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Abstract 

 
Turbo codes are classified as forward error correction codes, and their 

performance is known to be close to Shannon's limits. Error correction coding 

is an important part of wireless communication systems and this paper focuses 

on the design and implementation of a turbo encoder and decoder using a DSP 

processor. Most implementations of Forward Error Correction codes turbo are 

based on FPGA and ASIC implementations. This involves a large number of 

logic gates, registers and routing resources. The manufacturing cycle is also 

much costly, length and involves a lot of manpower. Advances in VLSI 

technology accompanied with the ever increasing speed of processors makes 

it highly feasible to implement these complex FEC codes using DSP 

processors. To validate our designs, randomly generated bits are modulated 

using BPSK, then send over an Additive White Gaussian Noise (AWGN) 

channel. The received noisy signal is then demodulated and the original sent 

bits restored via an iterative decoding algorithm which runs in the turbo 

decoder. Our design and implementation is based on the Texas Instruments 

TMS 320C6713 DSP processor. 
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Introduction 

The evolution of wireless communication generations has imposed stringent 

requirements on communication systems. Upcoming technologies shall require higher 

user capacity, higher data rates, high reliability, availability, bandwidth efficiency and 

security. As a result, better channel coding schemes are needed as a means of satisfying 

the above requirements. Studies has shown that coding schemes need to meet Shannon's 

capacity theorem to meet current communication demands are often very complex as 
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they rely upon iterative decoding algorithms. Shannon capacity theorem states that 

there is an encoding method that allows information to be transmitted over a noisy 

channel with an arbitrarily low error probability for any communication system with a 

channel capacity C with a data rate R of at least less than C[2]. However, this theory 

means that more redundant bits need to be added to achieve a low error probability. 

This causes delays and high computational requirements. However, the theorem does 

not describe how to build such a capacitive approximation code. Until the discovery of 

turbo codes, much research was done on channel coding that could satisfy Shannon's 

capacitive theorem[3] .Turbo codes were discovered by Berrou and Glavieux in 

1993[4]. Turbo codes design are based on concatenated coding, randomness, and 

iterative decoding[1]. The turbo encoder consists of two recursive systematic 

convolutional (RSC) encoders linked together by an interleaver[1]. The input bits that 

enter the first encoder are re-ordered with the aid of an interleaver before getting into 

the second encoder. The codewords of the turbo encoder are comprised of input bits 

followed by the parity test bits of each encoder. The code rate of the turbo codes can be 

varied by the process of puncturing. The turbo codes are decoded via an iterative 

deciphering algorithm[1]. Current implementations of Turbo codes are reliant on FPGA 

and ASIC technologies. FPGAs have disadvntages of being slower, complex and are 

often more expensive than custom silicon. Moreover mistakes not detected at design 

time have a large impact on the development time and cost. The same also applies to 

ASIC design which are faster than FPGAs. However some large ASICs can take a year 

or more time to design. ASIC design tools are very much expensive and costly. In ASIC 

the designer has to take care of DFM issues, signal integrity issues and many more 

huddles. All of these problems can be avoided if a DSP processor is used. Advances in 

VLSI technology have made the speed of processors to be much higher to be able to 

handle complex algorithms with virtually no latency. In this paper, a turbo encoder and 

decoder are implemented by using the Texas instruments TMS 320C6713 processor. 

 

 

RELATED WORKS 

Related studies have also been conducted on the implementation of turbo codes using 

other technologies. Fleah M.A and Al-Doori Q.F[5] presented the Design and 

Implementation of Turbo encoder/ decoder using an FPGA. In this task, focus was on 

designing turbo code using a MATLAB program via two programming methods, 

Simulink and M.file. Simulink design is used to build turbo code and actually 

implement it in FPGA devices using VHDL code. The M.files are used to measure 

turbo code performance in terms of bit error rate (BER). BER is tested by changing 

turbo code parameters such as code length, number of iterations, different rates, and 

different decoding algorithms. Abdel-Azim E.M.A[6] presented the Design And 

Implementation For A Multi-Standard Turbo Decoder Using A Reconfigurable ASIP. 

