Strong Result for Real Zeros of Random Algebraic Polynomials (II)

Takashi Uno

Faculty of Urban Science, Meijo University.

Aichi, 461-8534, Japan.

E-mail: uno@meijo-u.ac.jp

Abstract

We estimate a lower bound for the number of real roots of a random algebraic equation whose coefficients are dependent Gaussian variables.

Keywords: Random polynomial, Dependent normal distribution, Real roots

1. INTRODUCTION

Let $N_n(\mathcal{R}, \omega)$ be the number of real roots of the random algebraic equation

$$F_n(x,\omega) = \sum_{\nu=0}^n a_{\nu}(\omega)x^{\nu} = 0 \tag{1}$$

where the $a_{\nu}(\omega)$, $\nu=0,1,\ldots,n$ are random variables defined on a fixed probability space (Ω,\mathcal{A},\Pr) assuming real values only.

Littlewood and Offord[1] initiated the estimation for the lower bound of $N_n(\mathcal{R}, \omega)$. They considered the case when the coefficients are independent and identically distributed where they are the standard Gaussian variables, the continuously uniform variables in [-1,1] or the discretely uniform variables taking +1 or -1. The result of Littlewood and Offord[1] is of the form

$$\Pr\left(\frac{N_n(\mathcal{R}, \omega)}{\frac{\log n}{\log \log \log n}} > C\right) \ge 1 - \frac{C'}{\log n} \tag{2}$$

where C and C' are the absolute constants. In this case, the exceptional set depends on the degree n of the equation (1).

94 Takashi Uno

Another interesting study is due to Evans[2]. Under the assumption that the coefficients follow the independent standard Gaussian distribution, he proved the following result of the form

$$\Pr\left(\inf_{n>n_0} \frac{N_n(\mathcal{R}, \omega)}{\frac{\log n}{\log \log n}} > C\right) \ge 1 - \frac{C' \log \log n_0}{\log n_0} \tag{3}$$

where C and C' are the absolute constants. In this case, the exceptional set is independ of the degree n of the equation. The result of Evans[2] can be regarded as 'strong' version of the work of Littlewood and Offord[1].

Since the works of Littlewood and Offord[1], and Evans[2] appeared, there have been the various streams of papers by many researchers. We remark the main streams originated from the following four studies on the estimation for the lower bound of $N_n(\mathcal{R},\omega)$.

- i. Samal[3]: the case of the extension of the distribution of coefficients that are independent and identically distributed.
- ii. Samal and Mishra[4]: the case of the nonidentically distributed coefficients under the following type of the random algebraic equation

$$f_n(x,\omega) = \sum_{\nu=0}^n a_{\nu}(\omega)b_{\nu}x^{\nu} = 0$$
 (4)

where the $a_{\nu}(\omega)$'s have symmetric distribution and the b_{ν} 's are non-zero real numbers.

- iii. Renganathan and Sambandham[5]: the case of the generalization from the independence to the dependency of Gaussian coefficients.
- iv. Samal and Pratihari[6]: the generalized estimate with ε_n imposed a give condition to improve the accuracy of the lower bound and the measure of the exceptional set.

Uno[7] obtained the result combining the directions ii., iii. and iv., when the measure of the exceptional set depends on the degree n.

The object of this paper is to show the 'strong' result for the lower bound of $N_n(\mathcal{R}, \omega)$ in the case of (4) when the coefficients are nonidentically distributed dependent Gaussian random variables. We suppose that the $a_{\nu}(\omega), \ \nu=0,1,\ldots,n$ have mean zero and joint density function

$$|M|^{1/2} (2\pi)^{-(n+1)/2} \exp(-(1/2)\boldsymbol{a}' M \boldsymbol{a})$$
 (5)

where M^{-1} is the moment matrix with

$$\rho_{ij} = \begin{cases}
1 & (i = j) \\
\rho_{|i-j|} & (1 \le |i-j| \le m) \\
0 & (|i-j| > m), \quad i, j = 0, 1, \dots, n
\end{cases}$$
(6)

for a positive integer m, where $0 \le \rho_j < 1, j = 1, 2, \dots, m$ in (6). That is to say we assume the $a_{\nu}(\omega)'s$ to be m-dependent stationary Gaussian random variables. With Yoshihara ([8], p.29]), we see that this assumption is equivalent to the following two statements for a stationary Gaussian sequence:

- 1. $\{a_{\nu}\}$ is * mixing
- 2. $\{a_{\nu}\}$ is ϕ mixing.

Our theorem is the general version for the accurate estimation of 'strong' result by Uno[9].

Throughout the paper, we suppose n is sufficiently large. We will follow the line of proof of Samal and Mishra[10].

