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Abstract

In this communication we introduce the various generating functions that
produce existing directed divergence and entropy measures.
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1. Introduction
In this paper we have introduced some generating functions that produce existing
directed divergence and entropy measures.
In 1948 C.E. Shannon [13] gave the measure
n

S(P) = _Zpi Inp;
i=1
to measure its entropy.

Later in 1972, J.P. Burg [1] gave the measure
n

B(P) = Z Inp;

After that Kullback and Liebler[11] evaluate that measure of information associated
with the two probability distribution p; and g; of discrete random variable, is given as
n

_ N\, P
D@//q) = ;plln ;

Which is known as the directed divergence.
Renyi [12] also gave the measure
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n

1
— In ) pf

i=1

Sq(P)=1

to measures its directed divergence.

The generating functions are also derived for various measure of information and its
corresponding measure of directed-divergence in both classical and in fuzzy cases.

So for entropy

fapy® = 7= [E (o) = B a = B, a py >0
and for directed divergence

a 2a+[>’

ga[;y()—aﬁ[ i=1 P04 —y]aiﬁaﬁy>0

All these generating functions are helpful for finding the variance as well as the
moments about the mean of the distribution. All these outcomes are may be useful for
developing the new ideas and thoughts in the domain of science and the message
transmission through the channel in the presence of noise.
In 1997, Kapur[5],[8],[9] defined the generating function

n

1
fu(®) = m(Z(m)t ~Da#l
1=
With the property

n

1
£ Q) = m(zmx—l),a;tl

i=1

n
1
f2(0) = T anp{x ,a#1

=1
Additionally, Kapur[5],[8],[9] defined the generating function for P = (p;p,....... Pn)
from another probability distribution for relative information, cross-entropy, or directed

divergence Q = (q1,9...... qn)-

and

With the property that

And

ga(1) = lnz piqi % a

In this paper we produce some generating functlon for measure of directed divergence
and entropy.
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2. Main Results
2.1 Generating functions for measures of directed divergence
Let

1 n
Dgp (t) Zm [;(pfxqil_a)ﬁ —tl,a>0,a#+ 1, #0

Therefore
1

(a—1)

n
Dyq1(1) = [Z(pf‘ g% —1l,a>0,a # 1,
i=1

This is Havrda-Charvat [4] measure of directed divergence.
n

1
Dep (1) = @=Dp [;(pi“ i ) -1,a>0a#1,B#0

This is New directed divergence measure [16].

Let

n a a

1 F Yhe
G :a_ﬁan(pi g, Yazpa>0p>0

i=1

Hence
n
1 a, l1-a
D,1(1) = a—lln pi'q; % a#1

i=1

Which is Renyi’s [12] measure of Directed divergence.
Let

n a a
Dap (8) = Z(pf‘ " (lnp? - lan>,a #1,a>08>0
i=1

So

n
p.
Di1 1) = Z pi In—
=L

This is Kullback — Leibler’s[11] measure of Directed divergence.
Let

n a

1 a _a
Da,ﬁ'(t) ZW[Z(pLB _q11 ﬁ)t,a< 1,ﬁ > 0,(Z> 0

i=1

3

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)

(2.1.5)

(2.1.6)

(2.1.7)

(2.1.8)
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Therefore

n
D1, (@ =2 (Jpi /a0y
i=1
Which is Bhattacharya’s[2] measure of Directed Divergence.
2.2 Generating functions for measures of Entropy

Let
Z(pf‘ﬁ)t - B
i=1

1
p—a

fapt) =

So

n

1
fa (1) = 1-a (z pf—1,a#1

i=1

fa,1(1) gives Havrda — Charvat’s [4] measure of entropy.
n n
1
far 0 = 7==[Q PO n Y pfa*1
i=1 i=1

Then

n
1
far ) == In Y pfa =1
i=1

1—«a

fa,1 (0) gives Renyi’s[12] measures of entropy.

1 n
fir ) = for (D === pf = 1)

n
fir () == pfnp,
i=1

n
fa( == pilnp,
i=1

Which is trivial generating function for Shannon’s [13] measure of entropy.
n

for ®© =1- ) pP)"

,a#xpB,a>1,>0

(2.1.9)

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)
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f21 =1 —ipiz

l

Hence f, 1 (1) gives Vajda’s[14] measure of entropy.

1 (&) o
fa,1 (©) 1" 4 [(ZP?) lnzl:p{x],a =1

i=

Then
n
1 a
fa,1(0):—a_1lnzpi.d¢1
=1
So
1
1 v
far @ =-In(1-) = pH) ,a*1
i=1

Which is Behara — Chawla[3] measure of entropy.
Let

1 o =
fapy O = m[;m )t —Bla* B afy >0

n

1
fa11 (D) = m(z pf —D,a+1

i=1
Therefore f, 1 ; (1) gives Havrda — Charvat’s [4] measure of entropy.
n t n
1
fa11 (@) = m[(Z Pf‘) 1nz pila+1
i=1 i=1

Then

n

1

fa,1,1(0) = 1= aanpf‘ a+l
i=1

fa,1,1(0) gives Renyi’s measure[12] of entropy.

1 n
fiia (D) = fe1: (D) = 1-a (Z pi —1)

n
fara ()= = Y pfinp,
i=1

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)

(2.2.13)

(2.2.14)

(2.2.15)
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n
fi11 1) = _zpi Inp;
i=1

Which is trivial generating function for Shannon’s[13] measure of entropy.

t

forr O =1- ) p})
i=1

n
f211 =1~ z Piz
i=1

l

f2,1,1 (1) gives Vajda’s[14] measure of entropy.

n t n
1 a a
fara® =1 pH In ) pfla*1
i=1 i=1

n

1

fa,1,1(0) = 11—« anp{x,a #1
i=1

n
1 1
fa11 (©) = ~In(l = 5= > ()T a 1
i=1

Which is Behara — Chawla[3] measure of entropy.
Now let us define

n

1 @\
fapy© = 5= [Z (pz) -8

i=1

,a#+ B,a,B,y>0

n
fr21 () = Z pi —2
i=1
n
fras =) piinp,
i=1

n
f1,2,1(0) = Z Inp;
i=1

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)

(2.2.21)

(2.2.22)

(2.2.23)

(2.2.24)
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Which is Burg’s[ 1] measure of entropy.

n
fo12 () = —Z p Inp;
i=1

n
f2,1,2 (1) = —Zpi Inp;
i=1

Which is Shannon’s[13] measure of entropy.

n
f212 () =1— zpf
i—1

L

n
f21,2 2)=1- z Piz
i=1

l
Which is Vajda’s[14] measure of entropy.
Now let
1
l—«a

fara(®) = [Z(p{x)t a1

n

1
fa11 (1) = m(z pf—1,a#1

i=1

Which is Havrda — Charvat [4]measure of entropy.
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