International Journal of Electronics and Communication Engineering.
ISSN 0974-2166 Volume 15, Number 1 (2022), pp. 1-15

© International Research Publication House
http://www.irphouse.com

Design and Implementation of a Turbo Codes Using a
DSP Processor

Budani Jeoffrey, Ibo Ngebani, Sajid M. Sheikh and Ishmael Zibani

Electrical Engineering Department,
University of Botswana, Gaborone, Botswana

Abstract

Turbo codes are classified as forward error correction codes, and their
performance is known to be close to Shannon's limits. Error correction coding
is an important part of wireless communication systems and this paper focuses
on the design and implementation of a turbo encoder and decoder using a DSP
processor. Most implementations of Forward Error Correction codes turbo are
based on FPGA and ASIC implementations. This involves a large number of
logic gates, registers and routing resources. The manufacturing cycle is also
much costly, length and involves a lot of manpower. Advances in VLSI
technology accompanied with the ever increasing speed of processors makes
it highly feasible to implement these complex FEC codes using DSP
processors. To validate our designs, randomly generated bits are modulated
using BPSK, then send over an Additive White Gaussian Noise (AWGN)
channel. The received noisy signal is then demodulated and the original sent
bits restored via an iterative decoding algorithm which runs in the turbo
decoder. Our design and implementation is based on the Texas Instruments
TMS 320C6713 DSP processor.

Keywords: DSP processor, Code Composer Studio, Turbo codes.

Introduction

The evolution of wireless communication generations has imposed stringent
requirements on communication systems. Upcoming technologies shall require higher
user capacity, higher data rates, high reliability, availability, bandwidth efficiency and
security. As a result, better channel coding schemes are needed as a means of satisfying
the above requirements. Studies has shown that coding schemes need to meet Shannon's
capacity theorem to meet current communication demands are often very complex as



2 Budani Jeoffrey et al

they rely upon iterative decoding algorithms. Shannon capacity theorem states that
there is an encoding method that allows information to be transmitted over a noisy
channel with an arbitrarily low error probability for any communication system with a
channel capacity C with a data rate R of at least less than C[2]. However, this theory
means that more redundant bits need to be added to achieve a low error probability.
This causes delays and high computational requirements. However, the theorem does
not describe how to build such a capacitive approximation code. Until the discovery of
turbo codes, much research was done on channel coding that could satisfy Shannon's
capacitive theorem[3] .Turbo codes were discovered by Berrou and Glavieux in
1993[4]. Turbo codes design are based on concatenated coding, randomness, and
iterative decoding[1]. The turbo encoder consists of two recursive systematic
convolutional (RSC) encoders linked together by an interleaver[1]. The input bits that
enter the first encoder are re-ordered with the aid of an interleaver before getting into
the second encoder. The codewords of the turbo encoder are comprised of input bits
followed by the parity test bits of each encoder. The code rate of the turbo codes can be
varied by the process of puncturing. The turbo codes are decoded via an iterative
deciphering algorithm[1]. Current implementations of Turbo codes are reliant on FPGA
and ASIC technologies. FPGAs have disadvntages of being slower, complex and are
often more expensive than custom silicon. Moreover mistakes not detected at design
time have a large impact on the development time and cost. The same also applies to
ASIC design which are faster than FPGAs. However some large ASICs can take a year
or more time to design. ASIC design tools are very much expensive and costly. In ASIC
the designer has to take care of DFM issues, signal integrity issues and many more
huddles. All of these problems can be avoided if a DSP processor is used. Advances in
VLSI technology have made the speed of processors to be much higher to be able to
handle complex algorithms with virtually no latency. In this paper, a turbo encoder and
decoder are implemented by using the Texas instruments TMS 320C6713 processor.