This task demonstrates an efficient architecture for implementing turbo decoders with 

a scalable, low power, application-specific instruction set processor (ASIP). Parallel 

processing of the ASIP architecture has been proposed to meet the high throughput 

requirements of turbo decoders, one of the most important requirements of 4th 

generation (4G) wireless communication systems. 
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TMS320C6713 DSK PROCESSOR 

The hardware implementation is performed with the Texas Instruments TMS320C6713 

DSP Starter Kit (DSK), which is based on the TMS320C6713 floating point DSP 

running at 225MHz[7]. Basic clock cycle command time is 1 / (225MHz) = 4.44 

nanoseconds. Up to 8 instructions can be executed in parallel during each clock cycle, 

achieving up to 8 x 225 = 1800 million instructions per second (MIPS)[7]. The C6713 

processor composed of 256KB of internal memory and is capable of addressing 4GB 

memory externally. The DSK board consists of 16MB SDRAM memory and a 512KB 

Flash ROM[7]. It features an on-board 16-bit stereo audio codec (Texas Instruments 

AIC23) that acts as both an ADC and DAC converter[7]. The board also consists of 

input and output audio jacks namely microphone, stereo line, speaker and head-phone 

respectively. The AIC23 codec is designed such that its sampling frequency are as 

follows: fs = 8, 16, 24, 32, 44.1, 48, 96 kHz[7].The Analog-to-Digital Converter (ADC) 

of the codec is employed as a multi-bit, third-order, noise-shaping delta-sigma 

converter, allowing for the various oversampling ratios that can be used to achieve the 

sampling frequency selection described above[7]. The Digital-to-Analog Converter 

part is also designed as a multi-bit secondary noise shaping delta-sigma converter. The 

converter's oversampling interpolation filter acts as a near-ideal reconstruction filter 

with the Nyquist interval as the passband[7]. 

The DSK also features four user programmable DIP switches and each associated with 

LED which regulates and monitor the programs running on the DSP[8]. All DSK 

functionality is managed by Code Composer Studio (CCS), a fully integrated 

development environment (IDE) consists of an optimized C / C ++ compiler, assembler, 

linker, debugger, and program loader[8]. The CCS aids the programming aspects of the 

DSP by read signals stored in the DSP's memory and display them in time or frequency 

domains[8]. The CCS is linked to DSK through a USB connection using a computer. 

The following block diagram depicts the overalloperations involved in all of the 

hardware experiments. Processing is interrupt-driven at the sampling rate fs[7], [8]. 

 

 
The AIC23 codec is configured (through CCS) to operate at one of the above sampling 

rates fs. Each collected sample is converted to a 16-bit two’s complement integer (a 

short data type in C)[8]. The codec actually samples the audio input in stereo, that is, it 

collects two samples for the left and right channels[8]. At each sampling instant, the 
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codec combines the two 16-bit left/right samples into a single 32-bit unsigned integer 

word (an unsigned int, or Uint32 data type in C), and ships it over to a 32-bit receive 

register of the multichannel buffered serial port (McBSP) of the C6713 processor, and 

then issues an interrupt to the processor[8]. Upon receiving the interrupt, the processor 

executes an interrupt service routine (ISR) that implements a desired sample processing 

algorithm programmed with the CCS (e.g. filtering, audio effects, etc.)[7]. During the 

ISR, the following actions take place: the 32-bit input sample is read from the McBSP, 

and sent into the sample processing algorithm that computes the corresponding 32-bit 

output word, which is then written back into a 32-bit transmit-register of the McBSP, 

from where it is transferred to the codec and reconstructed into analog format, and 

finally the ISR returns from interrupt, and the processor begins waiting for the next 

interrupt, which will come at the next sampling instant[8]. All processing operations 

during the execution of the ISR must be completed in the time interval between 

samples, that is, T = 1/fs[7]. 

 

 

TURBO CODE ENCODER 

The basic turbo encoder is composed of two Recursive Systematic Convolutional 

(RSC) encoders as component codes linked together by an interleaver[1]. The input bits 

fed to the first convolutional encoder is scrambled by the interleaver before being fed 

to the second convolutional encoder. The interleaver play a significant role in 

introducing the randomness hence creating codewords from each component encoder 

statistically independent[1]. The turbo code is generated by the input bits followed by 

the parity bits from both encoders. Alternatively, it can be generated by the puncturing 

process. In this process, the input bit is followed by one of the encoder's parity bits on 

an odd or even time base. This process also change the code rate of the turbo encoder. 

Figure 1 below depicted a basic turbo code encoder which is consists of two identical 

convolutional encoders parallel concatenated. The possible codewords as per figure 1, 

without puncturing and with puncturing respectively are as follows: 

i) C1,C2,C3,C1,C2,C3,C1,C2,C3…C1,C2,C3 

ii) C1,C2,C1,C3,C1,C2,C1,C3,…,C1,C2,C1,C3 
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Figure 1: basic block diagram of turbo code encoder 

 

Furthermore figure 1 can be explored as shown in figure 2 below. 

