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In this paper, we establish a fixed point theorem for generalized set-valued contrac-
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1. Introduction and Preliminaries

George and Veeramani introduced the concept of fuzzy metric spaces in different ways.
Kramosil and Michalek [7] and later Grabiec [3] obtained the fuzzy version of Banach
contraction principle. Many authors proved fixed point theorems for contractive maps
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in fuzzy metric spaces. In 1986 Jungck [6] generalized the concept of commutativity by
introducing compatibility. Mishra et al. [8] proved common fixed point theorems for
compatible maps on fuzzy metric spaces. In this paper, we establish a Meir and Keeler
type fixed point theorem for set-valued generalized contraction in metrically convex
fuzzy metric spaces.

2. Preliminaries

Definition 2.1. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called continuous
t-norm if ([0, 1], ∗) is an abelian topological monoid with unit 1 such that a ∗ b ≤ c ∗ d

whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].
Example 2.2. a ∗ b = min{a, b} and a ∗ b = a · b are t-norms.

Definition 2.3. ∗ is said to be continuous if for any sequences {an}, {bn} in [0, 1] with
lim

n→∞ an = a and lim
n→∞ bn = b implies

lim
n→∞(an ∗ bn) = (a ∗ b).

Definition 2.4. The 3-tuple (X, M, ∗) is called a fuzzy metric space if X is an arbitrary
set, ∗ is a continuous t-norm and M is a fuzzy set in X2 ×[0, ∞) satisfying the following
conditions:

(1) M(x, y, 0) = 0,

(2) M(x, y, t) = 1 for all t > 0 if and only if x = y,

(3) M(x, y, t) = M(y, x, t)= 1 for all x, y ∈ X,

(4) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s), where x, y, z ∈ X, s,t > 0.

(5) M(x, y, ·) : X2 × [0, ∞) → [0, 1] is left continuous.

Example 2.5. Let (X, d) be a metric space. Define a ∗ b = a + b for all a, b ∈ X. Define

M(x, y, t) = t

t + d(x, y)
for all x, y ∈ X and t > 0. Then (X, M, ∗) is a fuzzy metric

space and this fuzzy metric induced by a metric d is called the standard fuzzy metric.

Definition 2.6. Let (X, M, ∗) be a fuzzy metric space. Then a sequence {xn} in X is
said to be a Cauchy sequence if

lim
t→∞

(
1

M(xn, xn+p, t)
− 1

)
= 0 for all t > 0 and n, p ∈ N.



Some theorems in Metrically Convex fuzzy metric Spaces 15

Definition 2.7. Let (X, M, ∗) be a fuzzy metric space. Then a sequence {xn} in X is
said to be convergent to a point x ∈ X if

lim
t→∞

(
1

M(xn, x, t)
− 1

)
= 0 for all t > 0.

Definition 2.8. A fuzzy metric space X is said to be complete if every Cauchy sequence
in X converges to some point in X.

Definition 2.9. Let (X, M, ∗) be a fuzzy metric space. We will say the mapping T :
X → X is fuzzy contractive if there exists k ∈ (0, 1) such that(

1

M(T x, T y, t)
− 1

)
≤ k

(
1

M(x, y, t)
− 1

)

for each x, y ∈ X and t > 0. (k is called the contractive constant of T .)

Lemma 2.10. Let {xn} is a sequence in a fuzzy metric space X and if(
1

M(xn, xn+1, t)
− 1

)
≤ kn

(
1

M(x0, x1, t)
− 1

)

where 0 < k < 1, n ∈ N. Then {xn} is a Cauchy sequence in X.

Proof. Suppose that(
1

M(xn, xn+1, t)
− 1

)
≤ kn

(
1

M(x0, x1, t)
− 1

)

where 0 < k < 1, and t ≥ 0.