RELATED WORKS

Related studies have also been conducted on the implementation of turbo codes using
other technologies. Fleah M.A and Al-Doori Q.F[5] presented the Design and
Implementation of Turbo encoder/ decoder using an FPGA. In this task, focus was on
designing turbo code using a MATLAB program via two programming methods,
Simulink and M.file. Simulink design is used to build turbo code and actually
implement it in FPGA devices using VHDL code. The M.files are used to measure
turbo code performance in terms of bit error rate (BER). BER is tested by changing
turbo code parameters such as code length, number of iterations, different rates, and
different decoding algorithms. Abdel-Azim E.M.A[6] presented the Design And
Implementation For A Multi-Standard Turbo Decoder Using A Reconfigurable ASIP.
This task demonstrates an efficient architecture for implementing turbo decoders with
a scalable, low power, application-specific instruction set processor (ASIP). Parallel
processing of the ASIP architecture has been proposed to meet the high throughput
requirements of turbo decoders, one of the most important requirements of 4th
generation (4G) wireless communication systems.



Design and Implementation of a Turbo Codes Using a DSP Processor 3

TMS320C6713 DSK PROCESSOR

The hardware implementation is performed with the Texas Instruments TMS320C6713
DSP Starter Kit (DSK), which is based on the TMS320C6713 floating point DSP
running at 225MHz[7]. Basic clock cycle command time is 1 / (225MHz) = 4.44
nanoseconds. Up to 8 instructions can be executed in parallel during each clock cycle,
achieving up to 8 x 225 = 1800 million instructions per second (MIPS)[7]. The C6713
processor composed of 256KB of internal memory and is capable of addressing 4GB
memory externally. The DSK board consists of 16MB SDRAM memory and a 512KB
Flash ROM[7]. It features an on-board 16-bit stereo audio codec (Texas Instruments
AIC23) that acts as both an ADC and DAC converter[7]. The board also consists of
input and output audio jacks namely microphone, stereo line, speaker and head-phone
respectively. The AIC23 codec is designed such that its sampling frequency are as
follows: fs =8, 16, 24, 32, 44.1, 48, 96 kHz[7]. The Analog-to-Digital Converter (ADC)
of the codec is employed as a multi-bit, third-order, noise-shaping delta-sigma
converter, allowing for the various oversampling ratios that can be used to achieve the
sampling frequency selection described above[7]. The Digital-to-Analog Converter
part is also designed as a multi-bit secondary noise shaping delta-sigma converter. The
converter's oversampling interpolation filter acts as a near-ideal reconstruction filter
with the Nyquist interval as the passband[7].

The DSK also features four user programmable DIP switches and each associated with
LED which regulates and monitor the programs running on the DSP[8]. All DSK
functionality is managed by Code Composer Studio (CCS), a fully integrated
development environment (IDE) consists of an optimized C/ C ++ compiler, assembler,
linker, debugger, and program loader[8]. The CCS aids the programming aspects of the
DSP by read signals stored in the DSP's memory and display them in time or frequency
domains[8]. The CCS is linked to DSK through a USB connection using a computer.
The following block diagram depicts the overalloperations involved in all of the
hardware experiments. Processing is interrupt-driven at the sampling rate fs[7], [8].

CCs _
interrupt
i t ;
Y :
sample - «—— analog input
processing McBSP AIC23 £1mp
algorithm » » codec — analog output
TMS320C6713 DSP %

The AIC23 codec is configured (through CCS) to operate at one of the above sampling
rates fs. Each collected sample is converted to a 16-bit two’s complement integer (a
short data type in C)[8]. The codec actually samples the audio input in stereo, that is, it
collects two samples for the left and right channels[8]. At each sampling instant, the



4 Budani Jeoffrey et al

codec combines the two 16-bit left/right samples into a single 32-bit unsigned integer
word (an unsigned int, or Uint32 data type in C), and ships it over to a 32-bit receive
register of the multichannel buffered serial port (McBSP) of the C6713 processor, and
then issues an interrupt to the processor[8]. Upon receiving the interrupt, the processor
executes an interrupt service routine (ISR) that implements a desired sample processing
algorithm programmed with the CCS (e.qg. filtering, audio effects, etc.)[7]. During the
ISR, the following actions take place: the 32-bit input sample is read from the McBSP,
and sent into the sample processing algorithm that computes the corresponding 32-bit
output word, which is then written back into a 32-bit transmit-register of the McBSP,
from where it is transferred to the codec and reconstructed into analog format, and
finally the ISR returns from interrupt, and the processor begins waiting for the next
interrupt, which will come at the next sampling instant[8]. All processing operations
during the execution of the ISR must be completed in the time interval between
samples, that is, T = 1/fs[7].

