On Fuzzy 2-Inner Product Spaces

Parijat Sinha¹, Ghanshyam Lal² and Divya Mishra²

¹Department of Mathematics, V.S.S.D. College, Kanpur, ²Department of Mathematics, M.G.C.G. University, Satna (INDIA) Ghanshyamlal.1985@gmail.com

Abstract

In this paper, the concept of fuzzy 2-inner product space is introduced. By virtue of this definition α -2-norm is defined and the parallelogram law is proved. Again the relative fuzzy 2-norm with respect to the fuzzy 2-inner product space is defined. Some theorems and polarization identity is proved.

Keywords: Fuzzy 2-inner product space, crisp 2- norm, fuzzy 2-Hilbert space, parallelogram law, polarization identity.

INTRODUCTION:

The concept of fuzzy set was introduced by Zadeh [11] in 1965. A satisfactory theory of 2-norm on a linear space has been introduced and developed by Gähler in [12]. Katsaras [10] in 1984, first introduced the notion of fuzzy norm on a linear space.

In 1992, Felbin [8] introduced an idea of fuzzy norm on a linear space by assigning a fuzzy real number to each element of the linear space so that the corresponding metric associated this fuzzy norm is of Kaleva type [9] fuzzy metric.

Cheng and Modenson [7], Bag and Samanta [4-6] have given different definition of fuzzy normed spaces. In recent past lots of work have been done in this topic of fuzzy function analysis but only a few works have been done fuzzy inner product spaces.

Pinaki Majumdar and S.K.Samanta [2] have defined fuzzy inner product in a linear space and some properties of fuzzy inner product function. They also proved parallelogram law and polarization identity.

In this paper we introduce the concept of fuzzy 2-inner product space and some theorems on fuzzy 2- inner product space are established. We have also generalized parallelogram law and polarization identity in fuzzy 2-inner product space.

PRELIMINARIES:

In this section some definition and preliminaries results are given which will be used in this paper.

Definition 2.1 [1]: Let X be a linear space over a field F. A fuzzy subset N of $X \times X \times R$ (R is the set of real numbers) is called a fuzzy 2-norms on X if and only if.

- 1. for all $t \in \mathbb{R}$, with t < 0, $N(x_1, x_2, t) = 0$
- 2. for all $t \in R$, with t>0, $N(x_1, x_2, t) = 1$ if and only if x_1 and x_2 are linearly dependent.
- 3. $N(x_1, x_2, t)$ is invarient under any permutation of x_1, x_2 .
- 4. for all $t \in \mathbb{R}$, with t>0

$$N(x_1,\,cx_2,\,t)=N(x_1,\,x_2,\,\frac{t}{|c|}) \text{ if } c{\ne}0,\,c{\in}F.$$

5. for all s, $t \in R$

$$N(x_1, x_2+x_2, s+t) \ge min\{N(x_1, x_2, s), N(x_1, x_2, t)\}$$

6. $N(x_1, x_2, \bullet)$ is non-decreasing function of R and $\lim_{t\to\infty} N(x_1, x_2, t) = 1$

then (X, N) is called a fuzzy 2-normed linear space.

Note (1.1): N is fuzzy 2- norm on X in the sense that associated to $x \in X$ and $t \in R$, $N(x_1, x_2, t)$ indicates the truth value of the statement. The real number t is greater or equal to norm of x and which belongs to [0, 1].

Example 2.1: Let (X, ||., .||) be 2-normed linear space define

$$N(x_1, x_2, t) = \frac{t}{t + ||x_1, x_2||} \text{ when } t > 0, t \in \mathbb{R}, x_1, x_2 \in X$$

Then (X, N) fuzzy 2-normed linear space.

Theorem 2.1[1]: Let (X, N) be a fuzzy 2- normed linear space. Assume that $(N_7) N(x_1, x_2, t) > 0$

For all t>0 implies x_1 and x_2 are linearly dependent, define $\|x_1,x_2\|_{\alpha}=\inf$ { $t: N(x_1,\,x_2,\,t)\geq \alpha\in(0,\,1)$ }. Then { $\|.,.\|_{\alpha}:\,\alpha\in[0,\,1)$ } is an ascending family of 2-norms on X. These 2-norms are called α -2-norms on X corresponding to the fuzzy 2-norms.