Let m, n be two positive integers with m ≥ n, say m = n + p, p > 0. Then we have(
1

M(xn, xn+p, t)
− 1

)
≤

(
1

M(xn, xn+1, t)
− 1

)
+

(
1

M(xn+1, xn+2, t)
− 1

)
+ · · ·

+
(

1

M(xn+p−1, xn+p, t)
− 1

)

≤ kn

(
1

M(x0, x1, t)
− 1

)
+ kn+1

(
1

M(x0, x1, t)
− 1

)
+ · · ·

+ kn+p−1
(

1

M(x0, x1, t)
− 1

)

Taking limit as n → ∞ on both sides, we get

lim
n→∞

(
1

M(xn, xn+p, t)
− 1

)
= 0.
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Hence {xn} is a Cauchy sequence in X. �

Definition 2.11. Let (X, M, ∗) be a fuzzy metric space. And the mapping T : X → X

is fuzzy Meir and Keeler contractive if given ε > 0 there exists δ > 0 such that

ε <

(
1

M(x, y, t)
− 1

)
< ε + δ implies

(
1

M(T x, T y, t)
− 1

)
< ε.

In this paper, we establish a Meir and Keeler type fixed point theorem for set-valued
generalized contraction in metrically convex spaces is proved in metrically convex fuzzy
metric space.

Note 2.12. In this paper we denote

(
1

M(x, y, t)
− 1

)
by ϕ(x, y, t)

3. Main results

We now state relevant definition and lemmas which are used in the sequel.

Definition 3.1. A fuzzy metric space (X, M, ∗) is said to be metrically convex if for any
x, y ∈ X with x �= y there exists a point z ∈ X, x �= z �= y such that

ϕ(x, y, t) = ϕ(x, z, t) + ϕ(z, y, t).

Lemma 3.2. Let K be a nonempty closed subset of a metrically convex metric space X.

If x ∈ K and y �∈ K then there exists a point z ∈ δK (the boundary of K) such that

ϕ(x, y, t) = ϕ(x, z, t) + ϕ(z, y, t).

In what follows, CB(X)denotes the set of all closed and bounded subsets of (X, M, ∗),

while C(X) for collection of all compact subsets of (X, M, ∗).Also H denotes the Haus-
doraff distance between two sets.

Lemma 3.3. Let A, B ∈ CB(X). Then for all ε > 0 and a ∈ A there exists b ∈ B such
that d(a, b) ≤ H(A, B) + ε. If A, B ∈ C(X), then one can choose b ∈ B such that
d(a, b) ≤ H(A, B).

Theorem 3.4. Let (X, M, ∗) be a complete metrically fuzzy convex metric space and K

a nonempty closed subset of X. Let T : K → C(X) be a set-valued map which satisfies

(i) ϕ(T x, T y, t) ≤ �(x, y, t) where

�(x, y, t) = k max

(
ϕ(x, y, t)

2
, ϕ(x, T x, t), ϕ(y, T y, t),

ϕ(x, T y, t) + ϕ(y, T x, t)

q

)

for all x, y ∈ K, with x �= y, where 0 < k < 1, q ≥ 1 + 2k,

(ii) T x ∈ K for each x ∈ δK.
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(iii) for a given ε > 0 there exists δ(ε) > 0, δ(ε) being a nondecreasing function of ε

such that ε ≤ �(x, y, t) < ε + δ ⇒ ϕ(T x, T y, t) < ε.

Then T has a fixed point in K.

Proof. Let x0 ∈ K. Define x
′
1 ∈ T x0. If x

′
1 ∈ K then set x

′
1 = x1. If x

′
1' �∈ K choose

x1 ∈ δK so that
ϕ(x0, x1, t) + ϕ(x1, x

′
1, t) = ϕ(x0, x

′
1, t).

Then x1 ∈ K. By using above Lemma, select x
′
2 ∈ T x1 such that

ϕ(x
′
1, x

′
2, t) ≤ ϕ(T x0, T x1, t).

If x
′
2 ∈ K then x

′
2 = x2. Otherwise choose x2 ∈ δK such that

ϕ(x1, x2, t) + ϕ(x2, x
′
2, t) = ϕ(x1, x

′
2, t).

Thus by induction, one obtains two sequences {xn} and {x ′
n} such that

(i) x
′
n+1 ∈ T xn;

(ii) ϕ(x
′
n+1, x

′
n, t) ≤ ϕ(T xn, T xn−1, t);

(iii) x
′
n+1 ∈ K ⇒ x

′
n+1 = xn+1;

(iv) x
′
n+1 �∈ K ⇒ xn+1 ∈ δK and

ϕ(xn, xn+1, t) + ϕ(xn+1, x
′
n+1, t) = ϕ(xn, x

′
n+1, t).

