On Fuzzy 2-Inner Product Spaces

Parijat Sinha ${ }^{1}$, Ghanshyam Lal ${ }^{2}$ and Divya Mishra ${ }^{2}$
${ }^{1}$ Department of Mathematics, V.S.S.D. College, Kanpur, ${ }^{2}$ Department of Mathematics, M.G.C.G. University, Satna (INDIA) Ghanshyamlal.1985@gmail.com

Abstract

In this paper, the concept of fuzzy 2 -inner product space is introduced. By virtue of this definition $\alpha-2$-norm is defined and the parallelogram law is proved. Again the relative fuzzy 2 -norm with respect to the fuzzy 2 -inner product space is defined. Some theorems and polarization identity is proved.

Keywords: Fuzzy 2-inner product space, crisp 2- norm, fuzzy 2-Hilbert space, parallelogram law, polarization identity.

INTRODUCTION:

The concept of fuzzy set was introduced by Zadeh [11] in 1965. A satisfactory theory of 2 -norm on a linear space has been introduced and developed by Gähler in [12]. Katsaras [10] in 1984, first introduced the notion of fuzzy norm on a linear space.

In 1992, Felbin [8] introduced an idea of fuzzy norm on a linear space by assigning a fuzzy real number to each element of the linear space so that the corresponding metric associated this fuzzy norm is of Kaleva type [9] fuzzy metric.

Cheng and Modenson [7], Bag and Samanta [4-6] have given different definition of fuzzy normed spaces. In recent past lots of work have been done in this topic of fuzzy function analysis but only a few works have been done fuzzy inner product spaces.

Pinaki Majumdar and S.K.Samanta [2] have defined fuzzy inner product in a linear space and some properties of fuzzy inner product function. They also proved parallelogram law and polarization identity.

In this paper we introduce the concept of fuzzy 2 -inner product space and some theorems on fuzzy 2- inner product space are established. We have also generalized parallelogram law and polarization identity in fuzzy 2-inner product space.

PRELIMINARIES:

In this section some definition and preliminaries results are given which will be used in this paper.

Definition 2.1 [1]: Let X be a linear space over a field F . A fuzzy subset N of $\mathrm{X} \times \mathrm{X} \times$ R (R is the set of real numbers) is called a fuzzy 2 -norms on X if and only if.

1. for all $t \in R$, with $t \leq 0, N\left(x_{1}, x_{2}, t\right)=0$
2. for all $t \in R$, with $t>0, N\left(x_{1}, x_{2}, t\right)=1$ if and only if x_{1} and x_{2} are linearly dependent.
3. $N\left(x_{1}, x_{2}, t\right)$ is invarient under any permutation of x_{1}, x_{2}.
4. for all $t \in R$, with $t>0$
$\mathrm{N}\left(\mathrm{x}_{1}, \mathrm{cx}_{2}, \mathrm{t}\right)=\mathrm{N}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \frac{\mathrm{t}}{|\mathrm{c}|}\right)$ if $\mathrm{c} \neq 0, \mathrm{c} \in \mathrm{F}$.
5. for all $s, t \in R$
$\mathrm{N}\left(\mathrm{x}_{1}, \mathrm{x}_{2}+\mathrm{x}_{2}^{\prime}, \mathrm{s}+\mathrm{t}\right) \geq \min \left\{\mathrm{N}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~s}\right), \mathrm{N}\left(\mathrm{x}_{1}, \mathrm{x}_{2}^{\prime}, \mathrm{t}\right)\right\}$
6. $N\left(x_{1}, x_{2}, \bullet\right)$ is non-decreasing function of R and $\lim _{t \rightarrow \infty} N\left(x_{1}, x_{2}, t\right)=1$
then (X, N) is called a fuzzy 2-normed linear space.
Note (1.1) : N is fuzzy 2- norm on X in the sense that associated to $x \in X$ and $t \in R$, $\mathrm{N}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{t}\right)$ indicates the truth value of the statement. The real number t is greater or equal to norm of x and which belongs to [0,1].

