On Information Generating Functions for Single and Double Probability Distributions

Rohit Kumar Verma and Jharana Chandrakar

Associate Professor, Department of Mathematics, Bharti Vishwavidyalaya, Durg, C.G. India. E-mail-rohitkverma73@rediffmail.com Research Scholar Ph.D. Department of Mathematics, Bharti Vishwavidyalaya, Durg, C.G. India. E-mail-jhar4740@gmail.com

Abstract

In this communication we introduce the various generating functions that produce existing directed divergence and entropy measures.

Keywords: Measure of entropy, Directed divergence, Generating function

1. Introduction

In this paper we have introduced some generating functions that produce existing directed divergence and entropy measures.

In 1948 C.E. Shannon [13] gave the measure

$$S(P) = -\sum_{i=1}^{n} p_i \ln p_i$$

to measure its entropy.

Later in 1972, J.P. Burg [1] gave the measure

$$B(P) = \sum_{i=1}^{n} lnp_i$$

After that Kullback and Liebler[11] evaluate that measure of information associated with the two probability distribution p_i and q_i of discrete random variable, is given as

$$D(p//q_i) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i}$$

Which is known as the directed divergence.

Renyi [12] also gave the measure

$$S_q(P) = \frac{1}{1-q} \ln \sum_{i=1}^{n} p_i^q$$

to measures its directed divergence.

The generating functions are also derived for various measure of information and its corresponding measure of directed-divergence in both classical and in fuzzy cases. So for entropy

$$f_{\alpha,\beta,\gamma}(t) = \frac{1}{\beta - \alpha} \left[\sum_{i=1}^{n} (p_i^{\alpha/\gamma})^t - \beta \right], \alpha \neq \beta, \alpha, \beta, \gamma > 0$$

and for directed divergence

$$g_{\alpha,\beta,\gamma}(t) = \frac{1}{\alpha - \beta} \left[\left(\sum_{i=1}^{n} p_i^{\alpha} q_i^{2 - \overline{\alpha + \beta}} \right)^t - \gamma \right], \alpha \neq \beta, \alpha, \beta, \gamma > 0.$$

All these generating functions are helpful for finding the variance as well as the moments about the mean of the distribution. All these outcomes are may be useful for developing the new ideas and thoughts in the domain of science and the message transmission through the channel in the presence of noise.

In 1997, Kapur[5],[8],[9] defined the generating function

$$f_{\alpha}(t) = \frac{1}{1-\alpha} (\sum_{i=1}^{n} (p_i)^t - 1), \alpha \neq 1$$

With the property

$$f_{\alpha}(1) = \frac{1}{1-\alpha} (\sum_{i=1}^{n} p_{i}^{\alpha} - 1), \alpha \neq 1$$

and

$$f_{\alpha}(0) = \frac{1}{1-\alpha} \ln \sum_{i=1}^{n} p_i^{\alpha}$$
, $\alpha \neq 1$

Additionally, Kapur[5],[8],[9] defined the generating function for $P = (p_1, p_2, p_n)$ from another probability distribution for relative information, cross-entropy, or directed divergence $Q = (q_1, q_2, q_n)$.

$$g_{\alpha}(t) = \left[\left(\sum_{i=1}^{n} p_i^{\alpha} \ q_i^{1-\alpha} \right)^t - 1 \right], \alpha \neq 1,$$

With the property that

$$g_{\alpha}(1) = \frac{1}{\alpha - 1} \left[\sum_{i=1}^{n} p_i^{\alpha} q_i^{1-\alpha} - 1 \right], \alpha \neq 1$$

And

$$g_{\alpha}(1) = \frac{1}{\alpha - 1} \ln \sum_{i=1}^{n} p_i^{\alpha} q_i^{1-\alpha}, \alpha \neq 1$$

In this paper we produce some generating function for measure of directed divergence and entropy.