Definition 2.2 [3]:

Let X be a linear space of dimension greater than one over the field K (either R or C).

The function $\langle ., .|. \rangle : X \times X \times X \to K$ is called a 2-inner product if the following conditions holds:

A1: $\langle x, x | z \rangle \ge 0$ and $\langle x, x | z \rangle = 0$ iff x and z are linearly dependent.

A2: $\langle x, x | z \rangle = \langle z, z | x \rangle$.

A3: $\langle x, y | z \rangle = \langle y, x | z \rangle$.

A4: $\langle \alpha x, y | z \rangle = \alpha \langle x, y | z \rangle$, for all scalars $\alpha \in K$.

A5: $\langle x_1 + x_2, y | z \rangle = \langle x_1, y | z \rangle + \langle x_2, y | z \rangle$.

Therefore, the pair $(X, \langle ., . | . \rangle)$ is called a 2-inner product space.

3. Definition of fuzzy 2-inner product space and its properties :

In this section we introduce the definition of fuzzy 2-inner product on real or complex linear space and give an example of it. A fuzzy 2-norm is derived from the fuzzy 2-inner product and it is shown that the α -2-norms of the induced fuzzy 2- norm obey parallelogram law.

Definition (3.1): Let X be a linear space over the field C of complex numbers. Let $\eta: X \times X \times X \times C \rightarrow [0, 1]$ be mapping such that

- 1. For s, $t \in C$, $(x_1 + x_1', x_2|x_3, |t| + |s|) \ge \min \{ \eta(x_1, x_2|x_3, |t|), \eta(x_1', x_2|x_3, |s|) \}$
- 2. For s, $t \in C$, $(x_1, x_2|x_3, |st|) \ge \min \{ \eta(x_1, x_2|x_3, |s|^2), \eta(x_2, x_2|x_3, |t|^2) \}$
- 3. For $t \in C$, $(x_1, x_2 | x_3, t) = \eta(x_2, x_2 | x_3, t)$
- 4. $(\alpha x_1, x_2 | x_3, t) = \eta(x_1, x_2 | x_3, \frac{t}{|\alpha|}), \alpha \neq 0) \in C, t \in C$
- 5. $(x_1, x_2 | x_3, t) = 0, \forall t \in C \setminus R^+$
- 6. $(x_1, x_2 | x_3, t) = 1, \forall t > 0 \text{ iff, } f = 0$
- 7. $(x_1, x_2|x_3, t)$: $R \to [0, 1]$ is a monotonic non-decreasing function of R and $\lim_{t\to\infty} \eta(x_1, x_2|x_3, t) = 1$ as $t\to\infty$

Then \prod is said to be fuzzy 2-inner product space on X and the pair (X, η) is called a fuzzy 2-inner product space.

Example (3.1): Let (X, η) be an 2- inner product space. Define

$$\eta(x_1, x_2 | x_3, t) = \frac{t}{t + \langle x_1, x_2 | x_3 \rangle}$$
 when $t > 0, t \in R$

$$0, \quad \text{when } t \le 0$$

Definition (3.2): Let (X, η) be a fuzzy 2-inner product space satisfying the condition

 $\{\eta(x_1, x_2|x_3, t^2) > 0, t > 0\}$ implies that x = 0. Then $\forall \alpha(0, 1)$, define $\|x, x\|_{\alpha} = \inf\{t: \eta(x_1, x_2|x_3, t^2) \ge \alpha\}$ is a crisp 2- norm on X, called the α -2-norm on X generated from η .

In the sequel we can consider the following condition, For $x_1, x_2, x_3 \in X$ and $s, t \in R$.

$$\eta(x_1 + x_2, x_1 + x_2 | x_3, 2s^2) \wedge \eta(x_1 - x_2, x_1 - x_2 | x_3, 2t^2)
\ge \eta(x_1, x_1 | x_3, t^2) \wedge \eta(x_2, x_2 | x_3, s^2).$$

Theorem (3.2): Let η be a fuzzy 2-inner product space on X. Then $N:\,X\,\times X\,\times$

$$\mathsf{R} \to [0, 1] \text{ defined by } \mathsf{N}(\mathsf{x}, \, \mathsf{y}, \, \mathsf{t}) = \begin{cases} \eta(x, x \, \big| \, \mathsf{y}, t^2 \,) \text{ when } t > 0, t \in R \\ 0, \quad \text{when } t \le 0 \end{cases}$$

is a fuzzy 2-norm on X.

