On ε - Farthest Points and their Invariance

Meenu Sharma and T.D. Narang

Principal, A.S. College for Women, Khanna-141401, Punjab

Department of Mathematics, Guru Nanak Dev University, Amritsar-143005, Punjab

Abstract

For a given bounded subset K of a metric space (X,d), $x \in X$ and $\varepsilon > 0$, an element $k_0 \in K$ is called an $\varepsilon -$ farthest point to x if $d(x,k_0) \ge \sup\{d(x,k): k \in K\} - \varepsilon$. In this paper we discuss some results on $\varepsilon -$ farthest points and their invariance under isometric mappings. The underlying spaces are metric spaces.

For a non-empty subset G of a metric space (X,d), $x \in X$ and $\varepsilon > 0$, we say that $g_0 \in G$ is an $\varepsilon -$ approximation or good approximation to x if $d(x,g_0) \leq d(x,g) + \varepsilon$ for all $g \in G$ (for $\varepsilon = 0$, such a g_0 is a best approximation to x in G). In the theory of nearest points, R.C. Buck [2] introduced the notion of $\varepsilon -$ approximation. Subsequently, this concept was studied by many researchers (see e.g. [10], [12], [13], [15] and references cited therein). Analogously, the notion of $\varepsilon -$ farthest points was introduced and discussed by Narang [8] in the theory of farthest points. This study was subsequently taken up in [4] and [9]. The notion of invariance of best approximation in normed linear spaces was initiated and discussed by Meinardus [7] and then considered by Brosowski [2], Khan and Khan [5], Mazaheri and Zadeh [6], and in metric spaces by Narang [11]. Mazaheri and Zadeh [6] also discussed the invariance of best approximation, and $\varepsilon -$ approximation in normed linear spaces whereas Narang [12] discussed the invariance of best approximation in metric linear spaces.

In this paper, we discuss some results on $\varepsilon-$ farthest points and their invariance in metric spaces. Let K be a bounded subset of a metric space (X,d), $x\in X$ and $\varepsilon>0$. An element $k_0\in K$ is said to be

- i. a farthest point to x if $d(x,k_0) = \delta(x,K) \equiv \sup \{d(x,y) : y \in K\}$,
- ii. ε -farthest point or nearly farthest point to x if $d(x,k_0) \ge \delta(x,K) \varepsilon$.

The set of all farthest points to x in K is denoted by $F_K(x)$ and ε - farthest points to x in K by $F_{K,\varepsilon}(x)$ i.e.

$$F_K(x) = \left\{ k_0 \in K : d(x, k_0) = \mathcal{S}(x, K) \right\}, \ F_{K, \varepsilon}(x) = \left\{ k_0 \in K : d(x, k_0) \ge \mathcal{S}(x, K) - \varepsilon \right\}.$$

Clearly, $F_{K,\varepsilon}(x) = K \cap B[x, \delta(x, K) - \varepsilon]^c$, where $B[x, r]^c$ denotes complement of the closed ball B[x, r] with centre x and radius r, $F_{k,\varepsilon}(x) \supseteq F_k(x) = \bigcap_{n \in \mathbb{N}} F_{k,\varepsilon}(x)$.

It can be easily seen that the sets $F_{K,\varepsilon}(x)$ and $F_K(x)$ are bounded sets, are closed sets if K is a closed set, are compact sets if K is a compact set.

Example: On the real line \mathbb{R} with usual metric, let K = [1,5], $x \in \mathbb{R}$, $\varepsilon > 0$. Then

$$F_{K,\varepsilon}(x) = \begin{cases} \begin{bmatrix} 1,1+\varepsilon \big[& \text{if } x > 3 \\ \\]5-\varepsilon,5 \big[& \text{if } x < 3 \\ \\ [1,1+\varepsilon \big[\cup \big]5-\varepsilon,5 \big] & \text{if } x = 3 \end{cases}$$

Concerning the elements of $F_{K,\varepsilon}(x)$, we have:

Proposition 1. If K is a bounded subset of a metrid space (X,d), $x \in X$ and $\varepsilon > 0$, then $k_0 \in F_{K,\varepsilon}(x)$ if and only if $k \in B[x,d(x,k_0)+\varepsilon]$ for each $k \in K$.