2. Main Results

2.1 Generating functions for measures of directed divergence Let

$$D_{\alpha,\beta}(t) = \frac{1}{(\alpha - 1)\beta} \left[\sum_{i=1}^{n} (p_i^{\alpha} q_i^{1-\alpha})^{\beta} - t \right], \alpha > 0, \alpha \neq 1, \beta \neq 0$$
(2.1.1)

Therefore

$$D_{\alpha,1}(1) = \frac{1}{(\alpha - 1)} \left[\sum_{i=1}^{n} (p_i^{\alpha} q_i^{1-\alpha}) - 1 \right], \alpha > 0, \alpha \neq 1,$$
(2.1.2)

This is Havrda-Charvat [4] measure of directed divergence.

$$D_{\alpha,\beta}(1) = \frac{1}{(\alpha - 1)\beta} \left[\sum_{i=1}^{n} (p_i^{\alpha} q_i^{1-\alpha})^{\beta} - 1 \right], \alpha > 0, \alpha \neq 1, \beta \neq 0$$
(2.1.3)

This is New directed divergence measure [16]. Let

$$D_{\alpha,\beta}(t) = \frac{1}{\alpha - \beta} \ln \sum_{i=1}^{n} (p_i^{\frac{\alpha}{\beta}} q_i^{1 - \frac{\alpha}{\beta}})^t \quad \alpha \neq \beta, \alpha > 0, \beta > 0$$
(2.1.4)

Hence

$$D_{\alpha,1}(1) = \frac{1}{\alpha - 1} \ln \sum_{i=1}^{n} p_i^{\alpha} q_i^{1-\alpha}, \alpha \neq 1$$
(2.1.5)

Which is Renyi's [12] measure of Directed divergence.

Let

$$D_{\alpha,\beta}(t) = \sum_{i=1}^{n} (p_i^{\alpha} q_i^{1-\alpha})^t \left(ln p_i^{\frac{\alpha}{\beta}} - ln q_i^{\frac{\alpha}{\beta}} \right), \alpha \neq 1, \alpha > 0, \beta > 0$$
(2.1.6)

So

$$D_{1,1}(1) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i}$$
(2.1.7)

This is Kullback – Leibler's[11] measure of Directed divergence. Let

$$D_{\alpha,\beta}(t) = \frac{1}{(1-\alpha)\beta} \left[\sum_{i=1}^{n} (p_i^{\frac{\alpha}{\beta}} - q_i^{1-\frac{\alpha}{\beta}})^t, \alpha < 1, \beta > 0, \alpha > 0 \right]$$
(2.1.8)

Therefore

$$D_{\frac{1}{2},1}(2) = 2\sum_{i=1}^{n} (\sqrt{p_i} - \sqrt{q_i})^2$$
(2.1.9)

Which is Bhattacharya's[2] measure of Directed Divergence.

2.2 Generating functions for measures of Entropy

Let

$$f_{\alpha,\beta}(t) = \frac{1}{\beta - \alpha} \left[\sum_{i=1}^{n} \left(p_i^{\alpha\beta} \right)^t - \beta \right], \alpha \neq \beta, \alpha > 1, \beta > 0$$
(2.2.1)

So

$$f_{\alpha,1}(1) = \frac{1}{1-\alpha} \left(\sum_{i=1}^{n} p_i^{\alpha} - 1 \right), \alpha \neq 1$$
(2.2.2)

 $f_{\alpha,1}(1)$ gives Havrda – Charvat's [4] measure of entropy.

$$f_{\alpha,1}(t) = \frac{1}{1-\alpha} \left[\left(\sum_{i=1}^{n} p_i^{\alpha} \right)^t \ln \sum_{i=1}^{n} p_i^{\alpha}, \alpha \neq 1 \right]$$
(2.2.3)

Then

$$f_{\alpha,1}(0) = \frac{1}{1-\alpha} \ln \sum_{i=1}^{n} p_i^{\alpha}, \alpha \neq 1$$
 (2.2.4)

 $f_{\alpha,1}$ (0) gives Renyi's[12] measures of entropy.

$$f_{1,1}(1) = f_{\alpha,1}(1) = \frac{1}{1-\alpha} \left(\sum_{i=1}^{n} p_i^{\alpha} - 1 \right)$$

$$f_{1,1}(1) = -\sum_{i=1}^{n} p_i^{\alpha} \ln p_i$$

$$f_{1,1}(1) = -\sum_{i=1}^{n} p_i \ln p_i$$
(2.2.6)

