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Abstract 

 

Exact values of dynamical quantities in planetary motion, such as position, 
velocity and acceleration, in terms of constants of motion, have appeared in 
the literature for special locations of the planet, such as the endpoints of the 
major and minor axes and the latera-recta. In this study, exact values of the 
jerk vector, in addition to those of the position, velocity and accelerations of 
the planet and their Cartesian components have been calculated at every 15o 
intervals of the true anomaly from the perihelion. 

 
 

1. INTRODUCTION 

Mathematicians cherish exact numbers for the very reason that they do not contain 
any approximations. For example, exact values of trigonometric functions for 0o, 30o, 
45o, 60o and 90o (in the first quadrant) and similar values in all other quadrants (for 
that matter) are widely used by scientists of all disciplines, as they have simple forms 
and are easy to recall. However, exact values of trigonometric functions are also 
found for 15o and 75o, as well as for 18o, 36o, 54o and 72o (in the first quadrant) (cf. 
[1, 2]). In fact, exact values of trigonometric functions are known at every 3o intervals 
[3, 4], as well as for many other special angles [1, 2]. Owing to the above, exact 
values of some physical quantities can be found in terms of some physical constants, 
if they can be obtained as exact solutions of a problem in terms of trigonometric 
functions. For example, exact values for the velocities of a planet at specific locations 
have appeared in the literature [5 – 8]. In this paper, we obtain exact values of 
dynamical quantities (viz., position, velocity, acceleration and jerk vectors) of a planet 
and their Cartesian components in terms of known physical constants for every 15o of 
its angular positions around the Sun. 
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2. THEORY OF PLANETARY MOTION 

The first scientific laws of planetary motion were enunciated by Johannes Kepler in 
the early seventeenth century. According to Kepler’s first law of planetary motion, the 

orbit of a planet is an ellipse, with the Sun at one focus. According to Kepler’s second 

law, the areal velocity of the planet about the Sun and equivalently its orbital angular 
momentum is a constant of motion. As consequence of this law, the orbit of the planet 
lies in a plane. The equation of the orbital ellipse with major axis lying on the 
abscissa, the latus-rectum on the ordinate and the perihelion on the positive x-axis is 
expressed in polar coordinates (r, θ) as 

 (1) 
where p is the semi latus-rectum and e the eccentricity of the orbit. The position 
vector is thus 

 (2) 
and the angular momentum of the planet is: 

 (3) 
where m is the mass of the planet. 
The rectangular or three-dimensional Cartesian coordinates in this representation have 
special significance. First, the angular momentum vector  is always directed along 
the perpendicular z-axis. Second, there exists a constant Runge-Lenz vector  which 
is always directed along the positive x-axis [9, 10]. And third, there exists yet another 
constant vector defined by  which is directed along the positive y-axis [10]. 
In view of this, we calculate the dynamical variables of the planet and their Cartesian 
components and obtain their exact values at regular intervals of 15o of the angular 
coordinate θ called the true anomaly in orbital mechanics. 
 
 

3. DYNAMICAL VARIABLES IN PLANETARY MOTION 

The dynamical variables of velocity, acceleration and the jerk vector (cf. [11]) are 
defined by the first, second and third derivatives of the position vector with respect to 
time. By successive differentiation of Eq. (2) and application of the conservation of 
angular momentum (3), one obtains the velocity, acceleration and jerk vectors, 
respectively, as follows: 

 (4) 

 (5) 
and 
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 (6) 
A more traditional treatment of the planetary problem employed Cartesian coordinates 
[12-15]. The Cartesian components of the velocity, acceleration and jerk vectors are 
given by [11-15]: 

 (7) 

 (8) 

 (9) 

 (10) 

 (11) 
and 

 (12) 
Expressed as functions of the angular coordinate θ, we have the Cartesian components 
of the coordinates and the dynamical variables of velocity, acceleration and jerk as 
follows [11]: 

 (13) 

 (14) 

 (15) 

 (16) 

 (17) 

 (18) 

 (19) 
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and 

 (20) 
Also, the magnitudes of the velocity, acceleration and jerk vectors are calculated to be 
respectively the following: 

 (21) 

 (22) 
and 

 (23) 
Equations (13) through (23) express the dynamical variables in planetary motion and 
their Cartesian components sought for in this study. All the quantities are functions of 
the single independent variable θ. Succinctly, only sines and cosines of θ appear in 
these equations. Thus if exact values of sines and cosines exist for any angle, then 
exact values of the dynamical variables and their components can be found in 
principle. 
 