Proof: Let $k_0 \in F_{K,\varepsilon}(x)$. Suppose there is an element $k_1 \in K$ such that $k_1 \notin B[x,d(x,k_0)+\varepsilon]$, then $d(x,k_0)+\varepsilon < d(x,k_1) \le \delta(x,K)$ i.e. $d(x,k_0) < \delta(x,K)-\varepsilon$ which is a contradiction.

Conversely, suppose $k \in B[x,d(x,k_0)+\varepsilon]$ for all $k \in K$. If $k_0 \notin F_{K,\varepsilon}(x)$, then $d(x,k_0) < \delta(x,K)-\varepsilon$, and so there is some $k_1 \in K$ such that $d(x,k_0) < d(x,k_1)-\varepsilon$ i.e. $d(x,k_1) > d(x,k_0)$. But then $k_1 \notin B[x,d(x,k_0)+\varepsilon]$, which is a contradiction.

The set K is said to be remotal (uniquely remotal) if $F_K(x)$ is non-empty (singleton) for each $x \in X$.

The set K is said to be $\underline{\varepsilon-\text{remotal}}$ ($\underline{\varepsilon-\text{uniquely remotal}}$) if $F_{K,\varepsilon}(x)$ is non-empty (singelton) for each $x \in X$.

A sequence $\langle k_n \rangle$ in K is said to be $\underline{\varepsilon-\text{maximizing sequence}}$ for x if $\lim_{n \to \infty} d(x, k_n) \geq \delta(x, K) - \varepsilon$. The set K is said to be $\underline{\varepsilon-\text{nearly compact}}$ if for each

 $x \in X$, each ε - maximizing sequence has a subsequence converging to an element of K.

It is known (see [1]) that bounded nearly compact sets are remotal. The following proposition shows that ε - nearly compact sets are ε - remotal.

Proposition 2. If K is a boundeded, closed and ε – nearly compacy subset of a metric space (X,d) then $F_{K,\varepsilon}(x)$ is a non-empty compact set.

Proof: Let $x \in X$ be artitrary. By the definition of $\delta(x, K)$, we can find $k_0 \in K$ such that $d(x, k_0) \ge \delta(x, K) - \varepsilon$ and so $F_{K, \varepsilon}(x)$ is non-empty.

Let $\langle k_n \rangle$ be a sequence in $F_{K,\varepsilon}(x)$ i.e. $d(x,k_n) \ge \delta(x,K) - \varepsilon$ for all n=1,2,3,... and so

$$\lim_{n \to \infty} d(x, k_n) \ge \delta(x, K) - \varepsilon \tag{1}$$

i.e. $\langle k_n \rangle$ is an ε - maximizing sequence in K. Since K is ε - nearly compact closed set, $\langle k_n \rangle$ has a subsequece $\langle k_{n_i} \rangle \rightarrow k_0 \in K$. So, (1) implies

$$d(x,k_0) \ge \delta(x,K) - \varepsilon$$

i.e. $k_0 \in F_{K,\varepsilon}(x)$ and so $F_{K,\varepsilon}(x)$ is compact.

If K is a bounded subset of a metric space (X,d) and $\varepsilon>0$, we define

$$F_{K,\varepsilon}^{-1}(k_0) = \left\{ x \in X : k_0 \in F_{K,\varepsilon}(x) \right\}$$

 \equiv set of all those points of X for which $k_0 \in K$ is ε - farthest point.

Proposition 3. The set $F_{K,\varepsilon}^{-1}(k_0)$ is a closed subset of X.

Proof: Let x be a limit point of $F_{K,\varepsilon}^{-1}(k_0)$. Then there exists a sequence $\langle x_n \rangle$ in $F_{K,\varepsilon}^{-1}(k_0)$ such that $x_n \to x$.

Since $k_0 \in F_{K,\varepsilon}(x_n)$ for all n, $d(x_n, k_0) \ge \delta(x_n, K) - \varepsilon$.