Example 2.1: Let (X, ||., .||) be 2-normed linear space define

$$
\mathrm{N}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{t}\right)=\frac{t}{t+\left\|x_{1} x_{2}\right\|} \text { when } \mathrm{t}>0, \mathrm{t} \in \mathrm{R}, \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}
$$

Then (X,N) fuzzy 2-normed linear space.
Theorem 2.1[1]: Let (X, N) be a fuzzy 2- normed linear space. Assume that $\left(\mathrm{N}_{7}\right) \mathrm{N}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{t}\right)>0$

For all $\mathrm{t}>0$ implies x_{1} and x_{2} are linearly dependent, define $\left\|\mathrm{x}_{1}, \mathrm{x}_{2}\right\|_{\alpha}=\inf \{\mathrm{t}$: $\left.\mathrm{N}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{t}\right) \geq \alpha \in(0,1)\right\}$. Then $\left\{\|., .\|_{\alpha}: \alpha \in[0,1)\right\}$ is an ascending family of 2norms on X . These 2 -norms are called α-2-norms on X corresponding to the fuzzy 2norms.

Let X be a linear space of dimension greater than one over the field K (either R or C).

The function 〈., .. $\rangle: \mathrm{X} \times \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{K}$ is called a 2-inner product if the following conditions holds:
A1: $\langle\mathrm{x}, \mathrm{x} \mid z\rangle \geq 0$ and $\langle\mathrm{x}, \mathrm{x} \mid z\rangle=0$ iff x and z are linearly dependent.
$\mathrm{A} 2: \quad\langle\mathrm{x}, \mathrm{x} \mid z\rangle=\langle\mathrm{z}, \mathrm{z} \mid x\rangle$.
A3: $\quad\langle\mathrm{x}, \mathrm{y} \mid z\rangle=\langle\mathrm{y}, \mathrm{x} \mid z\rangle$.
A4: $\quad\langle\alpha \mathrm{x}, \mathrm{y} \mid z\rangle=\alpha\langle\mathrm{x}, \mathrm{y} \mid z\rangle$, for all scalars $\alpha \in \mathrm{K}$.
A5 : $\quad\left\langle\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y} \mid z\right\rangle=\left\langle\mathrm{x}_{1}, \mathrm{y} \mid z\right\rangle+\left\langle\mathrm{x}_{2}, \mathrm{y} \mid z\right\rangle$.

Therefore, the pair $(\mathrm{X},\langle., . \mid\rangle$.$) is called a 2$-inner product space.

3. Definition of fuzzy $\mathbf{2}$-inner product space and its properties :

In this section we introduce the definition of fuzzy 2 -inner product on real or complex linear space and give an example of it. A fuzzy 2 -norm is derived from the fuzzy 2 inner product and it is shown that the α-2-norms of the induced fuzzy 2 - norm obey parallelogram law.

Definition (3.1): Let X be a linear space over the field C of complex numbers. Let $\eta: \mathrm{X} \times \mathrm{X} \times \mathrm{X} \times \mathrm{C} \rightarrow[0,1]$ be mapping such that

1. For $\mathrm{s}, \mathrm{t} \in \mathrm{C}, \square\left(\mathrm{x}_{1}+x_{1}^{\prime}, \mathrm{x}_{2}\left|\mathrm{x}_{3},|\mathrm{t}|+|\mathrm{s}|\right) \geq \min \left\{\eta\left(\mathrm{x}_{1}, \mathrm{x}_{2}\left|\mathrm{x}_{3},|\mathrm{t}|\right), \eta\left(x_{1}^{\prime}\right.\right.\right.\right.$, $\left.\left.\mathrm{x}_{2} \mid \mathrm{x}_{3}, \mathrm{ls} \mathrm{l}\right)\right\}$
2. For $\mathrm{s}, \mathrm{t} \in \mathrm{C},\left\lceil\left(\mathrm{x}_{1}, \mathrm{x}_{2}\left|\mathrm{x}_{3},|\mathrm{st}|\right) \geq \min \left\{\eta\left(\mathrm{x}_{1}, \mathrm{x}_{2}\left|\mathrm{x}_{3},|\mathrm{~s}|^{2}\right), \eta\left(\mathrm{x}_{2}, \mathrm{x}_{2}\left|\mathrm{x}_{3},|\mathrm{t}|^{2}\right)\right\}\right.\right.\right.\right.$
3. For $t \in C, ~\left\lceil\left(x_{1}, x_{2} \mid x_{3}, t\right)=\eta\left(x_{2}, x_{2} \mid x_{3}, t\right)\right.$
4. $\left(\alpha x_{1}, x_{2} \mid x_{3}, t\right)=\eta\left(x_{1}, x_{2} \mid x_{3}, \frac{t}{|\alpha|}\right), \alpha(\neq 0) \in \mathrm{C}, \mathrm{t} \in \mathrm{C}$
5. $\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mid \mathrm{x}_{3}, \mathrm{t}\right)=0, \forall \mathrm{t} \in \mathrm{C} \backslash \mathrm{R}^{+}$
6. $\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mid \mathrm{x}_{3}, \mathrm{t}\right)=1, \forall \mathrm{t}>0$ iff, $\mathrm{f}=0$
7. $\left(x_{1}, x_{2} \mid x_{3}, t\right): R \rightarrow[0,1]$ is a monotonic non-decreasing function of R and $\lim _{t \rightarrow \infty} \eta\left(x_{1}, x_{2} \mid x_{3}, t\right)=1$ as $t \rightarrow \infty$

