  and 

1( )f y F . Since f injective fuzzy completely γ- irresolute function, we have X is 
fuzzy r-T1. 
 
Definition: 3.7 A fuzzy topological space ( , )X   is said to be fuzzy γ- T2 (resp. fuzzy 
r-T2) if for each pair of distinct points x and y of X, there exists disjoint fuzzy γ- open 
(resp. fuzzy regular open) sets A and B such that x A  and y B . 
 
Theorem: 3.8 If : ( , ) ( , )f X Y   is fuzzy completely γ- irresolute injective 
function and Y is fuzzy γ- T2 then X is fuzzy r-T2. 
 
Proof: Suppose that Y is fuzzy γ- T2. For any two distinct points x and y of X, there 
exists fuzzy γ- open sets F1 and F2 in Y such that 1( )f x F , 2( )f y F , 2( )f x F  and 

1( )f y F . Since f injective fuzzy completely γ- irresolute function, we have X is 
fuzzy r-T1. 
 
Theorem: 3.9 Let Y be fuzzy 2T   space.  

i. If are fuzzy completely γ- irresolute functions, then the set 
 is fuzzy -closed in X. 

ii. If are fuzzy completely γ-irresolute functions, then the subset
 is fuzzy -closed in . 

 
Proof: We prove (i) only. Let then . Since Y is 2T   space, there 
exists fuzzy -open sets V1 and V2 in Y such that  and and

. Since f and g are fuzzy completely γ- irresolute,  and are 
fuzzy regular open sets. Put . Then U is fuzzy regular open set 
containing x and . Hence we have . 
 
 

, :f g X Y
 : ( ) ( )A x X f x g x   
, :f g X Y

 , : ( ) ( )E x y f x f y   X X

x A ( ) ( )f x g x

1 1( )f x  2 2( )f x 

1 2  
1

1( )f  1
2( )g 

1 1
1 2( ) ( )U f g   

U A  ( )x Cl A 
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4.Fuzzy Completely Weakly γ- irresolute Functions 
Definition: 4.1 A function : ( , ) ( , )f X Y   is said to be fuzzy completely weakly 
γ- irresolute if for each fuzzy point x X   and for any γ- open set   containing 

 f x , there exists an fuzzy open set   containing x such that   .f    
 
Remark: 4.1 It is obvious that every fuzzy completely γ- irresolute function is fuzzy 
completely weakly γ-irresolute and every fuzzy completely weakly γ-irresolute 
function is fuzzy γ- irresolute. However, the converses may not true in general as 
shown in following example. 
 
Example: 4.1 Let X = {a, b, c} and define fuzzy sets 1 2 3, , : [0,1]X     as 

 1 2 3( ) 0.2         ( ) 0.1     ( ) 0a a a    

  1 2 3( ) 0.2         ( ) 0.4      ( ) 0.6b b b    

  1 2 3( ) 0            ( ) 0.6      ( ) 0.8c c c      
 
 Let 1 2 1 2 1 2{0, , , , ,1}         and  20, ,1  . Let : ( , ) ( , )f X X   be the 
identity function. Then f is fuzzy completely weakly γ - irresolute but not fuzzy 
completely γ irresolute. 
 Let  1 20, ,1  and  2 30, ,1  . If 1 2: ( , ) ( , )f X X  is the identity function 
then fis fuzzy γ- irresolute but not fuzzy completely weakly γ- irresolute. 
 
Theorem: 4.1 A function is fuzzy completely weakly γ-irresolute if the 
graph function  defined by  for each is fuzzy 
completely weakly γ-irresolute . 
 
Proof: Let V be any fuzzy γ-open set of Y. Then 1 V is a fuzzy γ-open set of . 
Since g is fuzzy completely γ-irresolute, 1 1( ) (1 )f V g V   is fuzzy regular open in 
X. Thus f is fuzzy completely weakly γ-irresolute.  
 
Theorem: 4.2The following hold for functions  and :  

a. If  is fuzzy completely weakly γ- irresolute and  is fuzzy 
completelyγ-irresolute, then is fuzzy completely weakly γ-
irresolute. 

b. If function  is fuzzy completely continuous and is fuzzy 
completely weakly γ-irresolute, then is fuzzy completely γ-
irresolute. 

c. If  is fuzzy completely γ-irresolute and is fuzzy 
completely weakly γ -irresolute, then is fuzzy completely γ- 
irresolute. 

d. If  is fuzzy γ-continuous and is fuzzy completely weakly 

:    f X Y
: ,g X X Y  ( ) ( , ( ))g x x f x x X

X Y

:f X Y :g Y Z
:f X Y :g Y Z

:g f X Z

:f X Y :g Y Z
:g f X Z

:f X Y :g Y Z
:g f X Z

:f X Y :g Y Z
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γ -irresolute, then is fuzzy γ- irresolute. 
 
Proof: Obvious. 
 
Theorem: 4.3 If : ( , ) ( , )f X Y   is fuzzy completely weakly γ- irresolute injective 
function and Y is fuzzy γ- T2 then X is fuzzy Hausdorff. 
 
Proof: Let x, y be any two distinct points of X. Since f is injective, we have 
   f x f y  . Since Y is fuzzy 2T  , there exists V and W are   open sets in Y 

such that VW = 0. Since f is fuzzy completely weakly γ- irresolute, there exists 
fuzzy open sets G and H in X such that  f G V and   .f H W  Hence we obtain G
H = 0. This shows that X is fuzzy Hausdorff. 
 
Theorem: 4.4 If a function :f X Y is a fuzzy completely weakly γ- irresolute 
surjection and X is fuzzy connected, then Y is fuzzy γ- connected. 
 
Proof: Suppose that Y is not fuzzy γ-connected. There exists non empty fuzzy γ- open 
sets V and W of Y such that Y = VW. Since f is fuzzy completely weakly γ -
irresolute 1( )f V and 1( )f W  are fuzzy open sets and 1 1( ) ( )X f V f W   . This 
shows that X is not fuzzy connected. This is a contradiction. 
 
 
5. Conclusion 
We have defined and proved basic properties of Fuzzy Completely γ-
IrresoluteFunctions and Fuzzy CompletelyWeakly γ-Irresolute Function. Many 
resultshave been established to show how far topological structures are preservedby 
these γ-Irresolute Functions. We also have provided examples where suchproperties 
fail to be preserved. 
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