TURBO CODE ENCODER

The basic turbo encoder is composed of two Recursive Systematic Convolutional
(RSC) encoders as component codes linked together by an interleaver[1]. The input bits
fed to the first convolutional encoder is scrambled by the interleaver before being fed
to the second convolutional encoder. The interleaver play a significant role in
introducing the randomness hence creating codewords from each component encoder
statistically independent[1]. The turbo code is generated by the input bits followed by
the parity bits from both encoders. Alternatively, it can be generated by the puncturing
process. In this process, the input bit is followed by one of the encoder's parity bits on
an odd or even time base. This process also change the code rate of the turbo encoder.
Figure 1 below depicted a basic turbo code encoder which is consists of two identical
convolutional encoders parallel concatenated. The possible codewords as per figure 1,
without puncturing and with puncturing respectively are as follows:

i) C1,C2,C3,C1,C2,C3,C1,C2,C3...C1,C2,C3

i) C1,C2,C1,C3,C1,C2,C1,C3,...,C1,C2,C1,C3



Design and Implementation of a Turbo Codes Using a DSP Processor

Input(bits) C1

Encoderl +——»

L

Interleaver

Encoder 2 S,

L J

Figure 1: basic block diagram of turbo code encoder

Furthermore figure 1 can be explored as shown in figure 2 below.

m=(my, My, ..., M) cO=(ch.el, ..., e]

[ ]
s 4
=@ . \\.—b
w T ' [ ]
RSC encoder 1 1 19 1
=(c1,63, --- , Ck
Random
interleaver

frTETsEssEeE e EEEEEmEmEEEEEEEEEE S 1
| (+)e !
I 1
I 1
I 1
I ]
I 1
I

p( + M1 » M2 —
| !
I 1
I 1
I h 4 1
; L)
: A
F e e o o o o o o e e e e e e 1

RSC encoder 2 c?=(ct.c3, ... cD)

Figure 2: Explored basic block diagram of turbo code encoder[1].



6

INTERLEAVER

Interleaver are devices that reorder bit sequences in a one to one pseudo random
format[9]. They are usually used for improving error correction capabilities of coding
schemes over busty channels[9]. They achieve this by to increase the minimum distance
in the code distance spectrum therefore the design of turbo codes need a diligent design
of its constituent interleaver[9]. The opposite process to interleaving is known as de-
interleaving, dedicated to reinstate the received sequence into its original order. For this
paper we going to consider a random interleaver of the turbo encoder. In this algorithm,
the data is randomized as depicted in figure 3 below.

Budani Jeoffrey et al

Random
interleaver

Figure 3: Random interleaver of the turbo encoder[1].

TRELLIS DIAGRAM

The turbo encoding process can be represented by the use of trellis diagram. As depicted
from figure 2 above, we can observe that each RSC encoder consists of two shift
registers hence the register states and corresponding output to the input bits are
summarized in table 1 below. Furthermore the table can be transformed into a trellis

diagram as shown in figure 4.

Table 1

Time (i)

Input mi

Memory State

M1

M2

Output (Ci0 Cil)

1

11

01

01

11

00

00

00

ONOO|OIPDWIN -

ellellellell Jlelle]

Rlo|lk|lolor|r|lo

O OO FkIOoO|o

00




Design and Implementation of a Turbo Codes Using a DSP Processor 7

To T4 Ts Ts Ty Ts Ts T
0/00 0/00 0/00 0/00 0/00 0/00 0/00

! N ~ ’ \ ’ a4
2\ 0/01 . 0/01 70001 . 0/01 0001

0001

i r ) / 7

S0t Sooi ool ooi oo
e . W10 4 110 g 110 e 110 S0 1110

>

N

Figure 4: RSC encoder trellis diagram

TURBO CODE DECODER

Turbo Decoder is based on an iterative scheme and consists of two soft-input-soft-
output (SISO) concatenated component decoders. As a result, the input to the decoder
is the channel value actually received and not quantized to 0 or 1.The two configuration
decoders use the same trellis structure and the same decoding algorithm. The iterative
decoding scheme is based on a posterior probability. The two decoders provides and
accepts the output as a priori information hence minimizing the probability of error in
the original information bit. Figure 5 below depicts the block diagram of turbo code
decoder.