Now define
P = {xi ∈ {xn} : x

′
i = xi, i = 1, 2, 3, . . .}

Q = {xi ∈ {xn} : x
′
i �= xi, i = 1, 2, 3, . . .}.

Obviously, the two consecutive terms cannot lie in Q.

Now we distinguish the following three cases.

Case. If xn, xn+1 ∈ P, then

ϕ(xn, xn+1, t) ≤ ϕ(T xn−1, T xn, t)

≤ k max

{
ϕ(xn−1, xn, t)

2
, ϕ(xn−1, T xn−1, t), ϕ(xn, T xn, t),

ϕ(xn−1, T xn, t) + ϕ(xn, T xn−1, t)

q

}

≤ k max

{
ϕ(xn−1, xn, t)

2
, ϕ(xn−1, xn, t), ϕ(xn, xn+1, t),

ϕ(xn−1, xn+1, t) + ϕ(xn, xn, t)

q

}
≤ k max (ϕ(xn−1, xn, t), ϕ(xn, xn+1, t))
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If ϕ(xn−1, xn, t) ≤ ϕ(xn, xn+1, t) then we get ϕ(xn, xn+1, t) ≤ ϕ(xn, xn+1, t) which
is a contradiction. Otherwise, if ϕ(xn, xn+1, t) ≤ kϕ(xn−1, xn, t) then one obtains
ϕ(xn, xn+1, t) ≤ kϕ(xn−1, xn, t).

Case. If xn ∈ P, xn+1 ∈ Q, then

ϕ(xn, xn+1, t) + ϕ(xn+1, x
′
n+1, t) = ϕ(xn, x

′
n+1, t),

which in turn yields
ϕ(xn, x

′
n+1, t) ≤ ϕ(xn, xn+1, t).

Now, proceeding as in case 3.5.1, we have

ϕ(xn, xn+1, t) ≤ kϕ(xn−1, xn, t).

Case. If xn ∈ Q and xn+1 ∈ P then xn−1 ∈ P. Since xn is a convex linear combination
of xn−1 and x

′
n, it follows that

ϕ(xn, xn+1, t) ≤ max{ϕ(xn−1, xn+1, t), ϕ(xn+1, x
′
n, t)}.

Now, if ϕ(xn−1, xn+1, t) ≤ ϕ(x
′
n, xn+1, t), then proceeding as in case 3.4.1, one obtains

ϕ(xn, xn+1, t) ≤ kϕ(xn−1, xn, t).

Otherwise if ϕ(x
′
n, xn+1, t) ≤ ϕ(xn−1, xn+1, t), then we have

ϕ(xn, xn+1, t) ≤ ϕ(T xn−2, T xn, t)

≤ k max

{
ϕ(xn−2, xn, t)

2
, ϕ(xn−2, T xn−2, t), ϕ(xn, T xn, t),

ϕ(xn−2, T xn, t) + ϕ(xn, T xn−2, t)

q

}

≤ k max

{
ϕ(xn−2, xn, t)

2
, ϕ(xn−2, xn, t), ϕ(xn, xn+1, t),

ϕ(xn−2, xn+1, t) + ϕ(xn, xn−1, t)

q

}

Since
ϕ(xn−2, xn, t)

2
= max{ϕ(xn−2, xn−1, t), ϕ(xn−1, xn, t)}.

Therefore, one obtains

ϕ(xn, xn+1, t) ≤ k max

{
ϕ(xn−2, xn−1, t), d(xn−1, xn, t), ϕ(xn, xn+1, t),

ϕ(xn−2, xn+1, t) + ϕ(xn, xn−1, t)

q

}
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which in turn yields

ϕ(xn, xn+1, t) =
{

kϕ(xn−1, xn, t), if ϕ(xn−1, xn, t) ≥ ϕ(xn−2, xn−1, t);

kϕ(xn−2, xn−1, t), if ϕ(xn−1, xn, t) ≤ ϕ(xn−2, xn−1, t);

Thus in all the cases, we have

ϕ(xn, xn+1, t) ≤ k max{ϕ(xn−1, xn, t), ϕ(xn−2, xn−1, t)}.
It can be easily shown by induction that for n ≤ 1, we have

ϕ(xn, xn+1, t) ≤ k max{ϕ(x0, x1, t), ϕ(x1, x2, t)}.
Thus ϕ(xn, xn+1, t) is a decreasing sequence and tending to s ∈ [0, '∞) as n → ∞. Let
on contrary

ϕ(xn, xn+1, t) > s for n = 0, 1, 2... (1)

Suppose s > 0. Then there exists a δ = δ(A) and a positive integer k such that

s ≤ ϕ(xk, xk+1, t) < δ + s.