Which is trivial generating function for Shannon's [13] measure of entropy.

$$f_{2,1}(t) = 1 - (\sum_{i=1}^{n} p_i^2)^t$$
(2.2.7)

(2.2.12)

$$f_{2,1}(1) = 1 - \sum_{i=1}^{n} p_i^2$$
 (2.2.8)

Hence $f_{2,1}(1)$ gives Vajda's[14] measure of entropy.

$$f_{\alpha,1}(t) = \frac{1}{1-\alpha} \left[\left(\sum_{i=1}^{n} p_i^{\alpha} \right)^t \ln \sum_{i=1}^{n} p_i^{\alpha} \right], \alpha \neq 1$$
(2.2.9)

Then

$$f_{\alpha,1}(0) = -\frac{1}{\alpha - 1} \ln \sum_{i=1}^{n} p_i^{\alpha}, \alpha \neq 1$$

So

$$f_{\alpha,1}(0) = -\ln(1-\alpha)\frac{1}{1-\alpha}\left(\sum_{i=1}^{n} p_i^{\alpha}\right)^{\frac{1}{\alpha-1}}, \alpha \neq 1$$
(2.2.10)

Which is Behara – Chawla[3] measure of entropy. Let

$$f_{\alpha,\beta,\gamma}(t) = \frac{1}{\beta - \alpha} \left[\sum_{i=1}^{n} (p_i^{\frac{\alpha}{\gamma}})^t - \beta \right], \alpha \neq \beta, \alpha, \beta, \gamma > 0$$
(2.2.11)

$$f_{\alpha,1,1}(1) = \frac{1}{1-\alpha} (\sum_{i=1}^{n} p_i^{\alpha} - 1), \alpha \neq 1$$

Therefore $f_{\alpha,1,1}$ (1) gives Havrda – Charvat's [4] measure of entropy.

$$f_{\alpha,1,1}(t) = \frac{1}{1-\alpha} \left[\left(\sum_{i=1}^{n} p_i^{\alpha} \right)^t \ln \sum_{i=1}^{n} p_i^{\alpha} \right], \alpha \neq 1$$
(2.2.13)

Then

$$f_{\alpha,1,1}(0) = \frac{1}{1-\alpha} \ln \sum_{i=1}^{n} p_i^{\alpha} \ \alpha \neq 1$$
(2.2.14)

 $f_{\alpha,1,1}(0)$ gives Renyi's measure[12] of entropy.

$$f_{1,1,1}(1) = f_{\alpha,1,1}(1) = \frac{1}{1-\alpha} \left(\sum_{i=1}^{n} p_i^{\alpha} - 1 \right)$$

$$f_{\alpha,1,1}(1) = -\sum_{i=1}^{n} p_i^{\alpha} \ln p_i$$
(2.2.15)

$$f_{1,1,1}(1) = -\sum_{i=1}^{n} p_i \ln p_i$$
(2.2.16)

Which is trivial generating function for Shannon's [13] measure of entropy.

$$f_{2,1,1}(t) = 1 - (\sum_{i=1}^{n} p_i^2)^t$$
 (2.2.17)

$$f_{2,1,1}(1) = 1 - \sum_{i=1}^{n} p_i^2$$
 (2.2.18)

 $f_{2,1,1}$ (1) gives Vajda's[14] measure of entropy.

$$f_{\alpha,1,1}(t) = \frac{1}{1-\alpha} \left[\left(\sum_{i=1}^{n} p_i^{\alpha} \right)^{t} \ln \sum_{i=1}^{n} p_i^{\alpha} \right], \alpha \neq 1$$
(2.2.19)

$$f_{\alpha,1,1}(0) = -\frac{1}{1-\alpha} \ln \sum_{i=1}^{n} p_i^{\alpha}, \alpha \neq 1$$

$$f_{\alpha,1,1}(0) = -\ln(1-\alpha)\frac{1}{1-\alpha}\sum_{i=1}^{n}(p_i^{\alpha})^{\frac{1}{\alpha-1}}, \alpha \neq 1$$

Which is Behara – Chawla[3] measure of entropy.