-

m
» Interleaver De-interleaver
. T 170 [
Li(my) — Lo Lal(ck) R 150 Lo(m,)
P—> sis0 | ¥ r—>
»| decoder 2
r‘—: decoder 1 —v-@—> interleaver »
De-interleaver *
LZ(mk}_Lch?
La(cP)

Figure 5: Turbo code decoder



8 Budani Jeoffrey et al

OPERATION OF TURBO CODE DECODER

The turbo encoder RSC encoders 1 and 2 correspond to the turbo decoder SISO
decoders 1 and 2, respectively. As observed in figure 5, there are three inputs (r0, r1,
r2) to the turbo code decoders. The SISO decoder 1 uses the received information
sequence (r0), the received parity sequence from RSC encoder 1 (r1), and the a priori
information which is the de-interleaved extrinsic information from SISO decoder 2[1].
The inputs to the SISO decoder 2 are the interleaved received information sequence
(r0), the received parity sequence by the RSC encoder 2 (r2), and the a priori
information that is the interleaved extrinsic information from the SISO decoder 1[1].
On the first iteration, SISO Decoder 1 decode without a priori information and makes
the output available to SISO Decoder 2 as a priori information. The SISO decoder 2
uses this a priori information, the interleaved received information r0, and the received
parity r2 to initiate the decoding[1]. In the iterative process, SISO decoder 1 receives a
priori information from SISO decoder 2 and decodes it again with a priori information,
received information rO and received parity r1[1]. This iteration allows the decoder to
reduce the error probability of the information bits, but it increases the latency.
Moreover, the higher the number of iterations, the faster the coding gain will drop[1].
The SISO decoder is based on the Maximum a Posteriori (MAP) algorithm (also known
as Bahl-Cocke). Jelinek—Raviv (BCJR) algorithm)[1]. The algorithm uses the
probability that the information bit u will be decoded correctly[10]. This probability is
maximized by this algorithm, and the probability is called the maximum a posteriori
probability[10]. The MAP decoder uses the log-likelihood ratio (LLR) to formulate the
bit probabilities as soft outputs[1]. The soft output of the first MAP decoder is defined
as:

P(mk = +1 (fl,u,f*; ))

P(mk = -1 (f}:},f}: ))

After observing the two inputs (rkO and rk1), the LLR calculates and compares the
probabilities when the information mk is +1 and -1[1]. The calculated soft output value
of each information bit is decoded to be +1 if the value is greater zero otherwise its -1
if less than zero[10].
Using Bayes theorem, the probability that information mk is +1 is calculated as:
P(m‘ = +1.(r:',rkI ))
P(m, =+1|(r.r'))=
( k |(A A)) P(r‘\(),r‘\l)

Zum.;_sPP(SH :s'..s" :sl(l‘;'.lf ))
- P(I“”,I':)

Z(‘,“‘MP P(.s"_l =8 8= s,(r‘“.r‘I )) P(r‘".r")

- P(r[’,r‘I )

L (m,)=log




Design and Implementation of a Turbo Codes Using a DSP Processor 9

Similarly, when mk = -1 its probability is calculated as:
P(mk = —l,(r,__“,r_' ))
P(mk =—1|[rf',.rl_J ))= —
P(q,m)
o .1
Zr.-.-'..-nr:.';"P(S“—J - S:Sk - l{i\-|(ﬂ' T ))

P(r” r')

k*'k

' o 1Y)/ 0 1
Zr.'."..'.'lFS" P(Sk—l =4 "'Ti' = _'i',(}’l_ "‘r;.' )).u P(}’l "-r;_- )
o .1
P(rk T )

Hence, LLR can further be expressed as follows in terms of the trellis diagram:

o o 0o _1
Zr.'r',.ﬂF.ﬁ'F'P[s'{'_l =5 ’Sk o ‘L(Fk J}" )]
] 1] 1
st P[.ﬁ__, =5,85, = s,(rk " ))
Where

Sk is state at time k in the trellis diagram,
S"and S are a state of the trellis diagram, and

Sp and Sn are transition sets of the trellis diagram when input bit is positive and negative
respectively as shown in figure 6 below.