Then \dagger is said to be fuzzy 2 -inner product space on X and the pair (X, η) is called a fuzzy 2-inner product space.

Example (3.1): Let (X, $\boldsymbol{\eta}$) be an 2- inner product space. Define

$$
\boldsymbol{\eta}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mid \mathrm{x}_{3}, \mathrm{t}\right)=\frac{t}{t+\left\langle x_{1}, x_{2} \mid x_{3}\right\rangle} \text { when } t>0, t \in R
$$

$$
0, \quad \text { when } t \leq 0
$$

Definition (3.2): Let (X, η) be a fuzzy 2 -inner product space satisfying the condition
$\left\{\eta\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mid \mathrm{x}_{3}, \mathrm{t}^{2}\right)>0, t>0\right\}$ implies that $\mathrm{x}=0$. Then $\forall \alpha(0,1)$, define $\|x, x\|_{\alpha}=$ $\inf \left\{t: \eta\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mid \mathrm{x}_{3}, \mathrm{t}^{2}\right) \geq \alpha\right\}$ is a crisp 2- norm on X , called the α-2-norm on X generated from η.

In the sequel we can consider the following condition, For $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \in \mathrm{X}$ and $\mathrm{s}, \mathrm{t} \in$ R,
$\eta\left(x_{1}+x_{2}, x_{1}+x_{2} \mid x_{3}, 2 s^{2}\right) \wedge \eta\left(x_{1}-x_{2}, x_{1}-x_{2} \mid x_{3}, 2 t^{2}\right)$
$\geq \eta\left(x_{1}, x_{1}{ }^{1} x_{3}, t^{2}\right) \wedge \eta\left(x_{2}, x_{2} \mid x_{3}, x^{2}\right)$.
Theorem (3.2): Let η be a fuzzy 2 -inner product space on X . Then $\mathrm{N}: \mathrm{X} \times \mathrm{X} \times$ $\mathrm{R} \rightarrow[0,1]$ defined by $\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{t})=\left\{\begin{array}{l}\eta\left(x, x \mid y, t^{2}\right) \text { when } t>0, t \in R \\ 0, \quad \text { when } t \leq 0\end{array}\right.$
is a fuzzy 2-norm on X .

Proof:

1. By definition $\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{t})=0 \forall t \in R$ and $t \leq 0$.
2. Again from eq. (6) for $\mathrm{t}>0, \eta\left(\mathrm{x}, \mathrm{x} \mid \mathrm{y}, \mathrm{t}^{2}\right)=1$ iff, $\mathrm{f}=0$ therefore it is follows that $\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{t})=1$ iff, $\mathrm{x}=0$.
3. For all $t>0$ and $c \neq 0, N(c x, c y, t)=\eta\left(c x, c x \mid y, t^{2}\right)$
$=\eta\left(x, \operatorname{cxly}, \frac{\mathrm{t}^{2}}{\mid \mathrm{cl}}\right)$
$=\eta\left(x, x \mid y, \frac{t^{2}}{|c|^{2}}\right)$
$=\mathrm{N}\left(\mathrm{x}, \mathrm{y}, \frac{\mathrm{t}}{\mid \mathrm{cc\mid}}\right)$
4. To prove that, $\mathrm{N}\left(\mathrm{x}_{1}+x_{1}^{\prime}, \mathrm{x}_{2}, \mathrm{~s}+\mathrm{t}\right) \geq \min \left\{N\left(x_{1}, x_{2}, s\right), N\left(x_{1}^{\prime}, x_{2}, t\right)\right\}$ for every
$\mathrm{s}, \mathrm{t} \in \mathrm{R}, \mathrm{x}_{1}, x_{1}^{\prime}, \mathrm{x}_{2} \in \mathrm{X}$.
Let us consider the following cases:
$\mathrm{s}+\mathrm{t}<0$, (b) $\mathrm{s}=\mathrm{t}=0, \mathrm{~s}>0, \mathrm{t}<0$ or $\mathrm{s}<0, \mathrm{t}>0$, (c) $\mathrm{s}+\mathrm{t}>0, \mathrm{~s}, \mathrm{t} \geq 0$.
Let us prove (c)

$$
\begin{aligned}
& \mathrm{N}\left(\mathrm{x}_{1}+x_{1}^{\prime}, \mathrm{x}_{2}, \mathrm{~s}+\mathrm{t}\right)=\eta\left(\mathrm{x}_{1}+x_{1}^{\prime}, \mathrm{x}_{1}+x_{1}^{\prime} \mid \mathrm{x}_{2},(\mathrm{~s}+\mathrm{t})^{2}\right) \\
& \quad=\eta\left(\mathrm{x}_{1}+x_{1}^{\prime}, \mathrm{x}_{1}+x_{1}^{\prime} \mid \mathrm{x}_{2}, \mathrm{~s}^{2}+\mathrm{st}+\mathrm{st}+\mathrm{t}^{2}\right) \\
& \quad \geq \eta\left(\mathrm{x}_{1}, \mathrm{x}_{1} \mid \mathrm{x}_{2}, \mathrm{~s}^{2}\right) \wedge \eta\left(x_{1}^{\prime}, x_{1}^{\prime} \mid \mathrm{x}_{2}, \mathrm{t}^{2}\right) \wedge \eta\left(\mathrm{x}_{1}, x_{1}^{\prime} \mid \mathrm{x}_{2}, \mathrm{st}\right) \\
& \quad \geq \eta\left(\mathrm{x}_{1}, \mathrm{x}_{1} \mid \mathrm{x}_{2}, \mathrm{t}^{2}\right) \wedge \eta\left(x_{1}^{\prime}, x_{1}^{\prime} \mid \mathrm{x}_{2}, \mathrm{t}^{2}\right) \\
& \quad=\min \left\{\mathrm{N}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~s}^{2}\right), \mathrm{N}\left(x_{1}^{\prime}, x_{1}^{\prime} \mid \mathrm{x}_{2}, \mathrm{t}^{2}\right)\right\}
\end{aligned}
$$

and (b) follows immediately.
5. From equation (7), $\eta\left(x_{1}, x_{1} \mid x_{2}, \bullet\right)$ is a monotonic non-decreasing function and tends to 1 as $\mathrm{t} \rightarrow \infty$. Thus $N\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \bullet\right)$ is a monotonic non-decreasing function and tends to 1 as $t \rightarrow \infty$.

Theorem (3.3) (Parallelogram Law) :

Let be a fuzzy 2 -inner product space on $\mathrm{X}, \alpha \in(0,1)$ and $\|., .\|_{\alpha}$ be the α - 2 -norm generated from fuzzy 2 -inner product η on X. Then,
$\|x-y, z\|_{\alpha}^{2}+\|x+y, z\|_{\alpha}^{2}=2\left(\|x, z\|_{\alpha}^{2}+\|y, z\|_{\alpha}^{2}\right)$.

