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Abstract

For a given bounded subset K of a metric space (X,d),x X and £>0, an
element k,eK is called an &— farthest point to x if

d(x,k,) ZSup{d(x,k):k eK}—g. In this paper we discuss some results on

g— farthest points and their invariance under isometric mappings. The
underlying spaces are metric spaces.

For a non-empty subset G of a metric space (X,d), x€X and &>0, we say that
g, €G is an ¢— approximation or good approximation to x if d(x,g,)<d(x,g)+¢
forall g eG (for ¢=0, sucha g, is a best approximation to x in G). In the theory

of nearest points, R.C. Buck [2] introduced the notion of £— approximation.
Subsequently, this concept was studied by many researchers (see e.g. [10], [12], [13],
[15] and references cited therein). Analogously, the notion of ¢— farthest points was
introduced and discussed by Narang [8] in the theory of farthest points. This study was
subsequently taken up in [4] and [9]. The notion of invariance of best approximation in
normed linear spaces was initiated and discussed by Meinardus [7] and then considered
by Brosowski [2], Khan and Khan [5], Mazaheri and Zadeh [6], and in metric spaces
by Narang [11]. Mazaheri and Zadeh [6] also discussed the invariance of best
approximation, and &— approximation in normed linear spaces whereas Narang [12]
discussed the invariance of best approximation, and Sharma and Narang [13] of ¢—
approximation in metric linear spaces.

In this paper, we discuss some results on &— farthest points and their invariance
in metric spaces. Let K be a bounded subset of a metric space (X,d),x € X and £>0

. An element k, €K is said to be
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i.  afarthest point tox if d(x,k,) =5(x,K)=sup{d(x,y):y €K} ,
ii.  g—farthest point or nearly farthest point to x if d(x, k) > o(x,K)— ¢ .

The set of all farthest points to x in K is denoted by F, (x) and &— farthest
points to x in K by F, (x) i.e.

F.(x)= {ko eK:d(x,ky) = 5(x,K)} , Fy ()= {ko eK:d(x,k,) = d(x, K)—g} :

Clearly, Fy .(x)=K N B[x,5(x,K)~-¢]°, where B[x,r]" denotes complement of
the closed ball B[x,r] with centre x and radius r, F, (x) 2 F,(x) = ﬂFk’g(x).

&>0

It can be easily seen that the sets F . (x) and F, (x) are bounded sets, are closed
sets if K is a closed set, are compact sets if K is a compact set.

Example: On the real line R with usual metric, let K =[1,5],x €R, &>0 . Then
[L1+¢] if x>3
F,(x)=1]p-¢5 if x<3
[1,1+8[U]5—8,5] if x=3

Concerning the elements of £, (x), we have:

Proposition 1. If K is a bounded subset of a metrid space (X,d) ,x X and £>0,
then k, e F .(x) ifand only if k € B[x,d(x,k,) + &] foreach k eK.

Proof: Let k, eF, (x) . Suppose there is an element k €K such that
k¢ Blx,d(x,ky)+¢&] , then d(xk,))+e<d(x,k)<0(x,K)ie d(x k) <o(x,K)—¢
which is a contradiction.

Conversely, suppose k € B[x,d(x,k,)+¢&] for all k eK . If ky ¢ F; (x), then
d(x,k))<o(x,K)—¢ , and so there is some k €K such that
d(x,ky) <d(x,k)—¢cie d(x k) >d(xk,).Butthen k &B[x,d(x,k,)+ €], whichis a
contradiction.

The set K is said to be remotal (uniquely remotal) if £, (x) is non-empty

(singleton) for each x € X'.

The set K is said to be ¢—remotal (&—uniquely remotal) if F,  (x) is non-
empty (singelton) for each x e X.

A sequence (k,) in K is said to be &—maximizingsequence for x if

limd(x,k,)>0(x,K)—¢. The set K is said to be &—nearly compact if for each
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x € X, each £— maximizing sequence has a subsequence converging to an element of
K.

It is known (see [1]) that bounded nearly compact sets are remotal. The following
proposition shows that £— nearly compact sets are £— remotal.

Proposition 2. If K isaboundeded, closed and &— nearly compacy subset of a metric
space (X,d) then F, ,(x) is anon-empty compact set.

Proof: Let x € X be artitrary. By the definition of &(x, K), we can find k, €K such
that d(x,k,) > o(x,K)—¢ and so Fy (x) is non-empty.
Let (k,) be a sequence in F, (x)ie d(x,k,)=3(x,K)—¢ for all n=1,2,3,...

and so
limd(x,k,)>0(x,K)—¢ Q)

i.e. (k} is an &— maximizing sequence in K . Since K is ¢— nearly compact

closed set, (k,) has a subseqnece <kn >—>k0 €K . So, (1) implies

i

d(x,ky)20(x,K)—¢

I.e. ky e Fi (x) and so Fy (x) is compact.
If K is a bounded subset of a metric space (X,d) and £>0, we define
FK_,le(kO) = {x €X ik EFK,g(x)}

= set of all those points of X for which &, e K is ¢— farthest point.
Proposition 3. The set F (k,) is a closed subset of X .