The probability terms for the numerator and denominator of the LLR can be rewritten
as:

' [ ' o 1"
P(Sk—l =5.8; =3°(’1 T ])= P(S ’S’[r“ T ))
_ ' ol 01 LU
—P(S ,-ﬂ[ﬁ_]sﬁ;_])i(ﬁ; J‘ri_- )’(ﬁ:“’ﬂ#l})

' 0 | o _.1 ] 0 | o _1
st (on ). () P55 (ot ) ()

L (m )=log

Il
—
—
?.-"H
Te
-
—
]
R
-y
—
::‘:_
i
—
‘ﬂ-.
—
——
o
o
P‘:“:
?—lﬁ,_
R
e

ol o 1 ' ' I
= P((qﬂ,q_l )‘sk =:;]P(.~r‘_ =S,(?1. N )‘SH =5 }P(sk_J =g ,(rk_l,rk_l))



10 Budani Jeoffrey et al

T Ty
0/00
00 ®------- Rt 00
o
o1 *.0/00 < 01
\\ l|l-I'
10 % /% 10
- 0/01

: : 110
1 4 s 11 e————Ppe
(s'.s) e S" (s'.s) € SP

Figure 6: Transition sets of the trellis diagram of figure 4

Next, we express the following metrics, the forward path metric ak-1(sk-1 = s’), the
backwards path metric (Bk(sk=s)) and the branch metric (yk(sk-1=s’,sk=s )) as follows:

I S o 0 |
oy (8, =5)= P(Sk—l =98 =(’1--1=’1--J )]

5, = 3)
ot _ _ _ o 1 —af
f (Sk—l =5.5, —.*:) — P(sk —::,(rk T ) S, =8 ]

The probability P(sk-1=s’,sk=s,(rk0,rk1)) can be expressed in terms of the metrics as
follows

: 01y
P(S;._J =5,5, = S,(!}. A )) =B, (s, =8)y (5, =55, =5)t,_ (5., =5)

Furthermore, the LLR is expressed in terms in terms of metrics as follows:
J ’
ZH-_H,ESP Bi(s, =9y (s, = 5,5, =), (5,,=5)
t ¢
Z”r_h.,&_.;f.- Bi(sy = 8)y (s = 5,8, =s5)oy (5, =5)

B.(s, =s)= P{(_’lﬂudu]

Ll (ma) = lng



Design and Implementation of a Turbo Codes Using a DSP Processor 11

FORWARD METRIC CALCULATION
The time index for forward path metric calculation is considered from k-1 to k as
follows

o, {Sk = _';‘) = P[."i'i_ = 5-_.(?1_[],}1[ ])

:Z_ﬁ. P(.?k_J =s',(!1.'1[,!1'_l ))P(sk :.q,{rf,ﬁ__l )‘3&_[ :5')
_Zaﬁ L8 =8y (s, =55, =5).

Given that the recursive systematic convolution encoder starts at state 0 (00), the initial
conditions for the forward path metric are given as follows:

I, s=0
%ol8 =5)= 0.5s#0

BACKWARD PATH METRIC CALCULATION
The time index for backward path forward metric calculation is considered from k+1 to
k as follows

B.(s, =s5")= P[(f;.“_,.ff_, )|.';Jt = .5")
S [RTEIR N R

= Z\)’A_H(Sk =585, =8P, (5., =5).

kel

Given that the recursive systematic convolution encoder terminates at state 0 (00), the
initial conditions for the backward path metric are given as follows:

B (s, =s') = 1. s'=0
KW =50 = 0,5 %0

S, = s]

BRANCH METRIC CALCULATION
The branch metric is rewritten as follows:

VS =55, =5)= P(sk :5.(?1.“.?1_] )‘5&_1 :5’)
_P(( T, ]|H =55 = e]P(n =5|5k_1=.';')

— P((r;.“.f;.' )|(L£] c, ))P(C?]



