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Abstract

We estimate a lower bound for the number of real roots of a random algebraic
equation whose coefficients are dependent Gaussian variables.
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1. INTRODUCTION

Let Nn(R, ω) be the number of real roots of the random algebraic equation

Fn(x, ω) =
n∑

ν=0

aν(ω)x
ν = 0 (1)

where the aν(ω), ν = 0, 1, . . . , n are random variables defined on a fixed probability
space (Ω,A,Pr) assuming real values only.

Littlewood and Offord[1] initiated the estimation for the lower bound of Nn(R, ω).
They considered the case when the coefficients are independent and identically
distributed where they are the standard Gaussian variables, the continuously uniform
variables in [−1, 1] or the discretely uniform variables taking +1 or −1. The result of
Littlewood and Offord[1] is of the form

Pr

(
Nn(R, ω)

logn
log log logn

> C

)
≥ 1− C ′

log n
(2)

where C and C ′ are the absolute constants. In this case, the exceptional set depends on
the degree n of the equation (1).
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Another interesting study is due to Evans[2]. Under the assumption that the coefficients
follow the independent standard Gaussian distribution, he proved the following result
of the form

Pr

(
inf
n>n0

Nn(R, ω)
logn

log logn

> C

)
≥ 1− C ′ log log n0

log n0

(3)

where C and C ′ are the absolute constants. In this case, the exceptional set is independ
of the degree n of the equation. The result of Evans[2] can be regarded as ’strong’
version of the work of Littlewood and Offord[1].

Since the works of Littlewood and Offord[1], and Evans[2] appeared, there have been
the various streams of papers by many researchers. We remark the main streams
originated from the following four studies on the estimation for the lower bound of
Nn(R, ω).

i. Samal[3]: the case of the extension of the distribution of coefficients that are
independent and identically distributed.

ii. Samal and Mishra[4]: the case of the nonidentically distributed coefficients under
the following type of the random algebraic equation

fn(x, ω) =
n∑

ν=0

aν(ω)bνx
ν = 0 (4)

where the aν(ω)’s have symmetric distribution and the bν’s are non-zero real
numbers.

iii. Renganathan and Sambandham[5]: the case of the generalization from the
independence to the dependency of Gaussian coefficients.

iv. Samal and Pratihari[6]: the generalized estimate with εn imposed a give condition
to improve the accuracy of the lower bound and the measure of the exceptional
set.

Uno[7] obtained the result combining the directions ii., iii. and iv., when the measure
of the exceptional set depends on the degree n.

The object of this paper is to show the ’strong’ result for the lower bound of Nn(R, ω) in
the case of (4) when the coefficients are nonidentically distributed dependent Gaussian
random variables. We suppose that the aν(ω), ν = 0, 1, . . . , n have mean zero and joint
density function

|M |1/2(2π)−(n+1)/2 exp (−(1/2)a′Ma) (5)
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where M−1 is the moment matrix with

ρij =


1 (i = j)

ρ|i−j| (1 ≤ |i− j| ≤ m)

0 (|i− j| > m), i, j = 0, 1, . . . , n

(6)

for a positive integer m, where 0 ≤ ρj < 1, j = 1, 2, . . . ,m in (6). That is to say
we assume the aν(ω)

′s to be m-dependent stationary Gaussian random variables. With
Yoshihara ([8], p.29]), we see that this assumption is equivalent to the following two
statements for a stationary Gaussian sequence:

1. {aν} is * - mixing

2. {aν} is ϕ - mixing.

Our theorem is the general version for the accurate estimation of ’strong’ result by
Uno[9].

Throughout the paper, we suppose n is sufficiently large. We will follow the line of
proof of Samal and Mishra[10].

THEOREM 1.1 Let

fn(x, ω) =
n∑

ν=0

aν(ω)bνx
ν = 0

be a random algebraic equation of degree n, where the aν(ω)
′s are dependent

normally distributed with mean zero, joint density function (5) where M−1 the moment
matrix given by (6). Let bν , ν = 0, 1, . . . , n be positive numbers, where kn =

max0≤ν≤n bν , tn = min0≤ν≤n bν . Take {εn} to be a sequence tending to zero such
that ε2n log n tends to infinity as n tends to infinity.