Hence by (1), one obtains

ϕ(xk+1, xk+2, t) = ϕ(T xk, T xk+1, t) < s,

which contradicts (2) therefore ϕ(xn, xn+1, t) → 0 as n → ∞. Now we wish to show
that the sequence {xn} is Cauchy. If it is not Cauchy then there exists 2ε > 0 such
that ϕ(xm, xn, t) > 2ε. Choose δ > 0 with δ < ε for which (1) is satisfied. Since
ϕ(xn, xn+1, t) → 0 there exists a positive integer N = N(δ) such that ϕ(xi, xi+1, t) ≤
δ

6
for all i ≤ N. With this choice of N, let us choose m, n with m > n > N such that

ϕ(xm, xn, t) ≥ 2ε > ε + δ (2)

By (3), m − n > 6, otherwise

ϕ(xm, xn, t) ≤ ϕ(xn, xn+1, t) + · · · + d(xn+4, xn+5, t) ≤ 5δ

6
< δ,

a contradiction. Now suppose that ϕ(xn, xm−1, t) ≤ ε + δ

3
. Then

ϕ(xn, xm, t) ≤ ϕ(xn, xm−1, t) + ϕ(xm−1, xm, t) ≤ ε + δ

3
+ δ

6
< ε + δ

a contradiction. Similarly, suppose ϕ(xn, xm−2, t) ≤ ε + δ

3
. Then

ϕ(xn, xm, t) ≤ ϕ(xn, xm−2, t) + d(xm−2, xm−1, t) + d(xm−1, xm, t)

≤ ε + δ

3
+ δ

6
+ δ

6
< ε + δ
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Let for the smallest integer j ∈ (m, n) with ϕ(xn, xj , t) > ε + δ

3
, whereas

ϕ(xn, xj , t) ≤ ϕ(xn, xj−1, t) + ϕ(xj−1, xj , t) ≤ ε + δ

3
+ δ

6
< ε + 2δ

3
.

Thus there exists a j ∈ (n, m) such that

ε + δ

3
< ϕ(xn, xj , t) < ε + 2δ

3
.

Then

ϕ(xn, xj , t) ≤ ϕ(xn, xn+1, t) + ϕ(xn+1, xj+1, t) + d(xj+1, xj , t)

≤ δ

6
+ ε + δ

6
= ε + δ

3
,

which is indeed a contradiction, therefore one may conclude that the sequence {xn} is
Cauchy and it converges to a point z ∈ X.

Now, we assume that there exists a subsequence {xnk
} of {xn} which is contained in

P. Using (1), one can write

ϕ(T xnk−1, T z, t) ≤ k max{ϕ(xnk−1, z, t)

2
, ϕ(xnk−1, T xnk−1, t), ϕ(z, T z, t),

ϕ(z, T xnk−1, t) + ϕ(xnk−1, T z, t)

q
}

which on letting k → ∞' we get ϕ(T z, z, t) ≤ kϕ(T z, z, t), yielding thereby z = T z.

This completes the proof. �

Theorem 3.5. Let (X, M, ∗) be a complete metrically fuzzy convex metric space and K

a nonempty closed subset of X. Let T : K → C(X) be a set-valued map which satisfies

(i) ϕ(T x, T y, t) ≤ �(x, y, t) where

�(x, y, t) = k max

(
ϕ(x, y, t)

2
, ϕ(x, T x, t), ϕ(y, T y, t)

)

for all x, y ∈ K, with x �= y, where 0 < k < 1,

(ii) T x ∈ K for each x ∈ δK.

(iii) for a given ε > 0 there exists δ(ε) > 0, δ(ε) being a nondecreasing function of ε

such that ε ≤ �(x, y, t) < ε + δ ⇒ ϕ(T x, T y, t) < ε.