Proof:

- 1. By definition $N(x, y, t) = 0 \forall t \in R \text{ and } t \leq 0$.
- 2. Again from eq. (6) for t>0, $\eta(x, x|y, t^2) = 1$ iff, f=0 therefore it is follows that N(x, y, t) = 1 iff, x = 0.
- 3. For all t > 0 and $c \ne 0$, $N(cx, cy, t) = \eta(cx, cx|y, t^2)$

$$= \eta \left(x, cx | y, \frac{t^2}{|c|} \right)$$

$$= \eta \left(x, x | y, \frac{t^2}{|c|^2} \right)$$

$$= N(x, y, \frac{t}{|c|})$$

4. To prove that, $N(x_1 + x_1', x_2, s + t) \ge \min\{N(x_1, x_2, s), N(x_1', x_2, t)\}$ for every

$$s, t \in R, x_1, x'_1, x_2 \in X.$$

Let us consider the following cases:

$$s+t < 0$$
, (b) $s = t = 0$, $s > 0$, $t < 0$ or $s < 0$, $t > 0$, (c) $s+t > 0$, $s, t \ge 0$.

Let us prove (c)

$$N(x_{1} + x'_{1}, x_{2}, s + t) = \eta \left(x_{1} + x'_{1}, x_{1} + x'_{1} | x_{2}, (s + t)^{2}\right)$$

$$= \eta \left(x_{1} + x'_{1}, x_{1} + x'_{1} | x_{2}, s^{2} + st + st + t^{2}\right)$$

$$\geq \eta(x_{1}, x_{1} | x_{2}, s^{2}) \wedge \eta \left(x'_{1}, x'_{1} | x_{2}, t^{2}\right) \wedge \eta \left(x_{1}, x'_{1} | x_{2}, st\right)$$

$$\geq \eta(x_{1}, x_{1} | x_{2}, t^{2}) \wedge \eta \left(x'_{1}, x'_{1} | x_{2}, t^{2}\right)$$

$$= \min \left\{N(x_{1}, x_{2}, s^{2}), N\left(x'_{1}, x'_{1} | x_{2}, t^{2}\right)\right\}$$

and (b) follows immediately.

5. From equation (7), $\eta(x_1, x_1|x_2, \bullet)$ is a monotonic non-decreasing function and tends to 1 as $t \to \infty$. Thus $N(x_1, x_2, \bullet)$ is a monotonic non-decreasing function and tends to 1 as $t \to \infty$.

Theorem (3.3) (Parallelogram Law):

Let be a fuzzy 2-inner product space on X, $\alpha \in (0,1)$ and $\|.,.\|_{\alpha}$ be the α - 2- norm generated from fuzzy 2-inner product η on X. Then,

$$\|x - y, z\|_{\alpha}^{2} + \|x + y, z\|_{\alpha}^{2} = 2(\|x, z\|_{\alpha}^{2} + \|y, z\|_{\alpha}^{2}).$$

Proof:

$$\begin{split} \|x-y,z\|_{\alpha}^{2} + \|x+y,z\|_{\alpha}^{2} &= \inf\{\ t^{2}: t \in R^{+} \ \text{and} \ N(x-y,\,z,\,t) \geq \alpha\} + \inf\{\ s^{2}: s \in R^{+} \ \text{and} \ N(x+y,\,z,\,t) \geq \alpha\}, \text{ where N is the fuzzy 2- norm induced from } \eta. \\ &= \inf\{\ t^{2}+s^{2}: t,\,s \in R^{+} \ \text{and} \ N(x-y,\,z,\,t) \geq \alpha, \ N(x+y,\,z,\,t) \geq \alpha\} \\ &= \inf\{\ t^{2}+s^{2}: t,\,s \in R^{+} \ \text{and} \ N(x-y,\,z,\,t) \wedge N(x+y,\,z,\,t) \geq \alpha\} \end{split}$$

$$= \inf\{ t^2 + s^2 : t, s \in \mathbb{R}^+ \text{ and } N(x-y, z, t) \ge \alpha, N(x+y, z, t) \ge \alpha \}$$

$$= \inf\{ t^2 + s^2 : t, s \in \mathbb{R}^+ \text{ and } N(x+y, z, t) \ge \alpha \}$$