Then there exists an integer n0 such that for each n > n0, the number of real roots of
most of the equations fn(x, ω) = 0 is at least εn log n outside a set of measure at most

C
εn0 logn0

, where C is a positive constant.

2. PROOF OF THEOREM

Take

βn =
tn
kn

exp

(
C1

ε2n log n

)
where C1 is a constant to be chosen later. Let

λl = lβn and Mn =

[
α2β2

n

(
kn
tn

)2
]
+ 1 (7)
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where α is a positive constant. So

C2

(
kn
tn

)2

β2
n ≤ Mn ≤ C3

(
kn
tn

)2

β2
n

where C2 and C3 are constants. We define

ϕ(x) = x[log x]+x

provided that [x] denotes the greatest integer not exceeding x. Let k be the integer
determined by

ϕ(8k + 7)M8k+7
n ≤ n < ϕ(8k + 11)M8k+11

n .

The second inequality gives
C4εn log n < k (8)

where C4 is a constant.

We consider fn(xl, ω) = Ul(ω) +Rl(ω) at the points

xl =

{
1− 1

ϕ(4l + 1)M4l
n

} 1
2

for l =
[
k
2

]
+ 1,

[
k
2

]
+ 2, . . . , k, where

Ul(ω) =
∑
1

aν(ω)bνx
ν
l

Rl(ω) =

(∑
2

+
∑
3

)
aν(ω)bνx

ν
l

the index ν ranging from ϕ(4l − 1)M4l−1
n + 1 to ϕ(4l + 3)M4l+3

n in
∑

1. from 0 to
ϕ(4l − 1)M4l−1

n in
∑

2, from ϕ(4l + 3)M4l+3
n + 1 to n in

∑
3.

The following lemmas are necessary for the proof of the theorem.

LEMMA 2.1 For α1 > 0,
σl > α1tn

√
ϕ(4l + 1)M2l

n

where

σ2
l =

ϕ(4l+3)M4l+3
n∑

i=ϕ(4l−1)M4l−1
n +1

b2ix
2i
l + 2

ϕ(4l+3)M4l+3
n −1∑

i=ϕ(4l−1)M4l−1
n +1

ϕ(4l+3)M4l+3
n∑

j=i+1

bibjx
i+j
l ρj−i.
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Proof. We get

ϕ(4l+3)M4l+3
n∑

i=ϕ(4l−1)M4l−1
n +1

b2ix
2i
l ≥ t2n

ϕ(4l+1)M4l
n∑

i=ϕ(4l−1)M4l−1
n +1

x2i
l > t2nϕ(4l + 1)M4l

n

(
B

A

)
e−1

where A and B are positive constants such that A > 1 and 0 < B < 1. Also we have

2

ϕ(4l+3)M4l+3
n −1∑

i=ϕ(4l−1)M4l−1
n +1

ϕ(4l+3)M4l+3
n∑

j=i+1

bibjx
i+j
l ρj−i ≥ 2t2n

ϕ(4l+3)M4l+3
n −1∑

i=ϕ(4l−1)M4l−1
n +1

ϕ(4l+3)M4l+3
n∑

j=i+1

xi+j
l ρj−i

= 2t2n
x
2{ϕ(4l−1)M4l−1

n +1}
l

1− x2
l

{
m∑
i=1

ρix
i
l −

m∑
i=1

ρix
2{ϕ(4l+3)M4l+3

n −ϕ(4l−1)M4l−1
n }−i

l

}

≥ B′

A′ t
2
nϕ(4l + 1)M4l

n

where ρ0 =
∑m

j=1 ρj and A′ and B′ are positive constants satisfying A′ > 1 and
0 < B′ < 1. So we get

σ2
l > α2

1t
2
nϕ(4l + 1)M4l

n

where α1 is a positive constant, as required.