Proof:

$\|\mathrm{x}-\mathrm{y}, \mathrm{z}\|_{\alpha}^{2}+\|\mathrm{x}+\mathrm{y}, \mathrm{z}\|_{\alpha}^{2}=\inf \left\{\mathrm{t}^{2}: \mathrm{t} \in R^{+}\right.$and $\left.\mathrm{N}(\mathrm{x}-\mathrm{y}, \mathrm{z}, \mathrm{t}) \geq \alpha\right\}+\inf \left\{\mathrm{s}^{2}: \mathrm{s} \in R^{+}\right.$and $\mathrm{N}(\mathrm{x}+\mathrm{y}, \mathrm{z}, \mathrm{t}) \geq \alpha\}$, where N is the fuzzy 2 - norm induced from η.
$=\inf \left\{\mathrm{t}^{2}+\mathrm{s}^{2}: \mathrm{t}, s \in R^{+}\right.$and $\left.\mathrm{N}(\mathrm{x}-\mathrm{y}, \mathrm{z}, \mathrm{t}) \geq \alpha, \mathrm{N}(\mathrm{x}+\mathrm{y}, \mathrm{z}, \mathrm{t}) \geq \alpha\right\}$
$=\inf \left\{\mathrm{t}^{2}+\mathrm{s}^{2}: \mathrm{t}, s \in R^{+}\right.$and $\left.\mathrm{N}(\mathrm{x}-\mathrm{y}, \mathrm{z}, \mathrm{t}) \wedge \mathrm{N}(\mathrm{x}+\mathrm{y}, \mathrm{z}, \mathrm{t}) \geq \alpha\right\}$
Also,
$2\left(\|\mathrm{x}, \mathrm{z}\|_{\alpha}^{2}+\|\mathrm{y}, \mathrm{z}\|_{\alpha}^{2}\right)=2 \inf \left\{\mathrm{p}^{2}: \mathrm{p} \in R^{+}\right.$and $\left.\mathrm{N}(\mathrm{x}, \mathrm{z}, \mathrm{p}) \geq \alpha\right\}+2 \inf \left\{\mathrm{q}^{2}: \mathrm{q} \in R^{+}\right.$and $\mathrm{N}(\mathrm{y}, \mathrm{z}, \mathrm{q}) \geq \alpha\}$
$=2 \inf \left\{\mathrm{p}^{2}+\mathrm{q}^{2}: \mathrm{p}, q \in R^{+}\right.$and $\left.\mathrm{N}(\mathrm{x}, \mathrm{z}, \mathrm{p}) \wedge \mathrm{N}(\mathrm{y}, \mathrm{z}, \mathrm{q}) \geq \alpha\right\}$
Again, $\mathrm{N}(\mathrm{x}-\mathrm{y}, \mathrm{z}, \sqrt{2} p) \wedge \mathrm{N}(\mathrm{x}+\mathrm{y}, \mathrm{z}, \sqrt{2} q) \mathrm{F}_{\mathrm{N}}(\mathrm{x}, \mathrm{z}, \mathrm{p}) \wedge \mathrm{N}(\mathrm{y}, \mathrm{z}, \mathrm{q})$
Hence we get,

$$
\|x-y, z\|_{\alpha}^{2}+\|x+y, z\|_{\alpha}^{2} \leq 2\left(\|x, z\|_{\alpha}^{2}+\|y, z\|_{\alpha}^{2}\right)
$$

Also,
$2\left(\|\mathrm{x}, \mathrm{z}\|_{\alpha}^{2}+\|\mathrm{y}, \mathrm{z}\|_{\alpha}^{2}\right)=2\left(\left\|\frac{x+y}{2}+\frac{x-y}{2}, z\right\|_{\alpha}^{2}+\left\|\frac{x+y}{2}-\frac{x-y}{2}, z\right\|_{\alpha}^{2}\right)$

$$
\begin{aligned}
& \quad \frac{1}{2}\left(\|(x+y)+(x-y), z\|_{\alpha}^{2}+\|(x+y)-(x-y), z\|_{\alpha}^{2}\right) \\
& \leq \frac{1}{2}\left[\|\mathrm{x}+\mathrm{y}, \mathrm{z}\|_{\alpha}^{2}+\|\mathrm{x}-\mathrm{y}, \mathrm{z}\|_{\alpha}^{2}+2\|\mathrm{x}+\mathrm{y}, \mathrm{z}\|_{\alpha}\|\mathrm{x}-\mathrm{y}, \mathrm{z}\|_{\alpha}+\|\mathrm{y}+\mathrm{x}, \mathrm{z}\|_{\alpha}^{2}+\right. \\
&\left.\|\mathrm{x}-\mathrm{y}, \mathrm{z}\|_{\alpha}^{2}-2\|\mathrm{x}+\mathrm{y}, \mathrm{z}\|_{\alpha}\|\mathrm{x}-\mathrm{y}, \mathrm{z}\|_{\alpha}\right] \\
& \leq \frac{1}{2} \times 2\left[\|\mathrm{x}+\mathrm{y}, \mathrm{z}\|_{\alpha}^{2}+\|\mathrm{x}-\mathrm{y}, \mathrm{z}\|_{\alpha}^{2}\right] \\
&=\|\mathrm{x}+\mathrm{y}, \mathrm{z}\|_{\alpha}^{2}+\|\mathrm{x}-\mathrm{y}, \mathrm{z}\|_{\alpha}^{2}
\end{aligned}
$$