 

 
 

Figure 2: Explored basic block diagram of turbo code encoder[1]. 
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INTERLEAVER 

Interleaver are devices that reorder bit sequences in a one to one pseudo random 

format[9]. They are usually used for improving error correction capabilities of coding 

schemes over busty channels[9]. They achieve this by to increase the minimum distance 

in the code distance spectrum therefore the design of turbo codes need a diligent design 

of its constituent interleaver[9]. The opposite process to interleaving is known as de-

interleaving, dedicated to reinstate the received sequence into its original order. For this 

paper we going to consider a random interleaver of the turbo encoder. In this algorithm, 

the data is randomized as depicted in figure 3 below. 

 

 
 

Figure 3: Random interleaver of the turbo encoder[1]. 

 

 

TRELLIS DIAGRAM 

The turbo encoding process can be represented by the use of trellis diagram. As depicted 

from figure 2 above, we can observe that each RSC encoder consists of two shift 

registers hence the register states and corresponding output to the input bits are 

summarized in table 1 below. Furthermore the table can be transformed into a trellis 

diagram as shown in figure 4. 

 

Table 1 

 

Time (i) Input mi 
Memory State 

Output (Ci0 Ci1) 
M1 M2 

1 1 0 0 1 1 

2 0 1 0 0 1 

3 0 1 1 0 1 

4 1 0 1 1 1 

5 0 0 0 0 0 

6 0 1 0 0 0 

7 0 0 1 0 0 

8 0 1 0 0 0 
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Figure 4: RSC encoder trellis diagram 

 

 

TURBO CODE DECODER 

Turbo Decoder is based on an iterative scheme and consists of two soft-input-soft-

output (SISO) concatenated component decoders. As a result, the input to the decoder 

is the channel value actually received and not quantized to 0 or 1.The two configuration 

decoders use the same trellis structure and the same decoding algorithm. The iterative 

decoding scheme is based on a posterior probability. The two decoders provides and 

accepts the output as a priori information hence minimizing the probability of error in 

the original information bit. Figure 5 below depicts the block diagram of turbo code 

decoder. 

 

 
 

Figure 5: Turbo code decoder 
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OPERATION OF TURBO CODE DECODER 

The turbo encoder RSC encoders 1 and 2 correspond to the turbo decoder SISO 

decoders 1 and 2, respectively. As observed in figure 5, there are three inputs (r0, r1, 

r2) to the turbo code decoders. The SISO decoder 1 uses the received information 

sequence (r0), the received parity sequence from RSC encoder 1 (r1), and the a priori 

information which is the de-interleaved extrinsic information from SISO decoder 2[1]. 

The inputs to the SISO decoder 2 are the interleaved received information sequence 

(r0), the received parity sequence by the RSC encoder 2 (r2), and the a priori 

information that is the interleaved extrinsic information from the SISO decoder 1[1]. 

On the first iteration, SISO Decoder 1 decode without a priori information and makes 

the output available to SISO Decoder 2 as a priori information. The SISO decoder 2 

uses this a priori information, the interleaved received information r0, and the received 

parity r2 to initiate the decoding[1]. In the iterative process, SISO decoder 1 receives a 

priori information from SISO decoder 2 and decodes it again with a priori information, 

received information r0 and received parity r1[1]. This iteration allows the decoder to 

reduce the error probability of the information bits, but it increases the latency. 

Moreover, the higher the number of iterations, the faster the coding gain will drop[1]. 

The SISO decoder is based on the Maximum a Posteriori (MAP) algorithm (also known 

as Bahl-Cocke). Jelinek–Raviv (BCJR) algorithm)[1]. The algorithm uses the 

probability that the information bit u will be decoded correctly[10]. This probability is 

maximized by this algorithm, and the probability is called the maximum a posteriori 

probability[10]. The MAP decoder uses the log-likelihood ratio (LLR) to formulate the 

bit probabilities as soft outputs[1]. The soft output of the first MAP decoder is defined 

as: 

 
After observing the two inputs (rk0 and rk1), the LLR calculates and compares the 

probabilities when the information mk is +1 and -1[1]. The calculated soft output value 

of each information bit is decoded to be +1 if the value is greater zero otherwise its -1 

if less than zero[10]. 

Using Bayes theorem, the probability that information mk is +1 is calculated as: 
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Similarly, when mk = -1 its probability is calculated as: 

 
Hence, LLR can further be expressed as follows in terms of the trellis diagram: 

 
Where 

Sk is state at time k in the trellis diagram, 

S′ and S are a state of the trellis diagram, and 

Sp and Sn are transition sets of the trellis diagram when input bit is positive and negative 

respectively as shown in figure 6 below. 

