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Abstract 

 

In this communication we introduce the various generating functions that 

produce existing directed divergence and entropy measures. 
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1. Introduction 
In this paper we have introduced some generating functions that produce existing 

directed divergence and entropy measures. 

In 1948 C.E. Shannon [13] gave the measure 

𝑆(𝑃) =  − ∑ 𝑝𝑖 𝑙𝑛 𝑝𝑖

𝑛

𝑖=1

 

to measure its entropy. 

Later in 1972, J.P. Burg [1] gave the measure 

𝐵(𝑃) =  ∑ 𝑙𝑛𝑝𝑖

𝑛

𝑖=1

 

After that Kullback and Liebler[11] evaluate that measure of information associated 

with the two probability distribution 𝑝𝑖 and 𝑞𝑖 of discrete random variable, is given as 

𝐷(𝑝//𝑞𝑖 ) =  ∑ 𝑝𝑖 𝑙𝑛
𝑝𝑖

𝑞𝑖

𝑛

𝑖=1

 

Which is known as the directed divergence. 

Renyi [12] also gave the measure 
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𝑆𝑞 (𝑃) =
1

1 − 𝑞 
ln ∑ 𝑝𝑖

𝑞

𝑛

𝑖=1

 

to measures its directed divergence. 

The generating functions are also derived for various measure of information and its 

corresponding measure of directed-divergence in both classical and in fuzzy cases. 

So for entropy 

 𝑓𝛼,𝛽,𝛾(𝑡) =
1

𝛽−𝛼
[∑ (𝑝𝑖

𝛼/𝛾
)

𝑡
𝑛
𝑖=1 − 𝛽], 𝛼 ≠ 𝛽, 𝛼, 𝛽,𝛾 > 0 

and for directed divergence 

𝑔𝛼,𝛽,𝛾(𝑡) =
1

𝛼−𝛽
[(∑ 𝑝𝑖

𝛼𝑛
𝑖=1 𝑞𝑖

2−𝛼+𝛽
)

𝑡

− 𝛾], 𝛼 ≠ 𝛽, 𝛼, 𝛽, 𝛾 > 0. 

All these generating functions are helpful for finding the variance as well as the 

moments about the mean of the distribution. All these outcomes are may be useful for 

developing the new ideas and thoughts in the domain of science and the message 

transmission through the channel in the presence of noise. 

In 1997, Kapur[5],[8],[9] defined the generating function 

𝑓𝛼 (𝑡) =
1

1 − 𝛼 
(∑(𝑝𝑖 )

𝑡 − 1), 𝛼 ≠ 1

𝑛

𝑖=1

 

With the property 

𝑓𝛼  (1) =  
1

1 − 𝛼
(∑ 𝑝𝑖

𝛼 − 1), 𝛼 ≠ 1

𝑛

𝑖=1

 

and 

𝑓𝛼(0) =  
1

1 − 𝛼
 𝑙𝑛 ∑ 𝑝𝑖

𝛼 

𝑛

𝑖=1

, 𝛼 ≠ 1 

Additionally, Kapur[5],[8],[9] defined the generating function for P = (𝑝1,𝑝2…………..𝑝𝑛) 

from another probability distribution for relative information, cross-entropy, or directed 

divergence Q = (𝑞1,𝑞2………………𝑞𝑛). 

𝑔𝛼(𝑡) = [(∑ 𝑝𝑖
𝛼 

𝑛

𝑖=1

𝑞𝑖
1−𝛼)

𝑡 

− 1] , 𝛼 ≠ 1, 

With the property that 

𝑔𝛼 (1) =  
1

𝛼 − 1
[∑ 𝑝𝑖

𝛼 𝑞𝑖
1−𝛼 − 1], 𝛼 ≠ 1

𝑛

𝑖=1

 

And 

𝑔𝛼(1) =  
1

𝛼 − 1
ln ∑ 𝑝𝑖

𝛼 𝑞𝑖
1−𝛼, 𝛼 ≠ 1

𝑛

𝑖=1

 