Therefore,

$$
\|x-y, z\|_{\alpha}^{2}+\|x+y, z\|_{\alpha}^{2}=2\left(\|x, z\|_{\alpha}^{2}+\|y, z\|_{\alpha}^{2}\right) .
$$

Hence Proved.
Theorem(3.4): If a fuzzy 2 -inner product space (X, η) is strictly convex and if $\eta(\mathrm{x}, \mathrm{ylz}, \mathrm{t})=\|\mathrm{x}, \mathrm{z}\|_{\alpha}\|\mathrm{y}, \mathrm{z}\|_{\alpha}$ then x and y are linearly dependent.

Proof : Suppose (X, η) is strictly convex and $\eta(x, y \mid z, t)=\|x, z\|_{\alpha}\|y, z\|_{\alpha}$, then $\left(\|x, z\|_{\alpha}+\|y, z\|_{\alpha}\right)\left(\|y, z\|_{\alpha}\right) \geq\|x+y, z\|_{\alpha}\|y, z\|_{\alpha}$

$$
\begin{aligned}
& \eta \eta(x+y, y \mid z, t) \\
& \geq \min \{\eta(x, y \mid z, t), \eta(y, y l z, t)\} \\
& =\|x, z\|_{\alpha}\|y, z\|_{\alpha}+\|y, z\|_{\alpha}\|y, z\|_{\alpha} \\
& =\left(\|x, z\|_{\alpha}+\|y, z\|_{\alpha}\right)\|y, z\|_{\alpha}
\end{aligned}
$$

Therefore $\|x+y, z\|_{\alpha}=\|x, z\|_{\alpha}+\|y, z\|_{\alpha}$ and since (X, η) is strictly convex so x and y are linearly dependent.

Theorem (3.5): Let (X, η) be a fuzzy 2 -inner product space. If $\eta(x, y \mid z, t)=$ $\eta\left(x^{\prime}, \mathrm{y} \mathrm{z}, \mathrm{t}\right)$ for all $\mathrm{y} \in X$ then x and x^{\prime} are dependent.

Proof: By definition,

$$
\begin{aligned}
& \eta\left(x-x^{\prime}, y \mid z, t\right) \geq \min \left\{\eta(x, y \mid z, t), \eta\left(-x^{\prime}, y \mid z, t\right)\right\} \\
& =\min \left\{\eta(x, y \mid z, t), \eta\left(x^{\prime}, y \mid z, \frac{\mathrm{t}}{|-1|}\right)\right\} \\
& =\min \left\{\eta(x, y \mid z, t), \eta\left(x^{\prime}, y \mid z, t\right)\right\} \\
& =\min \{\eta(x, y \mid z, t)\}
\end{aligned}
$$

So x and x^{\prime} are linearly dependent.
Definition (3.2): A sequence $\left\{x_{n}, x_{n}^{\prime}\right\}$ in a fuzzy 2- normed linear space (X, N) is called a cauchy sequence with respect to $\alpha-2$-norm if

$$
\lim \left(\left\|\left(x_{n}, x_{n}^{\prime}\right)-\left(x_{m}, x_{m}^{\prime}\right)\right\|_{\alpha}\right)=0 \quad \text { as } \quad \mathrm{m}, \mathrm{n} \rightarrow \infty,
$$

$$
\Rightarrow \lim \left(\left\|\left(x_{n}-x_{m}\right),\left(x_{n}^{\prime}-x_{m}^{\prime}\right)\right\|_{\alpha}\right)=0 \quad \text { as } \quad \mathrm{m}, \mathrm{n} \rightarrow \infty .
$$

