Some Aspects of Fuzzy Completely γ-Irresolute Functions #### V. Seenivasan and K. Kamala Department of Mathematics, University College of Engineering-Panruti, (A Constituent college of Anna University, Chennai), Panruti-607106. E-mail: seenujsc @yahoo.co.in, krsaut@gmail.com #### **Abstract** In this paper, we introduce a new class of functions called fuzzy completely γ -irresolute functions between fuzzy topological spaces. We obtain several characterizations of this class and study its properties and investigate the relationship with known functions. **Keywords-** fuzzy γ - open set, fuzzy completely γ - irresolute, fuzzy completely weakly γ - irresolute, Fuzzy γ - continuous, fuzzy γ -connected. AMS Subject Classification 2000: 54A40. ## 1.Introduction The concept fuzzy has invaded almost all branches of mathematics with the introduction of fuzzy sets by Zadeh [13] of 1965. The theory of fuzzy topological spaces was introduced and developed by Chang [6] and since then various notions in classical topology have been extended to fuzzy topological spaces. In 1989, M.N. Mukherjee and S.P. Sinha[9]introduced and studied the concept of fuzzy irresolute functions. In 2002 T. Noiri and O. R. Sayed[10], introduced and studied the concept of Fuzzy γ -open sets.In this paper we define fuzzy completely γ -irresolute function and give several characterizations and their properties. We also study these functions comparing with other types of already existing functions. ### 2. Preliminaries Throughout this paper (X, τ) , (Y, σ) and (Z, γ) (or simply X, Y and Z) represent non-empty fuzzy topological spaces on which no separation axioms are assumed, unless otherwise mentioned. #### Definition 2.1 Let (X, τ) be fuzzy topological space and λ be any fuzzy set in X. λ is called a fuzzy α -open set [11] if $\lambda \leq int \ cl \ int \lambda$ λ is called a fuzzy semi-open set [1] if $\lambda \leq cl$ int λ λ is called a fuzzy pre-open set [3] if $\lambda \leq int \ cl \ \lambda$ λ is called a fuzzy β-open set [2] if $\lambda \leq cl$ int $cl\lambda$ λ is called a fuzzy γ –open[10] (or) b- open set [4] if $\lambda \leq cl$ int $\lambda \cup int cl\lambda$. The complement of a fuzzy α -open (fuzzy semi-open, fuzzy β -open, fuzzy γ -open set, respectively) set is called a fuzzy α -closed (fuzzy semi-closed, fuzzy β -closed, fuzzy γ -open respectively). **Definition:** 2.2 A function $f: X \to Y$ is called fuzzy completely continuous [5] if $f^{-1}(\lambda)$ is fuzzy regular open in X for every fuzzy open set V of Y. **Definition:** 2.3A function $f: X \to Y$ is called fuzzy γ -irresolute[4] (resp. fuzzy γ - continuous) $f^{-1}(\lambda)$ is fuzzy γ open in X for every fuzzy γ open (resp. fuzzy open) set V of Y. **Definition:** 2.4 A space (X,τ) is called fuzzy nearly compact[8] (resp.fuzzy γ -compact) if every fuzzy regular open (respectively fuzzy γ -open) cover of X has a finite subcover. **Definition:** 2.5 A space X is called fuzzy almost normal[12] if for each fuzzy closed set A and each fuzzy regular closed set B such that $A \cap B = \phi$, there exists disjoint fuzzy open sets U and V such that $A \leq U$ and $B \leq V$. ## 3. Fuzzy Completely γ - Irresolute Function **Definition 3.1**Let (X,τ) and (Y,σ) be a fuzzy topological spaces. A function $f:(X,\tau)\to(Y,\sigma)$ is said to be a fuzzy completely γ -irresolute function if $f^{-1}(\lambda)$ is fuzzy