Proof: Let x be a limit point of F.’(k,). Then there exists a sequence (x,) in
F" (k,) such that x, — x.
Since k, e Fy ,(x,) forall n, d(x,,k)>0d(x,,K)—¢.
This gives
limd(x, k) > limS(x

n’

K)—¢

ie.d(x,ky))=20(x,K)—¢
and so k, € F,  (x) ie.x e F, (k) .
Therefore F. (k,) is closed .
We next discuss the invariance of £— farthest points.
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Theorem 1. Let T be an isometery on a metric space (X,d) i.e. d(Tx,Ty) =d(x, y) for

all x,y € X,K abounded subset of X,x € X and £>0. We have

(i) T[F, . (x)]=F, (Ix) ifT(K)=K,

(i) If x is T— invariant ie Tx = x, then T[F, . (x)] < Fy .(x),

(iii) If x is 7— invariance and if F,  (x)={k,},then Tk, =k,

(iv) If x is T— invariance and if {keK:Tk=k}NF, (x)=¢ , then either
Fy (x)= ¢ or F; (x) has more than one point.

Proof:
(i) Let T(ky) eT[Fy . (x)]ie ky €Fy ,(x). This gives d(x,k,) >d(x,k)—¢ for all

kekK and so d(Tx,Tk,)>d(Tx,Tk)—¢ for all Tk eT(K)=K
ie T(ky) €Fy (Tx) . Therefore T[F, ,(x)]< Fy ,(Tx) . Conversely, suppose
T(ky) € Fy (Tx) ie. T(ky) € Fr, ,(Tx) . Then d(Tx,Tky) > d(Tx,Tk) — ¢ for all
T(k) eTK ie. d(x,ky) > d(x,k)—¢& forall k eK. Therefore k, € F, . (x) and so
Tk, eT[Fy .(x)]. Hence F,  (Tx) c T[F ,(x)] .

(i) Let T(ky) €T[Fy ,(x)]iekyeF; (x) . Consider d(Tx,Tky)=d(x,k,)
> 0(x,K)—¢&. This gives T'(k,) € Fi ,(x). Hence T[F, . (x)] < Fy ,(x).

(iii) By (ii) T'(k,) e{ko} and hence Tk, = k,.

(iv) By (ii) T'(k,) € F; .(x) . But by hypothesis, no invariant point can be an ¢—
farthest point to x, therefore 7'(k,) # k,. So, if T(k,) =k, then &— farthest point
to x does not exist, ie. Fy (x)=¢. If Tky #k, then x has at least two &—
farthest points to x.

Theorem 2. Let T be an isometery on a metric space (X,d),K a bounded subset of
X,xeX and &>0.
Then T[FK,g(x)] = FT(K),g(Tx) '

Proof: Since T is isometery, d(Tx,Ty) =d(x,y) for all x,y € X . The proof follows
from d(x,k))>2d(x,k)—¢ for all keK<d(Ix,Tky)>d(ITx,Tk)—¢ for all
Tk eT(K).

Remarks:
1. Mapssatisfying T[ F ,(x) |=Fy,,,(T%) arecalled £— farthest point preserving.

Therefor isometery maps preserve ¢— farthest points.
2. Taking &=0, we obtain T[FK (x)] = Fy 4y (Tx) . Such maps are called farthest point

preserving. So isometery maps are farthest point preserving.
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3. if T (Xd) > d) s an onto isometery and K is a bounded subset of X,

then (i) K is remotal (uniquely remotal) in X if and only if T(K) s remotal
(uniquely remotal) subset of Y. (ii) K is €~ remotal (€~ uniquely remotal) in
X if and only if T(K) is €~ remotal (€~ uniquely remotal) subset of Y .

4.  Inth theory of nearest points, the notion of £— coapproximation in metric spaces
was defined by Narang [10] as under:

For a non-empty subset G of a metric space (X, d),xeX and &0, an

element g, € G iscalled an ¢— coapproximationto x if d(g,,g)<d(x,g)+¢ forall
geG.

For &e=0, such a g, G is called a coapproximation to x . These concepts were

discussed by many researchers (see [11] - [14] and references cited therein.).

It is easy to see that analogous notions of & cofarthest and cofarthest points

which could be defined as under :
For a bounded subset K of a metric space (X,d) and £>0, an element k, e K

is called an &— cofarthest point (cofarthest point) to xeX if
d(ky k) 2 0(x,K)—¢ (d(k,, k)= 0(x,K) ) forall k €K are not possible in the theory
of farthest points.
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