In this paper we produce some generating function for measure of directed divergence 

and entropy. 
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2. Main Results 

2.1 Generating functions for measures of directed divergence 

Let 

𝐷𝛼,𝛽 (𝑡) =
1

(𝛼 − 1)𝛽
 [∑(𝑝𝑖

𝛼 𝑞𝑖
1−𝛼)𝛽 − 𝑡], 𝛼 > 0, 𝛼 ≠ 1, 𝛽 ≠ 0

𝑛

𝑖=1

 

(2.1.1) 

Therefore 

𝐷𝛼,1 (1) =
1

(𝛼 − 1)
 [∑(𝑝𝑖

𝛼 𝑞𝑖
1−𝛼) − 1], 𝛼 > 0, 𝛼 ≠ 1,

𝑛

𝑖=1

 

(2.1.2) 

This is Havrda-Charvat [4] measure of directed divergence. 

𝐷𝛼,𝛽 (1) =
1

(𝛼 − 1)𝛽
 [∑(𝑝𝑖

𝛼 𝑞𝑖
1−𝛼)𝛽 − 1], 𝛼 > 0, 𝛼 ≠ 1, 𝛽 ≠ 0

𝑛

𝑖=1

 

(2.1.3) 

This is New directed divergence measure [16]. 

Let 

 𝐷𝛼,𝛽 (𝑡) =
1

𝛼 − 𝛽
𝑙𝑛 ∑(𝑝

𝑖

𝛼

𝛽 𝑞
𝑖

1−
𝛼

𝛽)𝑡

𝑛

𝑖=1

 𝛼 ≠ 𝛽, 𝛼 > 0, 𝛽 > 0 

(2.1.4) 

Hence 

𝐷𝛼,1(1) =  
1

𝛼 − 1
𝑙𝑛 ∑ 𝑝𝑖

𝛼𝑞𝑖
1−𝛼, 𝛼 ≠ 1

𝑛

𝑖=1

 

(2.1.5) 

Which is Renyi’s [12] measure of Directed divergence. 

Let 

𝐷𝛼,𝛽 (𝑡) =  ∑(𝑝𝑖
𝛼 𝑞𝑖

1−𝛼)𝑡 (𝑙𝑛𝑝
𝑖

𝛼

𝛽
 
− 𝑙𝑛𝑞

𝑖

𝛼

𝛽 ) , 𝛼 ≠ 1, 𝛼 > 0, 𝛽 > 0

𝑛

𝑖=1

 

(2.1.6) 

So 

𝐷1,1 (1) = ∑ 𝑝𝑖 𝑙𝑛
𝑝𝑖

𝑞𝑖

𝑛

𝑖=1

 

(2.1.7) 

This is Kullback – Leibler’s[11] measure of Directed divergence. 

Let 

𝐷𝛼,𝛽 (𝑡) =
1

(1 − 𝛼)𝛽 
[∑(𝑝

𝑖

𝛼

𝛽 − 𝑞
𝑖

1−
𝛼

𝛽)𝑡 , 𝛼 < 1, 𝛽 > 0, 𝛼 > 0

𝑛

𝑖=1

 

(2.1.8) 
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Therefore 

 𝐷1

2 
,1 

(2) = 2 ∑(√𝑝𝑖 − √𝑞𝑖 )
2

𝑛

𝑖=1

 

(2.1.9) 

Which is Bhattacharya’s[2] measure of Directed Divergence. 

 

2.2 Generating functions for measures of Entropy 

Let 

𝑓𝛼,𝛽(𝑡) =
1

𝛽 − 𝛼
[∑(𝑝𝑖

𝛼𝛽
)

𝑡 
𝑛

𝑖=1

− 𝛽] , 𝛼 ≠ 𝛽, 𝛼 > 1, 𝛽 > 0 

(2.2.1) 

So 

 𝑓𝛼,1(1) =
1

1 − 𝛼
 (∑ 𝑝𝑖

𝛼 − 1), 𝛼 ≠ 1

𝑛

𝑖=1

 

(2.2.2) 

 𝑓𝛼,1(1) gives Havrda – Charvat’s [4] measure of entropy. 