 $2(\|\mathbf{x},\mathbf{z}\|_{\alpha}^{2}+\|\mathbf{y},\mathbf{z}\|_{\alpha}^{2})=2\inf\{\ p^{2}\colon p\in R^{+}\ \text{and}\ N(\mathbf{x},\,\mathbf{z},\,\mathbf{p})\geq\alpha\}+2\inf\{\ q^{2}\colon q\in R^{+}\ \text{and}\ N(\mathbf{x},\,\mathbf{z},\,\mathbf{p})\geq\alpha\}$

N(y, z, q)
$$\geq \alpha$$
}
= 2 inf{ $p^2 + q^2$: $p, q \in R^+$ and N(x, z, p) \wedge N(y, z, q) $\geq \alpha$ }
Again, N(x-y, z, $\sqrt{2}p$) \wedge N(x + y, z, $\sqrt{2}q$) N(x, z, p) \wedge N(y, z, q)

Hence we get,

$$\|x - y, z\|_{\alpha}^{2} + \|x + y, z\|_{\alpha}^{2} \le 2(\|x, z\|_{\alpha}^{2} + \|y, z\|_{\alpha}^{2})$$

$$2(\|x,z\|_{\alpha}^{2} + \|y,z\|_{\alpha}^{2}) = 2\left(\left\|\frac{x+y}{2} + \frac{x-y}{2},z\right\|_{\alpha}^{2} + \left\|\frac{x+y}{2} - \frac{x-y}{2},z\right\|_{\alpha}^{2}\right)$$

$$= \frac{1}{2}(\|(x+y) + (x-y),z\|_{\alpha}^{2} + \|(x+y) - (x-y),z\|_{\alpha}^{2})$$

$$\leq \frac{1}{2}[\|x+y,z\|_{\alpha}^{2} + \|x-y,z\|_{\alpha}^{2} + 2\|x+y,z\|_{\alpha}\|x-y,z\|_{\alpha} + \|y+x,z\|_{\alpha}^{2} + \|x-y,z\|_{\alpha}^{2} - 2\|x+y,z\|_{\alpha}^{2}\|x-y,z\|_{\alpha}^{2}]$$

$$\leq \frac{1}{2} \times 2[\|x+y,z\|_{\alpha}^{2} + \|x-y,z\|_{\alpha}^{2}]$$

$$= \|x+y,z\|_{\alpha}^{2} + \|x-y,z\|_{\alpha}^{2}$$

Therefore.

$$\|x - y_1 z\|_{\alpha}^2 + \|x + y_1 z\|_{\alpha}^2 = 2(\|x_1 z\|_{\alpha}^2 + \|y_1 z\|_{\alpha}^2).$$

Hence Proved.

Theorem(3.4): If a fuzzy 2-inner product space (X, η) is strictly convex and if $\eta(x, y|z, t) = ||x, z||_{\alpha} ||y, z||_{\alpha}$ then x and y are linearly dependent.

Proof: Suppose (X, η) is strictly convex and $\eta(x, y|z, t) = ||x, z||_{\alpha} ||y, z||_{\alpha}$, then $(\|x, z\|_{\alpha} + \|y, z\|_{\alpha}) (\|y, z\|_{\alpha}) \ge \|x + y, z\|_{\alpha} \|y, z\|_{\alpha}$

$$η η(x + y, y|z, t)$$
≥ min{η(x, y|z, t), η(y, y|z, t)}
= ||x, z||_α||y, z||_α + ||y, z||_α||y, z||_α
= (||x, z||_α + ||y, z||_α) ||y, z||_α

Therefore $\|x + y, z\|_{\alpha} = \|x, z\|_{\alpha} + \|y, z\|_{\alpha}$ and since (X, η) is strictly convex so x and y are linearly dependent.

Theorem (3.5): Let (X, η) be a fuzzy 2-inner product space. If $\eta(x, y|z, t) = \eta(x', y|z, t)$ for all $y \in X$ then x and x' are dependent.