Definition (3.3): A sequence $\left\{x_{n}, x_{n}^{\prime}\right\}$ in a fuzzy 2- normed linear space (X, N) is called convergent sequence with respect to α-2-norm if there exist $\left(x, x^{\prime}\right) \in A \times B$, where A, B are subspace of (X, N) such that

$$
\begin{aligned}
& \lim \left(\left\|\left(x_{n}, x_{n}^{\prime}\right)-\left(x, x^{\prime}\right)\right\|_{\alpha}\right)=0 \quad \text { as } \quad \mathrm{n} \rightarrow \infty, \\
& \lim \left(\left\|\left(x_{n}-x\right)-\left(x_{n}^{\prime}-x^{\prime}\right)\right\|_{\alpha}\right)=0 \quad \text { as } \quad \mathrm{n} \rightarrow \infty
\end{aligned}
$$

Definition (3.4): A fuzzy 2-normed linear space (X, N) is said to be complete if every cauchy sequence conveges.

Definition(3.5): A complete fuzzy 2-normed linear space (X, N) is called fuzzy 2Banach space.

Definition (3.6): A complex fuzzy 2-Banach space (X, N) is said to be fuzzy 2Hilbert space. If its $\alpha-2$-norm is induced by the fuzzy 2 -inner product.
Theorem (3.6): Polarisation identity: If x, y, z are the elements of the fuzzy 2 -inner
product space (X, η), then

$$
4 \eta(x, y \mid z, s t)=\|x+y, z\|_{\alpha}^{2}-\|x-y, z\|_{\alpha}^{2}+i\|x+i y, z\|_{\alpha}^{2}-i\|x-i y, z\|_{\alpha}^{2}
$$

Proof: We know that

$$
\begin{aligned}
& \|x+y, z\|_{\alpha}^{2}-\|x-y, z\|_{\alpha}^{2}+i\|x+i y, z\|_{\alpha}^{2}-i\|x-i y, z\|_{\alpha}^{2} \\
& =\eta\left((x+y),(x+y) \mid z,(s+t)^{2}\right)-\eta\left((x-y),(x-y) \mid z,(s-t)^{2}\right) \\
& +i \eta\left((x+i y),(x+i y) \mid z,(s+t)^{2}\right)-i \eta\left((x-i y),(x-i y) \mid z,(s-t)^{2}\right) \\
& =\eta\left((x+y),(x+y) \mid z, s^{2}+s t+s t+t^{2}\right)-\eta\left((x-y),(x-y) \mid z, s^{2}-s t-s t+t^{2}\right) \\
& +i \eta\left((x+i y),(x+i y) \mid z, s^{2}+s t+s t+t^{2}\right)-i \eta\left((x-i y),(x-i y) \mid z, s^{2}-s t-s t+t^{2}\right) \\
& =\eta\left(x, x \mid z, s^{2}\right)+\eta(x, y \mid z, s t)+\eta(y, x \mid z, s t)+\eta\left(y, y \mid z, t^{2}\right)-\eta\left(x, x \mid z, s^{2}\right)-\eta(x-y \mid z,-s t) \\
& -\eta(-y, x \mid z,-s t)-\eta\left(-y,-y \mid z, t^{2}\right)+i \eta\left(x, x \mid z, s^{2}\right)+i \eta(x, i y \mid z, s t)+i \eta(i y, x \mid z, s t) \\
& +i \eta\left(i y, i y \mid z, t^{2}\right)-i \eta\left(x, x \mid z, s^{2}\right)-i \eta(x,-i y \mid z,-s t)-i \eta(-i y, x \mid z,-s t)-i \eta\left(-i y,-i y \mid z, t^{2}\right) \\
& =\eta\left(x, x \mid z, s^{2}\right)+\eta(x, y \mid z, s t)+\eta(y, x \mid z, s t)+\eta\left(y, y \mid z, t^{2}\right)-\eta\left(x, x \mid z, s^{2}\right)-\eta\left(x, y \mid z, \frac{-s t}{|-1|}\right) \\
& -\eta\left(y, x \mid z, \frac{s t}{|-1|}\right)-\eta\left(y, y \mid z, t^{2}\right)+i \eta\left(x, x \mid z, s^{2}\right)+i \eta(x, i y \mid z, s t)+i \eta(i y, x \mid z, s t) \\
& +i \eta\left(i y, i y \mid z, t^{2}\right)-i \eta\left(x, x \mid z, s^{2}\right)-i \eta\left(x, i y \mid z, \frac{-s t}{|-1|}\right)-i \eta\left(i y, x \mid z, \frac{-s t}{|-1|}\right)-i \eta\left(i y, i y \mid z, t^{2}\right) \\
& =\eta(x, y \mid z, s t)+\eta(y, x \mid z, s t)-\eta(x, y \mid z,-s t)-\eta(y, x \mid z,-s t)+i \eta(x, i y \mid z, s t)+i \eta(i y, x \mid z, s t) \\
& +i \eta(x, i y \mid z, s t)+i \eta(i y, x \mid z, s t) \\
& =\eta(x, y \mid z, s t)+\eta(y, x \mid z, s t)+\eta(x, y \mid z, s t)+\eta(y, x \mid z, s t)+i \eta(x, i y \mid z, s t)+i \eta(i y, x \mid z, s t) \\
& +i \eta(x, i y \mid z, s t)+i \eta(i y, x \mid z, s t) \\
& =\eta(x, y \mid z, s t)+\eta(y, x \mid z, s t)+\eta(x, y \mid z, s t)+\eta(y, x \mid z, s t)+i(-i) \eta(x, y \mid z, s t)+i(i) \eta(y, x \mid z, s t) \\
& +i(-i) \eta(x, y \mid z, s t)+i(i) \eta(y, x \mid z, s t) \\
& =\eta(x, y \mid z, s t)+\eta(y, x \mid z, s t)+\eta(x, y \mid z, s t)+\eta(y, x \mid z, s t)+\eta(x, y \mid z, s t)-\eta(y, x \mid z, s t) \\
& +\eta(x, y \mid z, s t)-\eta(y, x \mid z, s t) \\
& =4 \eta(x, y \mid z, s t)
\end{aligned}
$$