12 Budani Jeoffrey et al

Where p((rk0,rk1) | (ck0,ck1)) is the likelihood probability and
P(ckO) is the a priori probability
The likelihood probability is given as follows:

Pl ekt )) =P (et P

)

(=) (A=)
— ﬂ][] € 2’ ﬂ']l e 20"
il b |
V2mo® N2no

o o 1y 2
L C r'-_ﬂ_}._.'ﬂ'

=AA,£||
And considering that ®0 and o1 are extremely small values hence these terms are
ignored and resulting in the priori probability is expressed as follows:

L(e) /2

oy _ € L)/ 2
P(Lk)_l-FE“L?}E
=%5%HF
Where
P(c) =+1
L,(c/)=log PEC;—:_I; .
L

Hence the branch metric is given as

|. :'E'Lul: :':" ]+r1'.|'_l. r;" +r: .L_.lll 2

! 1, 1,
Yils,,=s.5, =s)=AB,e

Where

L=-=2

(o3
With that, we can further express LLR as follows:



Design and Implementation of a Turbo Codes Using a DSP Processor 13

Zn 5)es? B (s, =)y (s, =~'fr-..5¢ =s)ot, (5, =5

L (m )=log r '
Z.;f.mg-‘-‘ BiGs, =9y (5, =555, =)o (5, =)
i . (efL,(cf frefron +ebron Ji2 , ]
Z[.:'..s]r:sf‘ ﬁ*’*“‘-‘ Z,E)[e ' o, l( 1 — 3 }
=1lo _
g (-eiLa e JerLen +eplert 12 ,
Z(.ﬁ"..\' 5" ﬁ':: {S'l" - 5} € . a.{-—l (SJ.-—J =45 )
cily|ce P2 0p 22 a2 '
Zl.t'..l.' yesP € e ﬁk (‘qﬁf = ."IT]E - ai’—] (“‘:k—J =5 )
=log T,
—eplale J2 L2 R W= oY)
Z(.ﬁ"..ﬁ'l':ﬂ" € e ! ’BR (‘h& =5 _}Ec ! {'IR l(.’ﬁ I =4 "}

) el L, (<] )2 107 972
And since e () and e

further simplified as

are independent of the state transition, LLR is

L.l 2
2 es Bilsi =90 Py (5, =)
L.l 2
ZE.\"..&'IFi'ﬁR{g - Q)El ) ai l[ k- = T)

L(m)=L, (c':__}] + L.} +log

=L,(c})+ L +L.(c)

Where La(CKkO) is the a priori information of the MAP algorithm.
Lc(rk0) is the channel value.
Le(CkO) is the extrinsic information that is going to be fed to the second MAP decoder.

EXAMPLE OF TURBO ENCODING AND DECODING

Referencing RSC encoder trellis diagram in figure 4. Given that input sequence is 1 0
0 1 0 and terminated with the last two bits 0 0 and the memory initial state being 0 0.
The output of the first encoder is as follows: 1101011100000 0. Using the
interleaver shown in figure 3 and its resultant is as follows: 01 1 0 0 0 0, therefore the
output of the second encoder is as follows: 001110000101 00. The output of the
turbo code encoder is then given as follows: C0: 1001000,C1:1111000and C2:
0100110. The transmitted symbols after BPSK modulated is sequentially given as
follows: [CO1 C11 C21, C02, C12,C22...C07,C17,C27]=[11001101011000
1001000]=[+1+1-1-1+1+1-1+1-1+1+1-1-1-1+1-1-1+1-1-1-1].

