Edge-Odd Gracefulness of the Graph $\mathbf{P}_{\mathrm{m}}+\mathbf{P}_{\mathrm{n}}$ for $\mathbf{m}=$ $2,3,4,5$, and 6

A. Solairaju, A. Sasikala and C. Vimala
${ }^{1}$ Associate Professor of Mathematics
Jamal Mohamed College, Tiruchirapalli - 620 020, Tamil Nadu, India.
E-mail: solairama@yahoo.co.in
${ }^{2}$ Assistant Professors (SG), Department of Mathematics, Periyar Maniammai University, Vallam,Thanjavur - Post, Tamil Nadu, India
E-mail: awshath@yahoo.co.in, email: vimalasakthi@yahoo.com

Abstract

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $f: E(G) \rightarrow\{1,3, \ldots, 2 q-1\}$ so that induced map $f_{+}: V(G) \rightarrow\{0,1,2,3, \ldots$, $(2 \mathrm{k}-1)\}$ defined by $\mathrm{f}_{+}(\mathrm{x}) \equiv \Sigma \mathrm{f}(\mathrm{x}, \mathrm{y})(\bmod 2 \mathrm{k})$, where the vertex x is incident with other vertex y and $k=\max \{p, q\}$ makes all the edges distinct and odd. this article, the Edge-odd gracefulness of $\mathrm{P}_{\mathrm{m}}+\mathrm{P}_{\mathrm{n}}$ for $\mathrm{m}=2,3,4,5$, and 6 is obtained.

Keywords: Graceful Graphs, Edge-odd graceful labeling, Edge-odd Graceful Graph

Introduction

A.Solairaju and K.Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. A. Solairaju et.al. [2009, 2010] proved that the graphs $C_{5} \Theta P_{n}$ and $C_{5} \Theta 2 P_{n}$ are edge -odd graceful .

Here the edge-odd graceful labeling of $P_{m}+P_{n}$ for $m=2,3,4,5$, and 6 is obtained.

Edge-odd graceful labeling of $\mathbf{P}_{\mathrm{m}}+\mathbf{P}_{\mathbf{n}}$ for $\mathbf{m}=2,3,4,5$, and 6

Definition 2.1: Graceful Graph: A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set $\{0,1,2, \ldots, m\}$ such that when each edge $u v$ is assigned the label $|f(u)-f(v)|$ and the resulting edge labels are distinct. Then the graph G is graceful.

Definition 2.2: Edge-odd graceful graph: A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ so that induced map $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ defined by $\mathrm{f}_{+}(\mathrm{x}) \equiv \Sigma \mathrm{f}(\mathrm{x}, \mathrm{y})(\bmod 2 \mathrm{k})$, where the vertex x is incident with other vertex y and $\mathrm{k}=\max \{\mathrm{p}, \mathrm{q}\}$ makes all the edges distinct and odd. Hence the graph G is edge- odd graceful.

Edge-odd Gracefulness of the graph $\mathbf{P}_{\mathbf{2}}+\mathbf{P}_{\mathbf{n}}$

Definition 3.1: $P_{2}+N_{n}$ is a connected graph such that every vertex of P_{2} is adjacent to every vertex of null graph N_{n} together with adjacency in both P_{2} and P_{n}. It has $n+2$ vertices and $3 n$ edges.

Theorem 3.1: The connected graph $P_{2}+P_{n}$ is edge - odd graceful.
Proof: The figure 1 is connected graph $\mathrm{P}_{2}+\mathrm{P}_{\mathrm{n}}$ with $\mathrm{n}+2$ vertices and 3 n edges, with some arbitrary labeling to its vertices and edges as follows.