regular open in X for every fuzzy γ -open set λ of Y. **Remark 3.1** Every fuzzy strongly continuous function is fuzzy completely γ -irresolute, but the converse is not true. **Example 3.1** Let $X = \{a, b, c\}$. Define fuzzy sets $\mu_1, \mu_2, \mu_3, \mu_4 : X \rightarrow [0,1]$ such that $$\mu_1(a) = 0.6$$ $\mu_2(a) = 0.3$ $\mu_3(a) = 0.6$ $\mu_4(a) = 0.3$ $\mu_1(b) = 0.5$ $\mu_2(b) = 0.4$ $\mu_3(b) = 0.5$ $\mu_4(b) = 0.4$ $$\mu_1(c) = 0.4$$ $\mu_2(c) = 0.5$ $\mu_3(c) = 0.5$ $\mu_4(c) = 0.4$ Let $\tau = \{0, \mu_1, \mu_2, \mu_3, \mu_4, 1\}$ and $\sigma = \{0, \mu_2, \mu_3, 1\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is fuzzy completely γ - irresolute but not fuzzy strongly continuous. **Remark 3.2** Every completely γ - irresolute function is fuzzy γ -irresolute. But the converse is not true. **Example 3.2** Let $X = \{a, b, c\}$. Define fuzzy sets $\mu_1, \mu_2, \mu_3, \mu_4 : X \rightarrow [0,1]$ as $$\mu_1(a) = 0.6$$ $\mu_2(a) = 0.3$ $\mu_3(a) = 0.6$ $\mu_4(a) = 0.3$ $\mu_1(b) = 0.5$ $\mu_2(b) = 0.4$ $\mu_3(b) = 0.5$ $\mu_4(b) = 0.4$ $\mu_1(c) = 0.4$ $\mu_2(c) = 0.5$ $\mu_3(c) = 0.5$ $\mu_4(c) = 0.4$ Let $\tau = \{0, \mu_1, \mu_2, \mu_3, \mu_4, 1\}$ and $\sigma = \{0, \mu_1, \mu_4, 1\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is fuzzy γ - irresolute but not fuzzy completely γ irresolute. **Theorem3.1** If $f:(X,T) \to (Y,S)$ is a fuzzycompletely γ - irresolute function A is any fuzzy open subset of X, then the restriction $f|_A:A\to Y$ is fuzzy completely γ -irresolute. **Proof:** Let λ be a fuzzy γ -open subset of Y. By hypothesis, $f^{-1}(\lambda)$ t is fuzzy regular open in X hen. Since A is fuzzy open in X, by previous lemma $(f|_A)^{-1}(\lambda) = f^{-1}(\lambda) \cap A$ is fuzzy regular open in A. Therefore, $f|_A$ is fuzzy completely γ - irresolute. **Theorem3.2** The following hold for functions $f: X \to Y$ and $g: Y \to Z$: - a. If $f: X \to Y$ is fuzzy completely γ irresolute and $g: Y \to Z$ is fuzzy γ irresolute, then $g \circ f: X \to Z$ is fuzzy completely γ -irresolute. - b. If function $f: X \to Y$ is fuzzy completely continuous and $g: Y \to Z$ is fuzzy completely γ -irresolute, then $g \circ f: X \to Z$ is fuzzy completely γ -irresolute. - c. If $f: X \to Y$ is fuzzy completely γ -irresolute and $g: Y \to Z$ is fuzzy γ -continuous, then $g \circ f: X \to Z$ is fuzzy completely continuous. **Proof:** Obvious. **Definition 3.2** A space X is said to be fuzzy γ –connected, if X cannot be expressed as the union of two nonempty fuzzy γ -open sets. **Theorem3.3** If a mapping $f: X \to Y$ is fuzzy completely γ -irresolute surjection and X is fuzzy almost connected then Y is fuzzy γ -connected. **Proof:** Assume that X is fuzzy connected and Y is not fuzzy γ - connected. Then Y can be written as $Y = U \cup V$ such that U and V are disjoint nonempty fuzzy γ open sets. Since f is fuzzy completely γ -irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint fuzzy regular open sets and $X = f^{-1}(U) \cup f^{-1}(V)$. This shows that X is not fuzzy connected. This is a contradiction. **Definition:** 3.3 A space X is called fuzzy almost regular [7](resp. fuzzy strongly γ -regular) if for any fuzzy regular closed (resp. fuzzy γ - closed) set $F \leq X$ and any point $x \in X - F$, there exists disjoint fuzzy open (resp. fuzzy γ - open) sets U and V such that $x \in U$ and $F \leq V$. **Definition:** 3.4 