Proof: By definition,

$$\begin{split} &\eta\left(x-x',y|z,t\right)\geq\min\{\eta(x,y|z,t),\eta\left(-x',y|z,t\right)\}\\ &=\min\{\eta(x,y|z,t),\eta\left(x',y|z,\frac{t}{|-1|}\right)\}\\ &=\min\{\eta(x,y|z,t),\eta\left(x',y|z,t\right)\}\\ &=\min\{\eta(x,y|z,t)\} \end{split}$$

So x and x' are linearly dependent.

Definition (3.2): A sequence $\{x_n, x_n'\}$ in a fuzzy 2- normed linear space (X, N) is called a cauchy sequence with respect to α -2-norm if

$$\lim \left(\left\| (x_n, x_n') - (x_m, x_m') \right\|_{\alpha} \right) = 0 \quad \text{as} \quad m, n \to \infty,$$

$$\Rightarrow \lim \left(\left\| (x_n - x_m), (x_n' - x_m') \right\|_{\alpha} \right) = 0 \quad \text{as} \quad m, n \to \infty.$$

Definition (3.3): A sequence $\{x_n, x_n'\}$ in a fuzzy 2- normed linear space (X, N) is called convergent sequence with respect to α -2-norm if there exist $(x, x') \in A \times B$, where A, B are subspace of (X, N) such that

$$\lim \left(\left\| \left(x_n, x_n' \right) - \left(x, x' \right) \right\|_{\alpha} \right) = 0 \quad \text{as} \quad n \to \infty,$$

$$\lim \left(\left\| \left(x_n - x \right) - \left(x_n' - x' \right) \right\|_{\alpha} \right) = 0 \quad \text{as} \quad n \to \infty.$$

Definition (3.4): A fuzzy 2-normed linear space (X, N) is said to be complete if every cauchy sequence conveges.

Definition(3.5): A complete fuzzy 2-normed linear space (X, N) is called fuzzy 2-Banach space.

Definition (3.6): A complex fuzzy 2-Banach space (X, N) is said to be fuzzy 2-Hilbert space. If its α -2-norm is induced by the fuzzy 2-inner product.

Theorem (3.6): Polarisation identity: If x, y, z are the elements of the fuzzy 2-inner

product space (X, η), then

$$4\eta(x, y|z, st) = ||x + y, z||_{\alpha}^{2} - ||x - y, z||_{\alpha}^{2} + i||x + iy, z||_{\alpha}^{2} - i||x - iy, z||_{\alpha}^{2}.$$