Figure 1: Edge - odd graceful Graph $\mathrm{P}_{2}+\mathrm{P}_{\mathrm{n}}$

Hence define f: $\mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ by
For n is odd

$$
f\left(e_{i}\right)=(2 i-1), \text { for } i=1,2, \ldots,(3 n)
$$

For n is even and $\mathrm{i} \neq 6$

$$
\begin{array}{ll}
f\left(e_{i}\right)=(2 i-1), & \text { for } i=1,2, \ldots,(2 n+1) . \\
f\left(e_{3 n-i}\right)=f\left(e_{2 n+1}\right)+2 i+2, & \text { for } i=0,1,2, \ldots,(n-2) .
\end{array}
$$

Define $f_{+}: V(G) \rightarrow\{0,1,2, \ldots,(2 k-1)\}$ by $f_{+}(v) \equiv \Sigma f(u v) \bmod (2 k)$, where this sum run over all edges through v
(Rule 2)
Hence the map f and the induced map f_{+}provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$. Hence the graph $\mathrm{P}_{2}+\mathrm{P}_{\mathrm{n}}$ is edge-odd graceful.

Lemma 3.1: The connected graph $P_{2}+P_{6}$ is edge - odd graceful.
Proof: The following graph in figure 2 is a connected graph with 8 vertices and 18 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 2: Edge - odd graceful Graph $\mathrm{P}_{2}+\mathrm{P}_{6}$

Edge-odd Gracefulness of the graph $\mathbf{P}_{\mathbf{3}}+\mathbf{P}_{\mathbf{n}}$

Definition 4.1: $P_{3}+N_{n}$ is a connected graph such that every vertex of K_{3} is adjacent to every vertex of null graph N_{n} together with adjacency in both P_{3} and P_{n}. It has $n+3$ vertices and $4 \mathrm{n}+1$ edges.

Theorem 4.1: The connected graph $P_{3}+P_{n}$ for $n=1,2, \ldots,(4 n+1)$ is edge - odd graceful.

Proof: The figure 3 is connected graph $P_{3}+P_{n}$ with $n+3$ vertices and $4 n+1$ edges, with some arbitrary labeling to its vertices and edges.

Case i: $\mathrm{n}=1,2, \ldots,(4 \mathrm{n}+1)$ and $\mathrm{n} \neq 8,14,20,26, \ldots(6 \mathrm{~m}+2)$

Figure 3: Edge - odd graceful Graph $P_{3}+P_{n}$

Hence define f: $\mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ by
For $\mathrm{n} \equiv 0(\bmod 6)$
$f\left(e_{i}\right)=(2 i-1)$, for $i=3,4,5, \ldots,(4 n+1)$
$f\left(\mathrm{e}_{1}\right)=3 ; f\left(\mathrm{e}_{2}\right)=1$
For $\mathrm{n} \equiv 1(\bmod 6)$
$f\left(e_{i}\right)=(2 i-1)$, for $i=1,4,5,6, \ldots,(4 n+1)$
$\mathrm{f}\left(\mathrm{e}_{2}\right)=5 ; \mathrm{f}\left(\mathrm{e}_{3}\right)=3$

For $\mathrm{n} \equiv 3,5(\bmod 6)$
$f\left(e_{i}\right)=(2 i-1)$, for $i=2,4,5,6, \ldots,(4 n+1)$
$\mathrm{f}\left(\mathrm{e}_{1}\right)=5 ; \mathrm{f}\left(\mathrm{e}_{3}\right)=1$
For $\mathrm{n} \equiv 4(\bmod 6)$
$f\left(e_{i}\right)=(2 i-1)$, for $\mathrm{i}=2,3, \ldots,(4 n)$
$f\left(\mathrm{e}_{1}\right)=2 \mathrm{q}-1 ; \mathrm{f}\left(\mathrm{e}_{4 \mathrm{n}+1}\right)=1$

Case ii: $\mathrm{n} \neq 8,14,20,26, \ldots(6 \mathrm{~m}+2), \mathrm{m}=1,2, \ldots$,

Figure 4: Edge - odd graceful Graph $P_{3}+P_{n}$

Define f: $\mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 q-1\}$ by
For $\mathrm{n} \equiv 2(\bmod 6)$
$f\left(e_{i}\right)=(2 i-1)$, for $i=1,2, \ldots,(n-1),(n+1), \ldots,(3 n-1),(3 n+1), \ldots,(4 n+1)$ $f\left(e_{n}\right)=6 n-1 ; f\left(e_{3 n}\right)=2 n-1$.