𝑓𝛼,1 (𝑡) =
1

1 − 𝛼
[(∑ 𝑝𝑖

𝛼 

𝑛

𝑖=1

)𝑡 𝑙𝑛 ∑ 𝑝𝑖
𝛼 , 𝛼 ≠ 1

𝑛

𝑖=1

 

(2.2.3) 

Then 

𝑓𝛼,1 (0) =
1

1 − 𝛼
 𝑙𝑛 ∑ 𝑝𝑖

𝛼, 𝛼 ≠ 1

𝑛

𝑖=1

 

(2.2.4) 

𝑓𝛼,1 (0) gives Renyi’s[12] measures of entropy. 

 𝑓1,1 (1) = 𝑓𝛼,1(1) =
1

1 − 𝛼
(∑ 𝑝𝑖

𝛼 − 1)

𝑛

𝑖=1

 

(2.2.5) 

 𝑓1,1 (1) = − ∑ 𝑝𝑖
𝛼 𝑙𝑛𝑝𝑖 

𝑛

𝑖=1

 

 𝑓1,1 (1) = − ∑ 𝑝𝑖 𝑙𝑛 𝑝𝑖

𝑛

𝑖=1

 

(2.2.6) 

Which is trivial generating function for Shannon’s [13] measure of entropy. 

𝑓2,1 (𝑡) = 1 − (∑ 𝑝𝑖
2 

𝑛

𝑖=1

)𝑡 

(2.2.7) 
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𝑓2,1 (1) = 1 − ∑ 𝑝𝑖
2

𝑛

𝑖=1

 

(2.2.8) 

Hence 𝑓2,1 (1) gives Vajda’s[14] measure of entropy. 

𝑓𝛼,1 (𝑡) =
1

1 − 𝛼
 [(∑ 𝑝𝑖

𝛼

𝑛

𝑖=1

)

𝑡 

 𝑙𝑛 ∑ 𝑝𝑖
𝛼 ], 𝛼 ≠ 1

𝑛

𝑖=1

 

(2.2.9) 

Then 

𝑓𝛼,1 (0) = −
1

𝛼 − 1
 𝑙𝑛 ∑ 𝑝𝑖

𝛼 , 𝛼 ≠ 1

𝑛

𝑖=1

 

So 

𝑓𝛼,1 (0) = − ln(1 − 𝛼)
1

1 − 𝛼
(∑ 𝑝𝑖

𝛼)

𝑛

𝑖=1

1

𝛼−1 

, 𝛼 ≠ 1 

(2.2.10) 

Which is Behara – Chawla[3] measure of entropy. 

Let 

𝑓𝛼,𝛽,𝛾 (𝑡) =
1

𝛽 − 𝛼 
[∑(𝑝

𝑖

𝛼

𝛾 )𝑡 − 𝛽], 𝛼 ≠ 𝛽, 𝛼, 𝛽, 𝛾

𝑛

𝑖=1

> 0 

(2.2.11) 

𝑓𝛼,1,1 (1) =
1

1 − 𝛼
(∑ 𝑝𝑖

𝛼 − 1), 𝛼 ≠ 1

𝑛

𝑖=1

 

(2.2.12) 

Therefore 𝑓𝛼,1,1 (1) gives Havrda – Charvat’s [4] measure of entropy. 

𝑓𝛼,1,1 (𝑡) =  
1

1 − 𝛼
[(∑ 𝑝𝑖

𝛼

𝑛

𝑖=1

)

𝑡 

ln ∑ 𝑝𝑖
𝛼 ], 𝛼 ≠ 1

𝑛

𝑖=1

 

(2.2.13) 

Then 

𝑓𝛼,1,1(0) =  
1

1 − 𝛼
ln ∑ 𝑝𝑖

𝛼  𝛼 ≠ 1

𝑛

𝑖=1

 

(2.2.14) 

𝑓𝛼,1,1(0) gives Renyi’s measure[12] of entropy. 