Hence

$$
4 \eta(x, y \mid z, s t)=\|x+y, z\|_{\alpha}^{2}-\|x-y, z\|_{\alpha}^{2}+i\|x+i y, z\|_{\alpha}^{2}-i\|x-i y, z\|_{\alpha}^{2}
$$

REFERENCES

[1] Soma sundaram, R.M. and Thangaraj Beaula, 2009, " Some Aspects of 2-fuzzy 2-normed linear spaces, " Bull. Malays. Math. Sci. Soc. (2), 32 (2), 211-221.
[2] Pinaki and Samanta, S.K., 2008 "On fuzzy product spaces, " The journal of fuzzy mathematics, vol. 16 (2), 377-392.
[3] Mazahri, H. R. Kazemi, 2007, " Some results On 2-inner product spaces, " Novi sad J.Math.Vol.37.No.2, 35-40.
[4] Bag, T. Samanta, S.K., 2005, " Product fuzzy normed linear spaces, " The journal of fuzzy mathematics, vol.13, No.3.
[5] Bag, T., Samanta, S.K., 2005, " Fuzzy bounded linear operators, " Fuzzy Sets and Systems, 151, 513-547.
[6] Bag, T., Samanta, S.K., 2003, " Finite Dimensional fuzzy normed linear spaces, " J. Fuzzy Math. 11, no. 3, 687-705.
[7] Cheng, S.C., Mordenson, J.N., 1994, " Fuzzy linear operators and fuzzy normed linear spaces, " Bull.Cal.Math.Soc.86, 429-436.
[8] Felbin, C., 1992, " Finite dimensional fuzzy Normed linear space, " Fuzzy sets and systems 48, 239-248.
[9] Kaleva, O., Seikala, S., 1984, " On fuzzy metric spaces, " fuzzy sets and systems, 12, 215-229.
[10] Katsaras, A.K., 1984, " fuzzy topological vector space, " fuzzy set and system 12, 143-154.
[11] Zadeh, L.A., 1965 " Fuzzy Sets, " Information and Control 8, 338-353.
[12] Gahler, S., 1964, " Linear 2-normierte Raume, " Math. Nachr. 28, 1-43.