LEMMA 2.2

Pr

({
ω ;

∣∣∣∣∣∑
2

aν(ω)bνx
ν
l

∣∣∣∣∣ > λlσ̃l

})
<

√
2

π

1

λl

e−λ2
l /2

where

σ̃2
l =

ϕ(4l−1)M4l−1
n∑

i=0

b2ix
2i
l + 2

ϕ(4l−1)M4l−1
n −1∑

i=0

ϕ(4l−1)M4l−1
n∑

j=i+1

bibjx
i+j
l ρj−i.

Proof. We get

Pr

({
ω ;

∣∣∣∣∣∑
2

aν(ω)bνx
ν
l

∣∣∣∣∣ > λlσ̃l

})
=

√
2

π

∫ ∞

λl

e−u2/2du <

√
2

π

1

λl

e−λ2
l /2

by Feller’s inequality.

LEMMA 2.3

Pr

({
ω ;

∣∣∣∣∣∑
3

aν(ω)bνx
ν
l

∣∣∣∣∣ > λl
˜̃σl

})
<

√
2

π

1

λl

e−λ2
l /2

where

˜̃σ2
l =

n∑
i=ϕ(4l+3)M4l+3

n +1

b2ix
2i
l + 2

n−1∑
i=ϕ(4l+3)M4l+3

n +1

n∑
j=i+1

bibjx
i+j
l ρj−i.
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Proof. The proof is similar to Lemma 2.2.

LEMMA 2.4 For a fixed l,

Pr ({ ω ; |Rl(ω)| < σl}) > 1− 2

√
2

π

1

λl

e−λ2
l /2.

Proof. By Lemma 2.2 and 2.3, we get for a given l,

|Rl(ω)| < λl

(
σ̃l + ˜̃σl

)
outside a set of measure at most 2

√
2
π

1
λl
e−λ2

l /2. Again we have

ϕ(4l−1)M4l−1
n∑

i=0

b2ix
2i
l ≤ 2k2

nϕ(4l − 1)M4l−1
n ,

ϕ(4l−1)M4l−1
n −1∑

i=0

ϕ(4l−1)M4l−1
n∑

j=i+1

bibjx
i+j
l ρj−i ≤ k2

n

m∑
i=1

ρi

ϕ(4l−1)M4l−1
n −i+1∑

j=1

x2j+i−2
l

≤ k2
nϕ(4l − 1)M4l−1

n ρ0.

Hence we get for a positive constant α2,

σ̃2
l ≤ α2

2k
2
nϕ(4l − 1)M4l−1

n .

Since ϕ(4l − 1) < ϕ(4l+1)
16l2

, we obtain

σ̃2
l ≤ α2

2k
2
n

ϕ(4l + 1)

l2
M4l−1

n .

Similarly, we have
˜̃σ2
l ≤ α2

3k
2
n

ϕ(4l + 1)

l2
M4l−2

n

for a positive constant α3. Therefore we obtain outside the exceptional set,

|Rl(ω)| ≤
(
α2 + α3

α1

kn
tn

)
λl

l

σl

M
1
2
n

≤ σl

by Lemma 2.1 and (7).

Let us define random events Ep , Fp and Gp by

Ep = {ω ; U3p(ω) ≥ σ3p, U3p+1(ω) < −σ3p+1} ,
Fp = {ω ; U3p(ω) < −σ3p, U3p+1(ω) ≥ σ3p+1}
and

Gp = {ω ; |R3p(ω)| < σ3p, |R3p+1(ω)| < σ3p+1}



Strong Result for Real Zeros of Random Algebraic Polynomials (II) 99

for (3p, 3p+ 1) such that
[
k
2

]
+ 1 ≤ 3p < 3p+ 1 ≤ k. It can be easily seen that

Pr (Ep ∪ Fp) = δp (say) > δ

where δ > 0 is a certain constant. And we define random variables ηp, ζp and ξp such
that

ηp =

{
1 on Ep ∪ Fp

0 elsewhere ,

ζp =

{
0 on Gp

1 elsewhere

and

ξp = ηp − ηpζp.