The transmitted symbols are sent through a noisy channel hence a Gaussian noise is
added to them as shown in figure .. below



14 Budani Jeoffrey et al

Transmitted symbols @ Received symbaols

TGaussia noise

1 [+1| A +1.50 | +0.23 | -0.81 +2.50 | +1.23 | -1.81
A |+ +1 0.42 | +1.34 | +0.50 1.42 | +2.34 | +1.50
A |+ A +1.64 | +0.31 | 0.22 +0.64 | +1.31 | 1.22
1 |+1] 1 +0.25 | +1.45 | 0.73 +1.25 | +2.45 | 1.73
A ]+ 0.33 | +1.30 | +1.25 1.33 | +0.30 | +2.25
A 1]+ 1.43 | -1.40 |+1.72 243 | 240 | +2.72
A 1] 1 +0.20 | 0.91 | 0.09 0.80 | 1.91 | 1.09
Figure: Received noisy symbol example
RESULTS AND ANALYSIS

Three channel coding were simulated, and their bit error rates (BER) were compared
and their performance are depicted in figure 29 below. The channel coding under
considerations are Turbo codes with soft decoding, convolutional encoding with vertebi
decoding and Reed Solomon code using BPSK modulation.

BER for Turbo Vs Convolutional and Vertebi Vs Reed solomon coding using BPSK
T T

10 T T T T T
p—S—a—a_
Fooxoox xR
*\, . Ny
1 0-1 . \‘\ * e * \\ -
X‘\
1) ¥k
\ Nk
o 102 \ * E
© \
¢ -
e \
= \ 4
i \ i
m 10-3 L ‘.I‘ _
\
104 F 7
\ —<— Turbo Code
\-. ConvAndVertebiCoding
\ *  Reed Solomon
© curve Fit
1 0-5 I 1 1 1 1 1 1
-2 -1 0 1 2 3 4 5 6

Eb/No (dB)



Design and Implementation of a Turbo Codes Using a DSP Processor 15

As shown above, turbo codes has an outstanding performance among the three codes
because it has low bit error rate at low signal to noise ratio (SNR). Reed Solomon code
at low SNR has low bit error rate compared to convolutional codes with Vertebi
decoding algorithm but as the SNR increases the convolutional coding gives low bit
error rate than Reed Solomon code. It can be observed that as the SNR increases the
performance of turbo codes does not change hence it is most ideal channel code since
it gives low bit error rate at lower powers. This can be justified by recording the BER
of all codes at SNR =1.5dB which records BER for turbo code in the range of 10-4 ,
convolutional code in the range of 10-1 and reed Solomon code in the range of 100.

CONCLUSION

Based on the matlab simulation, Turbo codes are the ideal channel code as it showed
that it achieve low bit error rate al lower SNR. It also has better bandwidth efficiency
and provide better communication security. It will recommend that it should be
incorporated in future generation implementation of communication systems and
further be improved. The implementation of turbo codes using DSP has further
improved as delays are being minimised.

REFERENCES

[1] H. Kim, Wireless Communications Systems Design, 1st ed. John Wiley & Sons,
Ltd, 2015.

[2] D. D. P. Agrawal and D. Q.-A. Zeng, “Channel Coding,” 2012.
https://plato.csie.ncku.edu.tw/2012Fall_WIRELESS/Chapt-04.pdf (accessed
Feb. 18, 2021).

[3] H. Chen, “Turbo Codes.”
http://web.ee.nchu.edu.tw/~code/course/coursel/turbo codes.pdf (accessed
Feb. 18, 2021).

[4] R. Muthammal, “Turbo codes,” 2015.
https://www.researchgate.net/figure/Turbo-codeencoder-32-Turbo-decoder-
The-figure-shows-how-a-turbo-code-is-decoded-when_fig2_321669464.

[5] M. A. Fleah and Q. F. Al-Doori, “Design and Implementation of Turbo encoder/
decoder using FPGA,” 2019, doi: 10.1109/CAS47993.2019.9075589.

[6] E. M. A. Abdel-azim, “Design and implementation for a multi-standard turbo
decoder using a reconfigurable asip,” CAIRO UNIVERSITY, 2013.

[7] S. DIGITAL, TMS320C6713 DSK Technical Reference. Stafford:
SPECTRUM DIGITAL INC, 2003.

[8] R. Chassaing and D. S. Reay, Digital Signal Processing and Applications with
the TMS320C6713 and TMS320C6416 DSK, 2nd ed. Wiley-IEEE Press, 2011.

[9] J. Vucetic, B., Yuan, Turbo Codes. Springer, Boston, MA, 2000.

[10] A.S.Babuand M. A. Ambroze, “From Convolutional Codes to Turbo Codes,”
Plymouth University, 2015.