Proof: We know that

$$\begin{aligned} &\|x+y,z\|_{x}^{2} - \|x-y,z\|_{x}^{2} + i\|x+iy,z\|_{x}^{2} - i\|x-iy,z\|_{x}^{2} \\ &= \eta((x+y),(x+y)|z,(s+t)^{2}) - \eta((x-y),(x-y)|z,(s-t)^{2}) \\ &+ i\eta((x+iy),(x+iy)|z,(s+t)^{2}) - i\eta((x-iy),(x-iy)|z,(s-t)^{2}) \\ &= \eta((x+y),(x+y)|z,s^{2}+st+st+t^{2}) - i\eta((x-iy),(x-iy)|z,s^{2}-st-st+t^{2}) \\ &+ i\eta((x+iy),(x+iy)|z,s^{2}+st+st+t^{2}) - i\eta((x-iy),(x-iy)|z,s^{2}-st-st+t^{2}) \\ &+ i\eta((x+iy),(x+iy)|z,s^{2}+st+st+t^{2}) - i\eta((x-iy),(x-iy)|z,s^{2}-st-st+t^{2}) \\ &= \eta(x,x|z,s^{2}) + \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(y,y|z,t^{2}) - \eta(x,x|z,s^{2}) - \eta(x-y|z,-st) \\ &- \eta(-y,x|z,-st) - \eta(-y,-y|z,t^{2}) + i\eta(x,x|z,s^{2}) + i\eta(x,iy|z,st) + i\eta(iy,x|z,st) \\ &+ i\eta(iy,iy|z,t^{2}) - i\eta(x,x|z,s^{2}) - i\eta(x,-iy|z,-st) - i\eta(-iy,x|z,-st) - i\eta(-iy,-iy|z,t^{2}) \\ &= \eta(x,x|z,s^{2}) + \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(y,y|z,t^{2}) - \eta(x,x|z,s^{2}) - \eta\left(x,y|z,-st\right) \\ &- \eta\left(y,x|z,\frac{st}{|-1|}\right) - \eta(y,y|z,t^{2}) + i\eta(x,x|z,s^{2}) + i\eta(x,iy|z,st) + i\eta(iy,x|z,st) \\ &+ i\eta(iy,iy|z,t^{2}) - i\eta(x,x|z,s^{2}) - i\eta\left(x,iy|z,-\frac{st}{|-1|}\right) - i\eta\left(iy,x|z,-\frac{st}{|-1|}\right) - i\eta\left(iy,x|z,st\right) + i\eta(iy,x|z,st) \\ &= \eta(x,y|z,st) + \eta(y,x|z,st) - \eta(x,y|z,-st) - \eta(y,x|z,-st) + i\eta(x,iy|z,st) + i\eta(iy,x|z,st) \\ &+ i\eta(x,iy|z,st) + i\eta(iy,x|z,st) \\ &= \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(y,x|z,st) + i(i\eta(x,y|z,st) + i(i\eta(y,x|z,st)) \\ &= \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(y,x|z,st) + i(-i)\eta(x,y|z,st) + i(i)\eta(y,x|z,st) \\ &= \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(y,x|z,st) \\ &= \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(y,x|z,st) \\ &= \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(x,y|z,st) + \eta(x,y|z,st) \\ &= \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(x,y|z,st) \\ &= \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(x,y|z,st) \\ &= \eta(x,y|z,st) + \eta(y,x|z,st) + \eta(x,y|z,st) + \eta(x,y|z,st) + \eta(x,y|z,st) + \eta(x,y|z,st) \\ &= \eta(x,y|z,st) + \eta(x,x|z,st) + \eta(x,x|z,st) + \eta(x,x|z,st) + \eta(x,x|z,st) + \eta(x,x|z,st) \\ &= \eta(x,y|z,st) + \eta(x,x|z,st) + \eta(x,x|z,s$$

Hence

$$4\eta(x,y|z,st) = ||x+y,z||_{\alpha}^{2} - ||x-y,z||_{\alpha}^{2} + i||x+iy,z||_{\alpha}^{2} - i||x-iy,z||_{\alpha}^{2}.$$

REFERENCES

[1] Soma sundaram, R.M. and Thangaraj Beaula, 2009, "Some Aspects of 2-fuzzy 2-normed linear spaces, "Bull. Malays. Math. Sci. Soc. (2), 32 (2), 211-221.

- [2] Pinaki and Samanta, S.K., 2008 "On fuzzy product spaces," The journal of fuzzy mathematics, vol.16 (2), 377-392.
- [3] Mazahri, H. R. Kazemi, 2007, "Some results On 2-inner product spaces, "Novi sad J.Math.Vol.37.No.2, 35-40.
- [4] Bag, T. Samanta, S.K., 2005, "Product fuzzy normed linear spaces, "The journal of fuzzy mathematics, vol.13, No.3.
- [5] Bag, T., Samanta, S.K., 2005, "Fuzzy bounded linear operators, "Fuzzy Sets and Systems, 151, 513-547.
- [6] Bag, T., Samanta, S.K., 2003, "Finite Dimensional fuzzy normed linear spaces," J. Fuzzy Math. 11, no. 3, 687-705.
- [7] Cheng, S.C., Mordenson, J.N., 1994, "Fuzzy linear operators and fuzzy normed linear spaces," Bull.Cal.Math.Soc.86, 429-436.
- [8] Felbin, C., 1992, "Finite dimensional fuzzy Normed linear space, "Fuzzy sets and systems 48, 239-248.
- [9] Kaleva, O., Seikala, S., 1984, "On fuzzy metric spaces, "fuzzy sets and systems, 12, 215-229.
- [10] Katsaras, A.K., 1984, " fuzzy topological vector space, " fuzzy set and system 12, 143-154.
- [11] Zadeh, L.A., 1965 "Fuzzy Sets," Information and Control 8, 338-353.
- [12] Gahler, S., 1964, "Linear 2-normierte Raume, "Math. Nachr. 28, 1-43.