 

4. RESULTS 

In the absence of perturbing forces, the motion of a planet repeats itself at regular 
intervals or cycles. Each cycle consists of two phases: (1) the Ascending phase during 
which the its radial distance from the Sun r increases while the planet traverses from 
the Perihelion (the nearest approach of the planet to the Sun) to the Aphelion (the 
farthest retreat of the planet from the Sun); and (2) The Descending phase during 
which the radial distance r decreases as the planet traverses from the Aphelion to the 
Perihelion. The true anomaly of the planet θ increases from 0o to 180o during the first 
phase and from 180o to 360o during the second. 
We now compute the exact values of the dynamical variables for the ascending phase 
at intervals of 15o from the perihelion using the Equations (13) through (23). Table I 
shows the exact values of sines and cosines for the various values of θ. Substituting 
these values in the respective equations and simplifying, we obtain the exact values of 
the dynamical variables of position, velocity, acceleration and jerk vectors and their 
Cartesian components. These exact values are entered in Tables II, III, IV and V. 
Missing are values for the jerk vectors for four angles (15o, 75o, 105o and 165o, Table 
V) for which no compact forms were attainable. 
Exact values for the dynamical variables for the descending phase of the planet can be 
determined from those for the ascending phase by simple substitutions. Due to the fact 
that the trigonometric functions of sine and cosine have odd and even parities, 
respectively, the dynamical variables and their components, too, have either odd or 
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even parities about the perihelion (θ = 0o). The working formulas are given as 
follows: 

 (24) 
 (25) 

 (26) 
 (27) 

 (28) 
 (29) 

 (30) 
 (31) 

 (32) 
 (33) 

 (34) 
 (35) 

 (36) 
 (37) 

The results are left to the reader as exercise. 
 

Table I. Exact Values of Sines and Cosines at 15o Intervals 
 

θ, deg θ, rad sinθ Cosθ 
0 0 0 1 
15 

 
  

30 
   

45 
   

60 
   

75 
   

90 
 

1 0 

105 
   

120 
   

135 
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150 
   

165 
   

180 π 0 -1 
 

Table II. Exact Values of Coordinates of Planet at 15o Intervals 
 

θ x, p y, p r, p 
0o 

 
0 

 
15o 

   
30o 

   
45o 

   
60o 

   
75o 

   
90o 0 1 1 
105o 

   
120o 

   
135o 

   
150o 

   
165o 

   
180o 

 
0 
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Table III. Exact Values of Velocities of Planet at 15o Intervals 
 

θ vx, ℓ/mp vy, ℓ/mp v, ℓ/mp 

0o 0   
15o 

  
 

30o 
   

45o 
   

60o 
  

 

75o 

  
 

90o    
105o 

  
 

120o 
  

 

135o 
   

150o 
   

165o 

  
 

180o 0   
 

Table IV. Exact Values of Accelerations of Planet at 15o Intervals 
 

θ ax,ℓ2/m2p3 ay,ℓ2/m2p3 a,ℓ2/m2p3 
0o  0  
15o 

   
30o 
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45o 

   
60o 

   
75o 

   
90o 0 1 1 
105o 

   
120o 

   
135o 

   
150o 

   
165o 

   
180o  0  

 
Table V. Exact Values of Jerks of Planet at 15o Intervals 

 
Θ jx, ℓ3/m3p5 jy, ℓ3/m3p5 j, ℓ3/m3p5 

0o 0   
15o * * * 
30o 

   
45o 

   
60o 

   
75o * * * 
90o 1   
105o * * * 
120o 

   
135o 
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150o 

   
165o * * * 
180o 0   
* Compact form unattainable 

 
 
5. DISCUSSION 

Because of their flexibility, complicated trigonometric expressions often reduce to 
drastically simpler forms. The present study emphatically illustrates this point as 
seemingly complicated forms for the dynamical variables were reduced to elegant 
compact forms in terms of the constants of motion. It may be well to search for other 
problems which can similarly betray this elegance. 
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