Then T has a fixed point in K.

Proof. Let x0 ∈ K. Define x
′
1 ∈ T x0. If x

′
1 ∈ K then set x

′
1 = x1. If x

′
1' �∈ K choose

x1 ∈ δK so that
ϕ(x0, x1, t) + ϕ(x1, x

′
1, t) = ϕ(x0, x

′
1, t).
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Then x1 ∈ K. By using above Lemma, select x
′
2 ∈ T x1 such that

ϕ(x
′
1, x

′
2, t) ≤ ϕ(T x0, T x1, t).

If x
′
2 ∈ K then x

′
2 = x2. Otherwise choose x2 ∈ δK such that

ϕ(x1, x2, t) + ϕ(x2, x
′
2, t) = ϕ(x1, x

′
2, t).

Thus by induction, one obtains two sequences {xn} and {x ′
n} such that

(i) x
′
n+1 ∈ T xn;

(ii) ϕ(x
′
n+1, x

′
n, t) ≤ ϕ(T xn, T xn−1, t);

(iii) x
′
n+1 ∈ K ⇒ x

′
n+1 = xn+1;

(iv) x
′
n+1 �∈ K ⇒ xn+1 ∈ δK and

ϕ(xn, xn+1, t) + ϕ(xn+1, x
′
n+1, t) = ϕ(xn, x

′
n+1, t).

Now define
P = {xi ∈ {xn} : x

′
i = xi, i = 1, 2, 3, ...}

Q = {xi ∈ {xn} : x
′
i �= xi, i = 1, 2, 3, ...}.

Obviously, the two consecutive terms cannot lie in Q.

Now we distinguish the following three cases.

Case. If xn, xn+1 ∈ P, then

ϕ(xn, xn+1, t) ≤ ϕ(T xn−1, T xn, t)

≤ k max

(
ϕ(xn−1, xn, t)

2
, ϕ(xn−1, T xn−1, t), ϕ(xn, T xn, t)

)

≤ k max

(
ϕ(xn−1, xn, t)

2
, ϕ(xn−1, xn, t), ϕ(xn, xn+1, t)

)
≤ k max (ϕ(xn−1, xn, t), ϕ(xn, xn+1, t))

If ϕ(xn−1, xn, t) ≤ ϕ(xn, xn+1, t) then we get ϕ(xn, xn+1, t) ≤ ϕ(xn, xn+1, t) which
is a contradiction. Otherwise, if ϕ(xn, xn+1, t) ≤ kϕ(xn−1, xn, t) then one obtains
ϕ(xn, xn+1, t) ≤ kϕ(xn−1, xn, t).

Case. If xn ∈ P, xn+1 ∈ Q, then

ϕ(xn, xn+1, t) + ϕ(xn+1, x
′
n+1, t) = ϕ(xn, x

′
n+1, t),
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which in turn yields
ϕ(xn, x

′
n+1, t) ≤ ϕ(xn, xn+1, t).

Now, proceeding as in case 3.5.1, we have

ϕ(xn, xn+1, t) ≤ kϕ(xn−1, xn, t).

Case. If xn ∈ Q and xn+1 ∈ P then xn−1 ∈ P. Since xn is a convex linear combination
of xn−1 and x

′
n, it follows that

ϕ(xn, xn+1, t) ≤ max{ϕ(xn−1, xn+1, t), ϕ(xn+1, x
′
n, t)}.

Now, if ϕ(xn−1, xn+1, t) ≤ ϕ(x
′
n, xn+1, t), then proceeding as in case 3.5.1, one obtains

ϕ(xn, xn+1, t) ≤ kϕ(xn−1, xn, t).

Otherwise if ϕ(x
′
n, xn+1, t) ≤ ϕ(xn−1, xn+1, t), then we have

ϕ(xn, xn+1, t) ≤ ϕ(T xn−2, T xn, t)

≤ k max

(
ϕ(xn−2, xn, t)

2
, ϕ(xn−2, T xn−2, t), ϕ(xn, T xn, t)

)

≤ k max

(
ϕ(xn−2, xn, t)

2
, ϕ(xn−2, xn, t), ϕ(xn, xn+1, t)

)

Since
ϕ(xn−2, xn, t)

2
= max{ϕ(xn−2, xn−1, t), ϕ(xn−1, xn, t)}.