A function $f: X \to Y$ is called fuzzy pre- γ -closed if the image of every fuzzy γ -closed subset of X is fuzzy γ -closed set in Y. **Theorem:** 3.4 If a mapping $f: X \to Y$ is fuzzy pre- γ -closed, then for each subset B of Y and a fuzzy γ -open set U of X containing $f^{-1}(B)$, there exists a fuzzy γ -open set V in Y containing B such that $f^{-1}(V) \le U$. **Proof:** Obvious. **Theorem:** 3.5 If f is fuzzy completely γ -irresolute γ -open from an almost regular space X onto a space Y, then Y is fuzzy strongly γ -regular. **Proof:** Let f be fuzzy γ - closed set in Y with $y \notin F$ such that y = f(x). Since f is fuzzy completely γ -irresolute function, $f^{-1}(F)$ is fuzzy regular closed and so fuzzy closed set in X and hence $x \notin f^{-1}(F)$. By almost regularity of X there exists disjoint fuzzy open sets U and V such that $x \in U$ and $f^{-1}(F) \leq V$. We obtain that $y = f(x) \in f(U)$ and $F \leq f(V)$ such that f(U) and f(V) are disjoint fuzzy b-open sets. Thus Y is fuzzy strongly γ - regular. **Definition:** 3.5 A space X is called fuzzy strongly γ normal if for every pair of disjoint fuzzy γ closed subsets F_1 and F_2 of X there exists disjoint fuzzy γ open sets U and V such that $F_1 \leq U$ and $F_2 \leq V$. **Theorem:** 3.6 If f is fuzzy completely γ -irresolute injective function from an fuzzy almost normal spaces X onto a space Y then Y is fuzzy strongly γ -normal. **Proof:** Let F_1 and F_2 be disjoint fuzzy γ -closed sets in Y. Since f is fuzzy completely γ -irresolute function $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are disjoint fuzzy regular closed and so fuzzy closed set in X. By fuzzy almost normality of X, there exists disjoint fuzzy open sets U and V such that $f^{-1}(F_1) \leq U$ and $f^{-1}(F_2) \leq V$. We obtain that $F_1 \leq f(U)$ and $F_2 \le f(V)$ such that f(U) and f(V) are disjoint fuzzy γ -open. Thus Y is fuzzy strongly γ -normal. **Definition:** 3.6 A fuzzy topological space (X,τ) is said to be fuzzy γ - T_1 (resp.fuzzy r- T_1) if for each pair of distinct points x and y of X, there exists fuzzy γ - open (resp. fuzzy regular open) sets U_1 and U_2 such that $x \in U_1$ and $y \in U_2$, $x \notin U_2$ and $y \notin U_1$. **Theorem:** 3.7 If $f:(X,\tau) \to (Y,\sigma)$ is fuzzy completely γ - irresolute injective function and Y is fuzzy γ - T₁ then X is fuzzy r-T₁. **Proof:** Suppose that Y is fuzzy γ - T_1 . For any two distinct points x and y of X, there exists fuzzy γ - open sets F_1 and F_2 in Y such that $f(x) \in F_1$, $f(y) \in F_2$, $f(x) \notin F_2$ and $f(y) \notin F_1$. Since f injective fuzzy completely γ - irresolute function, we have X is fuzzy r- T_1 . **Definition:** 3.7 A fuzzy topological space (X,τ) is said to be fuzzy γ - T_2 (resp. fuzzy r- T_2) if for each pair of distinct points x and y of X, there exists disjoint fuzzy γ - open (resp. fuzzy regular open) sets A and B such that $x \in A$ and $y \in B$. **Theorem:** 3.8 If $f:(X,\tau) \to (Y,\sigma)$ is fuzzy completely γ - irresolute injective function and Y is fuzzy γ - T_2 then X is fuzzy r- T_2 . **Proof:** Suppose that Y is fuzzy γ - T_2 . For any two distinct points x and y of X, there exists fuzzy γ - open sets F_1 and F_2 in Y such that $f(x) \in F_1$, $f(y) \in F_2$, $f(x) \notin F_2$ and $f(y) \notin F_1$. Since f injective fuzzy completely γ - irresolute function, we have X is fuzzy r- T_1 . **Theorem:** 3.9 Let Y be fuzzy $\gamma - T$, space. - i. If $f, g: X \to Y$ are fuzzy completely γ irresolute functions, then the set $A = \{x \in X : f(x) = g(x)\}$ is fuzzy δ -closed in X. - ii. If $f, g: X \to Y$ are fuzzy completely γ -irresolute functions, then the subset $E = \{x, y: f(x) = f(y)\}$ is fuzzy δ -closed in $X \times X$. **Proof:** We prove (i) only. Let $x \notin A$ then $f(x) \neq g(x)$. Since Y is $\gamma - T_2$ space, there exists fuzzy β -open sets V_1 and V_2 in Y such that $f(x_1) \in \lambda_1$ and $f(x_2) \in \lambda_2$ and $\lambda_1 \cap \lambda_2 = \phi$. Since f and g are fuzzy completely γ - irresolute, $f^{-1}(\lambda_1)$ and $g^{-1}(\lambda_2)$ are fuzzy regular open sets. Put $U = f^{-1}(\lambda_1) \cap g^{-1}(\lambda_2)$. Then U is fuzzy regular open set containing x and $U \cap A = \phi$. Hence we have $x \notin \delta - Cl(A)$. # **4.**Fuzzy Completely Weakly γ- irresolute Functions **Definition:** 4.1 A function $f:(X,\tau)\to (Y,\sigma)$ is said to be fuzzy completely weakly γ - irresolute if for each fuzzy point $x_{\alpha}\in X$ and for any γ - open set λ containing f(x), there exists an fuzzy open set μ containing x such that $f(\mu) \leq \lambda$. **Remark:** 4.1 It is obvious that every fuzzy completely γ - irresolute function is fuzzy completely weakly γ -irresolute and every fuzzy completely weakly γ -irresolute function is fuzzy γ - irresolute. However, the converses may not true in general as shown in following example. **Example:** 4.1 Let $X = \{a, b, c\}$ and define fuzzy sets $\lambda_1, \lambda_2, \lambda_3 : X \to [0,1]$ as $$\begin{split} \lambda_1(a) &= 0.2 & \lambda_2(a) = 0.1 & \lambda_3(a) = 0 \\ \lambda_1(b) &= 0.2 & \lambda_2(b) = 0.4 & \lambda_3(b) = 0.6 \\ \lambda_1(c) &= 0 & \lambda_2(c) = 0.6 & \lambda_3(c) = 0.8 \end{split}$$ Let $\tau = \{0, \lambda_1, \lambda_2, \lambda_1 \vee \lambda_2, \lambda_1 \wedge \lambda_2, 1\}$ and $\sigma = \{0, \lambda_2, 1\}$. Let $f: (X, \tau) \to (X, \sigma)$ be the identity function. Then f is fuzzy completely weakly γ - irresolute but not fuzzy completely γ irresolute. Let $\tau_1 = \{0, \lambda_2, 1\}$ and $\tau_2 = \{0, \lambda_3, 1\}$. If $f: (X, \tau_1) \to (X, \tau_2)$ is the identity function then f is fuzzy γ - irresolute but not fuzzy completely weakly γ - irresolute. **Theorem:** 4.1 A function $f: X \to Y$ is fuzzy completely weakly γ -irresolute if the graph function $g: X \to X \times Y$, defined by g(x) = (x, f(x)) for each $x \in X$ is fuzzy completely weakly γ -irresolute. **Proof:** Let V be any fuzzy γ -open set of Y. Then $1 \times V$ is a fuzzy γ -open set of $X \times Y$. Since g is fuzzy completely γ -irresolute, $f^{-1}(V) = g^{-1}(1 \times V)$ is fuzzy regular open in X. Thus f is fuzzy completely weakly γ -irresolute. **Theorem:** 4.2The following hold for functions $f: X \to Y$ and $g: Y \to Z$: - a. If $f: X \to Y$ is fuzzy completely weakly γ irresolute and $g: Y \to Z$ is fuzzy completely γ -irresolute, then $g \circ f: X \to Z$ is fuzzy completely weakly γ -irresolute. - b. If function $f: X \to Y$ is fuzzy completely continuous and $g: Y \to Z$ is fuzzy completely weakly γ -irresolute, then $g \circ f: X \to Z$ is fuzzy completely γ -irresolute. - c. If $f: X \to Y$ is fuzzy completely γ -irresolute and $g: Y \to Z$ is fuzzy completely weakly γ -irresolute, then $g \circ f: X \to Z$ is fuzzy completely γ -irresolute. - d. If $f: X \to Y$ is fuzzy γ -continuous and $g: Y \to Z$ is fuzzy completely weakly γ -irresolute, then $g \circ f : X \to Z$ is fuzzy γ - irresolute. **Proof:** Obvious. **Theorem:** 4.3 If $f:(X,\tau) \to (Y,\sigma)$ is fuzzy completely weakly γ - irresolute injective function and Y is fuzzy γ - T₂ then X is fuzzy Hausdorff. **Proof:** Let x, y be any two distinct points of X. Since f is injective, we have $f(x) \neq f(y)$. Since Y is fuzzy $\gamma - T_2$, there exists V and W are γ open sets in Y such that $V \wedge W = 0$. Since f is fuzzy completely weakly γ - irresolute, there exists fuzzy open sets G and H in X such that $f(G) \leq V$ and $f(H) \leq W$. Hence we obtain G \wedge H = 0. This shows that X is fuzzy Hausdorff. **Theorem:** 4.4 If a function $f: X \to Y$ is a fuzzy completely weakly γ - irresolute surjection and X is fuzzy connected, then Y is fuzzy γ - connected. **Proof:** Suppose that Y is not fuzzy γ -connected. There exists non empty fuzzy γ - open sets V and W of Y such that $Y = V \vee W$. Since f is fuzzy completely weakly γ - irresolute $f^{-1}(V)$ and $f^{-1}(W)$ are fuzzy open sets and $X = f^{-1}(V) \vee f^{-1}(W)$. This shows that X is not fuzzy connected. This is a contradiction. #### 5. Conclusion We have defined and proved basic properties of Fuzzy Completely γ -IrresoluteFunctions and Fuzzy CompletelyWeakly γ -Irresolute Function. Many resultshave been established to show how far topological structures are preservedby these γ -Irresolute Functions. We also have provided examples where such properties fail to be preserved. ## 6. Acknowledgement The author is grateful to the mathematicians who were all given the valuable comments and corrections on earlier drafts of this article. ## References - [1] Azad, K.K. On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, *J. Math. Anal.Appl.*82 (1981), 14-32. - [2] Balasubramanian G On fuzzy β -Compact spaces and fuzzy β -extremally disconnected spaces, *Kybernetika* 33(1997), 271-277. - [3] Bin Shahna, A.S On Fuzzy strong semi continuity and fuzzy precontinuity. *Fuzzy sets and systems* 44(1991), 303-308. - [4] S.S.Benchalli and JeniferKarnel, On Fuzzy γ- Neighbourhoods and Fuzzy γ- Mappings in Fuzzy Topological Spaces, *J. Computer and Mathematical Sciences*, 1(6), 2010, 696-701. - [5] R.N. Bhaumik and AnjanMukerjee, Fuzzy Completely continuous mappings, Fuzzy Sets and systems, vol. 56, (1993)243-246. - [6] Chang, C.L.: Fuzzy topological spaces, J. Math. Anal. 24 (1968), 182-190. - [7] Chang-Jia Li and Ji-Shu Chang Fuzzy Almost Regular and Fuzzy Strong Hausdorff separation properties, Machine learning and Cybermetics, (2004) 1177-1181. - [8] Es A Haydor, _Almost compactness and nearly compactness in fuzzy topological spaces, Fuzzy Sets and Systems 22(1987), 189-202. - [9] M.N. Mukherjee and S.P. Sinha, Irresolute and almost open functions between fuzzy topological spaces, *Fuzzy Sets and Systems* 29 (3) (1989), 381–388. - [10] T. Noiri and O. R. Sayed, "Fuzzy γ -open sets and fuzzy γ -continuity in fuzzifying topology", Sci. Math. Jpn. 55(2002), 255 -263, - [11] R. Prasad, S. S. Thakur and R. K. Saraf, Fuzzy α-irresolute mappings, *J. Fuzzy Math.* 2 (2) (1994), 335-339. - [12] S.P. Sinha, Fuzzy normality and some of its weaker forms, Bull. Korean Math. Soc.28(1991), No.1, PP.89-97. - [13] Zadeh, L.A. Fuzzy Sets, Information and control8 (1965), 338-353.