This gives

$$\lim d(x_n, k_0) \ge \lim \delta(x_n, K) - \varepsilon$$

i.e.
$$d(x,k_0) \ge \delta(x,K) - \varepsilon$$

and so $k_0 \in F_{K,\varepsilon}(x)$ *i.e.* $x \in F_{K,\varepsilon}^{-1}(k_0)$.

Therefore $F_{K,\varepsilon}^{-1}(k_0)$ is closed.

We next discuss the invariance of ε - farthest points.

Theorem 1. Let T be an isometery on a metric space (X,d) *i.e.* d(Tx,Ty) = d(x,y) for all $x,y \in X, K$ a bounded subset of $X,x \in X$ and $\varepsilon > 0$. We have

- (i) $T[F_{K,\varepsilon}(x)] = F_{K,\varepsilon}(Tx)$ if T(K) = K,
- (ii) If x is T invariant i.e. Tx = x, then $T[F_{K,\varepsilon}(x)] \subseteq F_{K,\varepsilon}(x)$,
- (iii) If x is T invariance and if $F_{K,\varepsilon}(x) = \{k_0\}$, then $Tk_0 = k_0$,
- (iv) If x is T invariance and if $\{k \in K : Tk = k\} \cap F_{K,\varepsilon}(x) = \phi$, then either $F_{K,\varepsilon}(x) = \phi$ or $F_{K,\varepsilon}(x)$ has more than one point.

Proof:

- (i) Let $T(k_0) \in T[F_{K,\varepsilon}(x)]$ i.e. $k_0 \in F_{K,\varepsilon}(x)$. This gives $d(x,k_0) \geq d(x,k) \varepsilon$ for all $k \in K$ and so $d(Tx,Tk_0) \geq d(Tx,Tk) \varepsilon$ for all $Tk \in T(K) = K$ i.e. $T(k_0) \in F_{K,\varepsilon}(Tx)$. Therefore $T[F_{K,\varepsilon}(x)] \subseteq F_{K,\varepsilon}(Tx)$. Conversely, suppose $T(k_0) \in F_{K,\varepsilon}(Tx)$ i.e. $T(k_0) \in F_{T(K),\varepsilon}(Tx)$. Then $d(Tx,Tk_0) \geq d(Tx,Tk) \varepsilon$ for all $T(k) \in TK$ i.e. $d(x,k_0) \geq d(x,k) \varepsilon$ for all $k \in K$. Therefore $k_0 \in F_{K,\varepsilon}(x)$ and so $Tk_0 \in T[F_{K,\varepsilon}(x)]$. Hence $F_{K,\varepsilon}(Tx) \subseteq T[F_{K,\varepsilon}(x)]$.
- (ii) Let $T(k_0) \in T[F_{K,\varepsilon}(x)]$ i.e. $k_0 \in F_{K,\varepsilon}(x)$. Consider $d(Tx,Tk_0) = d(x,k_0)$ $\geq \delta(x,K) - \varepsilon$. This gives $T(k_0) \in F_{K,\varepsilon}(x)$. Hence $T[F_{K,\varepsilon}(x)] \subseteq F_{K,\varepsilon}(x)$.
- (iii) By (ii) $T(k_0) \in \{k_0\}$ and hence $Tk_0 = k_0$.
- (iv) By (ii) $T(k_0) \in F_{K,\varepsilon}(x)$. But by hypothesis, no invariant point can be an ε -farthest point to x, therefore $T(k_0) \neq k_0$. So, if $T(k_0) = k_0$ then ε -farthest point to x does not exist, i.e. $F_{K,\varepsilon}(x) = \phi$. If $Tk_0 \neq k_0$ then x has at least two ε -farthest points to x.

Theorem 2. Let T be an isometery on a metric space (X,d), K a bounded subset of $X, x \in X$ and $\varepsilon > 0$.

Then
$$T[F_{K,\varepsilon}(x)] = F_{T(K),\varepsilon}(Tx)$$
.

Proof: Since T is isometery, d(Tx,Ty)=d(x,y) for all $x,y\in X$. The proof follows from $d(x,k_0)\geq d(x,k)-\varepsilon$ for all $k\in K \Leftrightarrow d(Tx,Tk_0)\geq d(Tx,Tk)-\varepsilon$ for all $Tk\in T(K)$.