Define $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by
$\mathrm{f}_{+}(\mathrm{v}) \equiv \Sigma \mathrm{f}(\mathrm{uv}) \bmod (2 \mathrm{k})$, where this sum run over all edges through v
Hence the map f and the induced map f_{+}provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$. Hence the graph $\quad P_{3}+P_{n}$ is edge-odd graceful.

Lemma 4.1: The connected graph $P_{3}+P_{3}$ is edge - odd graceful.
Proof: The following graph in figure 5 is a connected graph with 6 vertices and 13 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 5: Edge - odd graceful Graph $\mathrm{P}_{3}+\mathrm{P}_{3}$

Lemma 4.2: The connected graph $P_{3}+P_{4}$ is edge - odd graceful.
The following graph in figure 6 is a connected graph with 7 vertices and 17 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 6: Edge - odd graceful Graph $\mathrm{P}_{3}+\mathrm{P}_{4}$

Lemma 4.3: The connected graph $P_{3}+P_{5}$ is edge - odd graceful.

The following graph in figure 7 is a connected graph with 8 vertices and 21 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 7: Edge - odd graceful Graph $\mathrm{P}_{3}+\mathrm{P}_{5}$

Edge-odd Gracefulness of the graph $\mathbf{P}_{\mathbf{4}}+\mathbf{P}_{\mathbf{n}}$

Definition 5.1: $\mathrm{P}_{4}+\mathrm{N}_{\mathrm{n}}$ is a connected graph such that every vertex of P_{4} is adjacent to every vertex of null graph N_{n} together with adjacency in both P_{4} and P_{n}. It has $n+4$ vertices and $5 n+2$ edges.

Theorem 5.1: The connected graph $\mathrm{P}_{4}+\mathrm{P}_{\mathrm{n}}$ for $\mathrm{n}=1,2,3,4, \ldots,(5 \mathrm{n}+2)$ is edge odd graceful.

Proof: The figure 8 is connected graph $\mathrm{P}_{4}+\mathrm{P}_{\mathrm{n}}$ with $\mathrm{n}+4$ vertices and $5 \mathrm{n}+2$ edges, with some arbitrary labeling to its vertices and edges.

Case i: $\mathrm{n}=1,2, \ldots,(5 \mathrm{n}+2)$ and $\mathrm{n} \neq 8,14,20,26, \ldots(6 \mathrm{~m}+2)$

Figure 8: Edge - odd graceful Graph $\mathrm{P}_{4}+\mathrm{P}_{\mathrm{n}}$

Hence define f: $\mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ by

```
For \(\mathrm{n} \equiv 0(\bmod 6)\)
\(f\left(e_{i}\right)=(2 i-1)\), for \(i=4,5, \ldots,(5 n+2)\)
\(\mathrm{f}\left(\mathrm{e}_{1}\right)=3 ; \mathrm{f}\left(\mathrm{e}_{2}\right)=5 ; \mathrm{f}\left(\mathrm{e}_{3}\right)=1\)
For \(\mathrm{n} \equiv 1(\bmod 6)\)
\(f\left(e_{i}\right)=(2 i-1)\), for \(i=1,2, \ldots,(5 n+2)\)
For \(\mathrm{n} \equiv 3(\bmod 6)\)
\(f\left(e_{i}\right)=(2 i-1)\), for \(i=1,2, \ldots,(5 n+2) ; i \neq 4 \& 4 n+3\)
\(f\left(e_{4}\right)=8 n+5 ; f\left(\mathrm{e}_{4 \mathrm{n}}+3\right)=7\)
For \(\mathrm{n} \equiv 4(\bmod 6)\)
\(f\left(e_{i}\right)=(2 i-1)\), for \(i=4,5,6, \ldots,(5 n+2)\)
\(\mathrm{f}\left(\mathrm{e}_{1}\right)=5 ; \mathrm{f}\left(\mathrm{e}_{2}\right)=1 ; \mathrm{f}\left(\mathrm{e}_{3}\right)=3\)
For \(\mathrm{n} \equiv 5(\bmod 6)\)
\(f\left(e_{i}\right)=(2 i-1)\), for \(i=1,2,5,6, \ldots,(5 n+2)\)
\(f\left(\mathrm{e}_{3}\right)=7 ; \mathrm{f}\left(\mathrm{e}_{4}\right)=5\)
```