Now let us define

$$f_{\alpha,\beta,\gamma}(t) = \frac{1}{\beta - \alpha} \left[\sum_{i=1}^{n} \left(p_i^{\frac{\alpha}{\gamma}} \right)^t - \beta \right], \alpha \neq \beta, \alpha, \beta, \gamma > 0$$
(2.2.21)

$$f_{1,2,1}(t) = \sum_{i=1}^{n} p_i^t - 2$$
(2.2.22)

(2.2.20)

$$f_{1,2,1}(t) = \sum_{i=1}^{n} p_i^t ln p_i$$
(2.2.23)

$$f_{1,2,1}(0) = \sum_{i=1}^{n} \ln p_i$$
(2.2.24)

(2.2.26)

Which is Burg's[1] measure of entropy.

$$f_{2,1,2}(t) = -\sum_{i=1}^{n} p_i^t \ln p_i$$

$$f_{2,1,2}(1) = -\sum_{i=1}^{n} p_i \ln p_i$$
(2.2.25)

Which is Shannon's[13] measure of entropy.

$$f_{2,1,2}(t) = 1 - \sum_{i=1}^{n} p_i^t$$
(2.2.27)

$$f_{2,1,2}(2) = 1 - \sum_{i=1}^{n} p_i^2$$
 (2.2.28)

Which is Vajda's[14] measure of entropy. Now let

$$f_{\alpha,1,1}(t) = \frac{1}{1-\alpha} \left[\sum_{i=1}^{n} (p_i^{\alpha})^t - 1 \right], \alpha \neq 1$$

$$f_{\alpha,1,1}(1) = \frac{1}{1-\alpha} \left(\sum_{i=1}^{n} p_i^{\alpha} - 1 \right), \alpha \neq 1$$
(2.2.29)

Which is Havrda – Charvat [4] measure of entropy.

References:

- [1] J.P. Burg, The relationship between maximum entropy spectra and maximum likelihood spectra, Modern Spectral Analysis (Ed. D.G. Childers), MSA (1972), 130-131.
- [2] A.Bhattacharya, On a measure of divergence between two statistical populations defined by their probability distributions, Bull. Cal. Math. Soc., 35 (1943), 99-109
- [3] M. Behara, J.S. Chawla, Generalised gama entropy, Selecta Statistica Canadiana, 2 (1974), 15-38.
- [4] J. Havrda, F. Charvat, Quantification methods of classification processes: Concept of structural α entropy, Kybernatica, 3 (1967), 30-35.
- [5] J.N. Kapur, Generalised entropy of order α and type β , Maths. Seminar, 4 (1967), 78-94.

- [6] J.N. Kapur, Four families of measures of entropy, Ind. J. Pure App. Maths., 17, No. 4 (1986), 429-446.
- [7] J.N. Kapur, Information theoretic measures of stochastic interdependence, Bull. Math. Ass Ind., 22 (1990), 43-58.
- [8] J.N. Kapur, Measures of Information and their Applications, Wiley Eastern, New Delhi (1997).
- [9] J.N. Kapur, Measures of Information and their Applications, Wiley Eastern, New Delhi (1997), 160-163.
- [10] J.N. Kapur, M. Dhande, On entropic measures of stochastic dependence, Ind. Jour. Pure App. Maths., 17, No. 5 (1986), 581-591.
- [11] S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79-86.
- [12] A.Renyi, On measures of entropy and information, In: Proc. 4-th Berkley Symp. Maths. Prob., Volume 1 (1961), 547-561.
- [13] C.E. Shannon, A mathematical theory of communication, Bell. System Tech. J., 27 (1948), 379-423, 623-659.
- [14] S. Vajda, A contribution to information analysis of patterns, In: Methodology of Pattern Recognition (Ed. S. Watanbe) (1969).
- [15] P. Jha, C.L. Dewangan, Rohit Kumar Verma, Some generating functions for measures of probabilistic entropy and directed divergence, volume 74 no. 1 (2012), 21-32.
- [16] Bhagwan Dass, Vijay Prakash Tomar, Krishna Kumar, Vikash Ranga, On new generalized fuzzy directed divergence measures and its application in decision making problem.