Remarks:

- 1. Maps satisfying $T[F_{K,\varepsilon}(x)] = F_{T(k),\varepsilon}(Tx)$ are called ε farthest point preserving. Therefor isometery maps preserve ε farthest points.
- 2. Taking ε =0, we obtain $T[F_K(x)] = F_{T(k)}(Tx)$. Such maps are called farthest point preserving. So isometery maps are farthest point preserving.

- 3. If $T:(X,d) \to (Y,d')$ is an onto isometery and K is a bounded subset of X, then (i) K is remotal (uniquely remotal) in X if and only if T(K) is remotal (uniquely remotal) subset of Y. (ii) K is \mathcal{E}^- remotal (\mathcal{E}^- uniquely remotal) in X if and only if T(K) is \mathcal{E}^- remotal (\mathcal{E}^- uniquely remotal) subset of Y.
- 4. In the theory of nearest points, the notion of ε coapproximation in metric spaces was defined by Narang [10] as under:

For a non-empty subset G of a metric space (X,d), $x\in X$ and $\varepsilon>0$, an element $g_0\in G$ is called an $\varepsilon-$ coapproximation to x if $d(g_0,g)\leq d(x,g)+\varepsilon$ for all $g\in G$.

For $\varepsilon=0$, such a $g_0 \in G$ is called a coapproximation to x. These concepts were discussed by many researchers (see [11] - [14] and references cited therein.).

It is easy to see that analogous notions of ε - cofarthest and cofarthest points which could be defined as under:

For a bounded subset K of a metric space (X,d) and $\varepsilon>0$, an element $k_0\in K$ is called an $\varepsilon-$ cofarthest point (cofarthest point) to $x\in X$ if $d(k_0,k)\geq \delta(x,K)-\varepsilon$ ($d(k_0,k)\geq \delta(x,K)$) for all $k\in K$ are not possible in the theory of farthest points.

References

- [1] G.C. Ahuja, T.D. Narang and Swaran Trehan, On existence of farthest points, Mathematics student, 43 (1975), 443-446.
- [2] Bruno Brosowski, Fixpunktasatze in der approximations theorie, Mathematica (chuj), 11 (1969), 195-220.
- [3] R.C. Buck, Applications of duality in approximation theory; Approximation of Functions, (Ed. H.L. Barabedian, Elsevier, Publ. Co., Amsrterdam) (1965) 27-42.
- [4] M. Jance, Nearly farthest points in normed linear spaces, Mat. Vesnik, 39 (1987), 309-319.
- [5] L.A. Khan and A.R. Khan, An extension of Brosowski Meinardus theorem on invariant approximation, Approx. Theory & Appl. 11 (1995), 1-5.
- [6] H. Mazaheri and M. Hossein Zadeh, The maps preserving approximation, International Mathematical Forum 2 (2007), 905-909.
- [7] G. Meinardus, invariance bei linearen approximation, Arch. Rational Mech. Anal. 14 (1963), 301-303.
- [8] T.D. Narang, Metric antiprojections and Characterization of ε farthest points, J.Korea Soc. Math. Education, 21 (1983), 19-21.
- [9] T.D. Narang, On farthest and nearly farthest points, Mat. Vesnik, 44 (1992), 195-111.
- [10] T.D. Narang, On good approximation, J. Scientific Research, 49 (1999), 25-43.

- [11] T.D. Narang, Invariant approximation in metric spaces, Mathematics Today, 23 (2007), 19-24.
- [12] T.D. Narang, On invariance of approximation and coapproximation in metric linear spaces, Mathematics Today, 32 (2016), 1-8.
- [13] Meenu Sharma and T.D. Narang, On invariance of ε orthogonality, ε approximation and ε coapproximation in metric linear spaces, International J. Engg. Scie., 4 (2015), 20-25.
- [14] Sh. Al-Sharif, A. Ababneh and M. Al-qhanti, Best coapproximation in certain metric spaces, Jalin J. Approx 11 (2019), 91-100.
- [15] Ivan Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York (1970).