Case ii: $\mathrm{n} \equiv 8,14,20,26, \ldots(6 \mathrm{~m}+2), \mathrm{m}=1,2, \ldots$,

Figure 9: Edge - odd graceful Graph $\mathrm{P}_{4}+\mathrm{P}_{\mathrm{n}}$

Define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 q-1\}$ by
For $\mathrm{n} \equiv 2(\bmod 6)$

$$
\begin{aligned}
& f\left(e_{i}\right)=(2 i-1), \text { for } i=1,2, \ldots,(5 n+2) ; i \neq 2 n \& 4 n-1 \\
& f\left(e_{2 n}\right)=8 n-3 ; f\left(e_{4 n-1}\right)=4 n-3
\end{aligned}
$$

Define $\mathbf{f}_{+}: V(G) \rightarrow\{0,1,2, \ldots,(2 k-1)\}$ by $f_{+}(v) \equiv \Sigma f(u v) \bmod (2 k)$, where this sum run over all edges through v

Hence the map f and the induced map f_{+}provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$. Hence the graph $\quad P_{4}+P_{n}$ is edge-odd graceful.

Lemma 5.1: The connected graph $\mathrm{P}_{4}+\mathrm{P}_{4}$ is edge - odd graceful.
Proof: The following graph in figure 10 is a connected graph with 8 vertices and 22 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 10: Edge - odd graceful Graph $\mathrm{P}_{4}+\mathrm{P}_{4}$

Lemma 5.2: The connected graph $\mathrm{P}_{4}+\mathrm{P}_{5}$ is edge - odd graceful.
The following graph in figure 11 is a connected graph with 9 vertices and 27 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 11: Edge - odd graceful Graph $\mathrm{P}_{4}+\mathrm{P}_{5}$

Edge-odd Gracefulness of the graph $\mathbf{P}_{5}+\mathbf{P}_{\mathbf{n}}$

Definition 6.1: $\mathrm{P}_{5}+\mathrm{N}_{\mathrm{n}}$ is a connected graph such that every vertex of P_{5} is adjacent to every vertex of null graph N_{n} together with adjacency in both P_{5} and P_{n}. It has $\mathrm{n}+5$ vertices and $6 n+3$ edges.

Theorem 6.1: The connected graph $\mathrm{P}_{5}+\mathrm{P}_{\mathrm{n}}$ for all $\mathrm{n} \neq 7$ is edge - odd graceful.
Proof: The figure 12 is connected graph $P_{5}+P_{n}$ with $n+5$ vertices and $6 n+3$ edges, with some arbitrary labeling to its vertices and edges.

Figure 12: Edge - odd graceful Graph $\mathrm{P}_{5}+\mathrm{P}_{\mathrm{n}}$

Hence define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ by

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=(2 \mathrm{i}-1), \text { for } \mathrm{i}=1,2, \ldots,(6 \mathrm{n}+3) \tag{Rule10}
\end{equation*}
$$

Define $f_{+}: V(G) \rightarrow\{0,1,2, \ldots,(2 k-1)\}$ by $f_{+}(v) \equiv \Sigma f(u v) \bmod (2 k)$, where this sum run over all edges through v

Hence the map f and the induced map f_{+}provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0,1,2, \ldots .,(2 \mathrm{k}-1)\}$. Hence the graph $\quad P_{5}+P_{n}$ is edge-odd graceful.

Lemma 6.1: The connected graph $\mathbf{P}_{5}+\mathbf{P}_{7}$ is edge - odd graceful.

The graph in figure 13 is a connected graph with 12 vertices and 45 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 13: Edge - odd graceful Graph $\mathrm{P}_{5}+\mathrm{P}_{7}$

Edge-odd Gracefulness of the graph $\mathbf{P}_{\mathbf{6}}+\mathbf{P}_{\mathbf{n}}$

Definition 7.1: $\mathrm{P}_{6}+\mathrm{N}_{\mathrm{n}}$ is a connected graph such that every vertex of P_{6} is adjacent to every vertex of null graph N_{n} together with adjacency in both P_{6} and P_{n}. It has $n+6$ vertices and $7 \mathrm{n}+4$ edges.

Theorem 7.1: The connected graph $\mathrm{P}_{6}+\mathrm{P}_{\mathrm{n}}$ for all $\mathrm{n} \neq 7$ and 8 is edge - odd graceful.
Proof: The figure 14 is connected graph $\mathrm{P}_{6}+\mathrm{P}_{\mathrm{n}}$ with $\mathrm{n}+6$ vertices and $7 \mathrm{n}+4$ edges, with some arbitrary labeling to its vertices and edges.

Figure 14: Graph of $\mathrm{P}_{6}+\mathrm{P}_{\mathrm{n}}$

Hence define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ by $f\left(e_{i}\right)=(2 i-1)$, for $\mathrm{i}=1,2, \ldots,(7 n+4)$
[Rule 12]
Define $\mathbf{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by $\mathrm{f}_{+}(\mathrm{v}) \equiv \Sigma \mathrm{f}(\mathrm{uv}) \bmod (2 \mathrm{k})$, where this sum run over all edges through v

Hence the map f and the induced map f_{+}provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$. Hence the graph $\quad P_{6}+P_{n}$ is edge-odd graceful.

Lemma 7.1: The connected graph $\mathrm{P}_{6}+\mathrm{P}_{7}$ is edge - odd graceful.
The graph $P_{6}+P_{7}$ is a connected graph with 13 vertices and 53 edges. All the edges of the graph are labeled with distinct odd numbers in such a way that there will be distinct labeling for all its vertices.

That is, define $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ by
$f\left(e_{i}\right)=(2 i-1)$, for $i=1,2, \ldots, 53$
Define $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by
$\mathrm{f}_{+}(\mathrm{v}) \equiv \Sigma \mathrm{f}(\mathrm{uv}) \bmod (2 \mathrm{k})$, where this sum run over all edges through v
Hence the graph $\mathrm{P}_{6}+\mathrm{P}_{7}$ is edge-odd graceful.
The graph with edge-odd graceful labeling is given in the figure 15

Figure 15: Graph of $\mathrm{P}_{6}+\mathrm{P}_{7}$

Lemma 7.2: The connected graph $\mathrm{P}_{6}+\mathrm{P}_{8}$ is edge - odd graceful.
The graph $P_{6}+P_{8}$ is a connected graph with 14 vertices and 60 edges. All the edges of the graph are labeled with distinct odd numbers in such a way that there will be distinct labeling for all its vertices.

That is, define $f: E(G) \rightarrow\{1,3, \ldots, 2 q-1\}$ by

$$
f\left(e_{i}\right)=(2 i-1), \text { for } i=1,2, \ldots, 60
$$

Define $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by
$f_{+}(v) \equiv \Sigma f(u v) \bmod (2 k)$, where this sum run over all edges through v
Hence the graph $\mathrm{P}_{6}+\mathrm{P}_{8}$ is edge-odd graceful.
The graph with edge-odd graceful labeling is given in the figure 16.

Figure 16: Graph of $\mathrm{P}_{6}+\mathrm{P}_{8}$

Reference

[1] A.Solairaju and K.Chitra Edge-odd graceful labeling of some graphs 'Electronics Notes in Discrete Mathematics' Volume 33, April 2009, Pages 15 - 20
[2] A.Solairaju, A.Sasikala, C.Vimala, 'Edge-odd Gracefulness of a spanning tree of Cartesian product of P_{2} and C_{n} ', Pacific-Asian Journal of Mathematics, Vol .3, No. 1-2. Jan-Dec. 2009, pp:39-42
[3] A.Solairaju, C. Vimala, A.Sasikala, 'Edge-odd Gracefulness of (communicated to Serial Publications)