If ξp = 1, there is a root of the polynomial in the interval (x3p, x3p+1). Let pmin and
pmax be the integers such that

pmin = min

{
p ∈ N

∣∣∣∣[k2
]
+ 1 ≤ 3p < 3p+ 1 ≤ k

}
pmax = max

{
p ∈ N

∣∣∣∣[k2
]
+ 1 ≤ 3p < 3p+ 1 ≤ k

}
.

Then the number of roots in the (x[ k2 ]+1, xk) must exceed
∑pmax

p=pmin
ξp.

We shall need the strong low of large numbers in the following form.

THEOREM If η2, η3, . . . are independent random variables with V(ηi) < 1 for all i, then
for given any ε > 0, we have

Pr

({
sup

pmax−pmin+1≥k0

∣∣∣∣∣ 1

pmax − pmin + 1

pmax∑
p=pmin

(ηp − E(ηp))

∣∣∣∣∣ ≥ ε

})
≤ D

ε2k0

where D is a positive constant.

Here we get ∣∣∣∣∣
pmax∑

p=pmin

(ξp − E (ηp))

∣∣∣∣∣ ≤
∣∣∣∣∣

pmax∑
p=pmin

(ηp − E (ηp))

∣∣∣∣∣+
pmax∑

p=pmin

ζp.

Since

E (ηp) ≤ 4

√
2

π

1

λ3p

e−λ2
3p/2
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from Lemma 2.4, we have

pmax∑
p=pmin

ζp < (pmax − pmin + 1) ε1

outside an exceptional set of measure at most

4

√
2

π

pmax∑
p=pmin

1

(pmax − pmin + 1) ε1

1

λ3p

e−λ2
3p/2 < C5

1

λ3pmin

e−λ2
3pmin

/2.

Thus we obtain

sup
pmax−pmin+1≥k0

1

pmax − pmin + 1

pmax∑
p=pmin

ζp < ε1

outside an exceptional set of measure at most

C5

∑
pmax−pmin+1≥k0

1

λ3pmin

e−λ2
3pmin

/2.

By using the strong law of large numbers since the ηp’s are independent for sufficiently
large n, we have

sup
pmax−pmin+1≥k0

1

pmax − pmin + 1

∣∣∣∣∣
pmax∑

p=pmin

(ξp − E (ηp))

∣∣∣∣∣ < ε

outside an exceptional set of measure at most

C5

∑
pmax−pmin+1≥k0

1

λ3pmin

e−λ2
3pmin

/2 +
C6

k0

where C6 is a constant. A simple calculation shows that

pmax =

[
k + 2

3

]
− 1 and pmin =

[
k

6

]
+ 1.

Hence we obtain

1

pmax − pmin + 1

pmax∑
p=pmin

ξp >
1

pmax − pmin + 1

pmax∑
p=pmin

E (ηp)− ε

for all k such that pmax−pmin+1 ≥ k0 outside an exceptional set. Applying E(ηp) > δ

and using (8),

Nn >

pmin∑
p=pmax

ξp > (pmax − pmin + 1) (δ − ε) > C7k > C8εn log n
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for all k such that pmax − pmin + 1 ≥ k0 outside an exceptional set, where C7 and C8

are constants.

It can be seen that the set {k ∈ N |pmax − pmin + 1 ≥ k0} are included by the set
{k ∈ N |k ≥ 6k0 − 2}. If n = n0 corresponds to k = 6k0 − 2, then all n > n0 will
correspond to k > 6k0 − 2. Therefore we have for all n > n0,

Nn > εn log n

outside a set of measure at most

C5

∑
pmax−pmin+1≥k0

1

λ3pmin

e−λ2
3pmin

/2 +
C6

k0
≤ C9

∑
q≥k0

1

λ3q

e−λ2
3q/2 +

C6

k0

where C9 is a constant.
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