𝑓1,1,1 (1) = 𝑓𝛼,1,1 (1) =
1

1 − 𝛼
 (∑ 𝑝𝑖

𝛼  − 1) 

𝑛

𝑖=1

 

(2.2.15) 

𝑓𝛼,1,1 (1) =  − ∑ 𝑝𝑖
𝛼  𝑙𝑛 𝑝𝑖

𝑛

𝑖=1
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𝑓1,1,1 (1) =  − ∑ 𝑝𝑖 ln 𝑝𝑖

𝑛

𝑖=1

 

(2.2.16) 
Which is trivial generating function for Shannon’s[13] measure of entropy. 

𝑓2,1,1 (𝑡) = 1 − (∑ 𝑝𝑖
2 )

𝑛

𝑖=1

𝑡

 

(2.2.17) 

𝑓2,1,1 (1) = 1 − ∑ 𝑝𝑖
2 

𝑛

𝑖=1

 

(2.2.18) 

𝑓2,1,1 (1) gives Vajda’s[14] measure of entropy. 

𝑓𝛼,1,1 (𝑡) =
1

1 − 𝛼
[(∑ 𝑝𝑖

𝛼)

𝑛

𝑖=1

𝑡

ln ∑ 𝑝𝑖
𝛼 ], 𝛼 ≠ 1

𝑛

𝑖=1

 

(2.2.19) 

𝑓𝛼,1,1(0) = −
1

1 − 𝛼
 𝑙𝑛 ∑ 𝑝𝑖

𝛼 , 𝛼 ≠ 1

𝑛

𝑖=1

 

𝑓𝛼,1,1 (0) = − ln(1 − α)
1

1 − 𝛼
∑(𝑝𝑖

𝛼 )
1

𝛼−1 , 𝛼 ≠ 1

𝑛

𝑖=1

 

(2.2.20) 

Which is Behara – Chawla[3] measure of entropy. 

Now let us define 

𝑓𝛼,𝛽,𝛾(𝑡) =
1

𝛽 − 𝛼
[∑ (𝑝

𝑖

𝛼

𝛾)

𝑡𝑛

𝑖=1

− 𝛽] , 𝛼 ≠ 𝛽, 𝛼, 𝛽, 𝛾 > 0 

(2.2.21) 

𝑓1,2,1 (𝑡) = ∑ 𝑝𝑖
𝑡 − 2

𝑛

𝑖=1

 

(2.2.22) 

𝑓1,2,1 (𝑡) =  ∑ 𝑝𝑖 
𝑡 𝑙𝑛𝑝𝑖

𝑛

𝑖=1

 

(2.2.23) 

𝑓1,2,1(0) = ∑ 𝑙𝑛 𝑝𝑖

𝑛

𝑖=1

 

(2.2.24) 
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Which is Burg’s[1] measure of entropy. 

𝑓2,1,2 (𝑡) = − ∑ 𝑝𝑖
𝑡 𝑙𝑛𝑝𝑖

𝑛

𝑖=1

 

(2.2.25) 

𝑓2,1,2 (1) = − ∑ 𝑝𝑖 ln 𝑝𝑖

𝑛

𝑖=1

 

(2.2.26) 

Which is Shannon’s[13] measure of entropy. 

𝑓2,1,2 (𝑡) = 1 − ∑ 𝑝𝑖
𝑡

𝑛

𝑖=1

 

(2.2.27) 

𝑓2,1,2 (2) = 1 − ∑ 𝑝𝑖
2

𝑛

𝑖=1

 

(2.2.28) 

Which is Vajda’s[14] measure of entropy. 

Now let 

𝑓𝛼,1,1(𝑡) =
1

1 − 𝛼
[∑(𝑝𝑖

𝛼)𝑡 − 1], 𝛼 ≠ 1

𝑛

𝑖=1

 

(2.2.29) 

𝑓𝛼,1,1 (1) =
1

1 − 𝛼
(∑ 𝑝𝑖

𝛼 − 1), 𝛼 ≠ 1

𝑛

𝑖=1

 

(2.2.30) 

Which is Havrda – Charvat [4]measure of entropy. 
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