The probability terms for the numerator and denominator of the LLR can be rewritten 

as: 
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Figure 6: Transition sets of the trellis diagram of figure 4 

 

 

Next, we express the following metrics, the forward path metric αk-1(sk-1 = s’), the 

backwards path metric (βk(sk=s)) and the branch metric (γk(sk-1=s’,sk=s )) as follows: 

 
The probability P(sk-1= s’,sk=s,(rk0,rk1)) can be expressed in terms of the metrics as 

follows 

 
Furthermore, the LLR is expressed in terms in terms of metrics as follows: 
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FORWARD METRIC CALCULATION 

The time index for forward path metric calculation is considered from k-1 to k as 

follows 

 
Given that the recursive systematic convolution encoder starts at state 0 (00), the initial 

conditions for the forward path metric are given as follows: 

 
 

 

BACKWARD PATH METRIC CALCULATION 

The time index for backward path forward metric calculation is considered from k+1 to 

k as follows 

 
Given that the recursive systematic convolution encoder terminates at state 0 (00), the 

initial conditions for the backward path metric are given as follows: 

 
 

 

BRANCH METRIC CALCULATION 

The branch metric is rewritten as follows: 
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Where p((rk0,rk1) | (ck0,ck1)) is the likelihood probability and 

P(ck0) is the a priori probability 

The likelihood probability is given as follows: 

 
And considering that ω0 and ω1 are extremely small values hence these terms are 

ignored and resulting in the priori probability is expressed as follows: 

 
Where 

 
Hence the branch metric is given as 

 
Where 

 
With that, we can further express LLR as follows: 
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And since  and are independent of the state transition, LLR is 

further simplified as 

 
Where La(Ck0) is the a priori information of the MAP algorithm. 

Lc(rk0) is the channel value. 

Le(Ck0) is the extrinsic information that is going to be fed to the second MAP decoder. 

 

 

EXAMPLE OF TURBO ENCODING AND DECODING 

Referencing RSC encoder trellis diagram in figure 4. Given that input sequence is 1 0 

0 1 0 and terminated with the last two bits 0 0 and the memory initial state being 0 0. 

The output of the first encoder is as follows: 1 1 0 1 0 1 1 1 0 0 0 0 0 0. Using the 

interleaver shown in figure 3 and its resultant is as follows: 0 1 1 0 0 0 0, therefore the 

output of the second encoder is as follows: 0 0 1 1 1 0 0 0 0 1 0 1 0 0. The output of the 

turbo code encoder is then given as follows: C0: 1 0 0 1 0 0 0, C1:1 1 1 1 0 0 0 and C2: 

0 1 0 0 1 1 0. The transmitted symbols after BPSK modulated is sequentially given as 

follows: [C01 C11 C21, C02, C12, C22…C07, C17, C27] = [1 1 0 0 1 1 0 1 0 1 1 0 0 0 

1 0 0 1 0 0 0] = [+1 +1 -1 -1 +1 +1 -1 +1 -1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1 -1 -1]. 

The transmitted symbols are sent through a noisy channel hence a Gaussian noise is 

added to them as shown in figure .. below 
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Figure: Received noisy symbol example 

 

 

RESULTS AND ANALYSIS 

Three channel coding were simulated, and their bit error rates (BER) were compared 

and their performance are depicted in figure 29 below. The channel coding under 

considerations are Turbo codes with soft decoding, convolutional encoding with vertebi 

decoding and Reed Solomon code using BPSK modulation. 
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As shown above, turbo codes has an outstanding performance among the three codes 

because it has low bit error rate at low signal to noise ratio (SNR). Reed Solomon code 

at low SNR has low bit error rate compared to convolutional codes with Vertebi 

decoding algorithm but as the SNR increases the convolutional coding gives low bit 

error rate than Reed Solomon code. It can be observed that as the SNR increases the 

performance of turbo codes does not change hence it is most ideal channel code since 

it gives low bit error rate at lower powers. This can be justified by recording the BER 

of all codes at SNR =1.5dB which records BER for turbo code in the range of 10-4 , 

convolutional code in the range of 10-1 and reed Solomon code in the range of 100. 

 

 

CONCLUSION 

Based on the matlab simulation, Turbo codes are the ideal channel code as it showed 

that it achieve low bit error rate al lower SNR. It also has better bandwidth efficiency 

and provide better communication security. It will recommend that it should be 

incorporated in future generation implementation of communication systems and 

further be improved. The implementation of turbo codes using DSP has further 

improved as delays are being minimised. 
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