Therefore, one obtains

ϕ(xn, xn+1, t) ≤ k max (ϕ(xn−2, xn−1, t), d(xn−1, xn, t), ϕ(xn, xn+1, t))

which in turn yields

ϕ(xn, xn+1, t) =
{

kϕ(xn−1, xn, t), if ϕ(xn−1, xn, t) ≥ ϕ(xn−2, xn−1, t);

kϕ(xn−2, xn−1, t), if ϕ(xn−1, xn, t) ≤ ϕ(xn−2, xn−1, t);

Thus in all the cases, we have

ϕ(xn, xn+1, t) ≤ k max{ϕ(xn−1, xn, t), ϕ(xn−2, xn−1, t)}.
It can be easily shown by induction that for n ≤ 1, we have

ϕ(xn, xn+1, t) ≤ k max{ϕ(x0, x1, t), ϕ(x1, x2, t)}.
Thus ϕ(xn, xn+1, t) is a decreasing sequence and tending to s ∈ [0, '∞) as n → ∞. Let
on contrary

ϕ(xn, xn+1, t) > s for n = 0, 1, 2... (3)
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Suppose s > 0. Then there exists a δ = δ(A) and a positive integer k such that

s ≤ ϕ(xk, xk+1, t) < δ + s.

Hence by (1), one obtains

ϕ(xk+1, xk+2, t) = ϕ(T xk, T xk+1, t) < s,

which contradicts (2) therefore ϕ(xn, xn+1, t) → 0 as n → ∞. Now we wish to show
that the sequence {xn} is Cauchy. If it is not Cauchy then there exists 2ε > 0 such
that ϕ(xm, xn, t) > 2ε. Choose δ > 0 with δ < ε for which (1) is satisfied. Since
ϕ(xn, xn+1, t) → 0 there exists a positive integer N = N(δ) such that ϕ(xi, xi+1, t) ≤
δ

6
for all i ≤ N. With this choice of N, let us choose m, n with m > n > N such that

ϕ(xm, xn, t) ≥ 2ε > ε + δ (4)

By (3), m − n > 6, otherwise

ϕ(xm, xn, t) ≤ ϕ(xn, xn+1, t) + · · · + d(xn+4, xn+5, t) ≤ 5δ

6
< δ,

a contradiction. Now suppose that ϕ(xn, xm−1, t) ≤ ε + δ

3
. Then

ϕ(xn, xm, t) ≤ ϕ(xn, xm−1, t) + ϕ(xm−1, xm, t) ≤ ε + δ

3
+ δ

6
< ε + δ

a contradiction. Similarly, suppose ϕ(xn, xm−2, t) ≤ ε + δ

3
. Then

ϕ(xn, xm, t) ≤ ϕ(xn, xm−2, t) + d(xm−2, xm−1, t) + d(xm−1, xm, t)

≤ ε + δ

3
+ δ

6
+ δ

6
< ε + δ

Let for the smallest integer j ∈ (m, n) with ϕ(xn, xj , t) > ε + δ

3
, whereas

ϕ(xn, xj , t) ≤ ϕ(xn, xj−1, t) + ϕ(xj−1, xj , t) ≤ ε + δ

3
+ δ

6
< ε + 2δ

3
.

Thus there exists a j ∈ (n, m) such that

ε + δ

3
< ϕ(xn, xj , t) < ε + 2δ

3
.

Then

ϕ(xn, xj , t) ≤ ϕ(xn, xn+1, t) + ϕ(xn+1, xj+1, t) + d(xj+1, xj , t)

≤ δ

6
+ ε + δ

6
= ε + δ

3
,
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which is indeed a contradiction, therefore one may conclude that the sequence {xn} is
Cauchy and it converges to a point z ∈ X.

Now, we assume that there exists a subsequence {xnk
} of {xn} which is contained in

P. Using (1), one can write

ϕ(T xnk−1, T z, t) ≤ k max

(
ϕ(xnk−1, z, t)

2
, ϕ(xnk−1, T xnk−1, t), ϕ(z, T z, t)

)

which on letting k → ∞' we get ϕ(T z, z, t) ≤ kϕ(T z, z, t), ⇒ z = T z. �
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