THEOREM 1.1 Let

$$f_n(x,\omega) = \sum_{\nu=0}^n a_{\nu}(\omega)b_{\nu}x^{\nu} = 0$$

be a random algebraic equation of degree n, where the $a_{\nu}(\omega)'s$ are dependent normally distributed with mean zero, joint density function (5) where M^{-1} the moment matrix given by (6). Let b_{ν} , $\nu = 0, 1, \ldots, n$ be positive numbers, where $k_n = \max_{0 \le \nu \le n} b_{\nu}$, $t_n = \min_{0 \le \nu \le n} b_{\nu}$. Take $\{\varepsilon_n\}$ to be a sequence tending to zero such that $\varepsilon_n^2 \log n$ tends to infinity as n tends to infinity.

Then there exists an integer n_0 such that for each $n > n_0$, the number of real roots of most of the equations $f_n(x,\omega) = 0$ is at least $\varepsilon_n \log n$ outside a set of measure at most $\frac{C}{\varepsilon_{n_0} \log n_0}$, where C is a positive constant.

2. PROOF OF THEOREM

Take

$$\beta_n = \frac{t_n}{k_n} \exp\left(\frac{C_1}{\varepsilon_n^2 \log n}\right)$$

where C_1 is a constant to be chosen later. Let

$$\lambda_l = l\beta_n \text{ and } M_n = \left[\alpha^2 \beta_n^2 \left(\frac{k_n}{t_n}\right)^2\right] + 1$$
 (7)

where α is a positive constant. So

$$C_2 \left(\frac{k_n}{t_n}\right)^2 \beta_n^2 \le M_n \le C_3 \left(\frac{k_n}{t_n}\right)^2 \beta_n^2$$

where C_2 and C_3 are constants. We define

$$\phi(x) = x^{[\log x] + x}$$

provided that [x] denotes the greatest integer not exceeding x. Let k be the integer determined by

$$\phi(8k+7)M_n^{8k+7} \le n < \phi(8k+11)M_n^{8k+11}$$
.

The second inequality gives

$$C_4 \varepsilon_n \log n < k \tag{8}$$

where C_4 is a constant.

We consider $f_n(x_l, \omega) = U_l(\omega) + R_l(\omega)$ at the points

$$x_{l} = \left\{1 - \frac{1}{\phi(4l+1)M_{n}^{4l}}\right\}^{\frac{1}{2}}$$

for $l = \left[\frac{k}{2}\right] + 1, \left[\frac{k}{2}\right] + 2, \dots, k$, where

$$U_l(\omega) = \sum_{1} a_{\nu}(\omega) b_{\nu} x_l^{\nu}$$

$$R_l(\omega) = \left(\sum_{2} + \sum_{3} a_{\nu}(\omega) b_{\nu} x_l^{\nu}\right)$$

the index ν ranging from $\phi(4l-1)M_n^{4l-1}+1$ to $\phi(4l+3)M_n^{4l+3}$ in \sum_1 . from 0 to $\phi(4l-1)M_n^{4l-1}$ in \sum_2 , from $\phi(4l+3)M_n^{4l+3}+1$ to n in \sum_3 .

The following lemmas are necessary for the proof of the theorem.

Lemma 2.1 For $\alpha_1 > 0$,

$$\sigma_l > \alpha_1 t_n \sqrt{\phi(4l+1)} M_n^{2l}$$

where

$$\sigma_l^2 = \sum_{i=\phi(4l-1)M_n^{4l-1}+1}^{\phi(4l+3)M_n^{4l+3}} b_i^2 x_l^{2i} + 2 \sum_{i=\phi(4l-1)M_n^{4l-1}+1}^{\phi(4l+3)M_n^{4l+3}-1} \sum_{j=i+1}^{\phi(4l+3)M_n^{4l+3}} b_i b_j x_l^{i+j} \rho_{j-i}.$$

Proof. We get

$$\sum_{i=\phi(4l-1)M_n^{4l-1}+1}^{\phi(4l+3)M_n^{4l+3}} b_i^2 x_l^{2i} \geq t_n^2 \sum_{i=\phi(4l-1)M_n^{4l-1}+1}^{\phi(4l+1)M_n^{4l}} x_l^{2i} > t_n^2 \phi(4l+1)M_n^{4l} \left(\frac{B}{A}\right) e^{-1}$$

where A and B are positive constants such that A > 1 and 0 < B < 1. Also we have

$$2 \sum_{i=\phi(4l-1)M_n^{4l+3}-1}^{\phi(4l+3)M_n^{4l+3}} \sum_{j=i+1}^{\phi(4l+3)M_n^{4l+3}} b_i b_j x_l^{i+j} \rho_{j-i} \geq 2 t_n^2 \sum_{i=\phi(4l-1)M_n^{4l-1}+1}^{\phi(4l+3)M_n^{4l+3}-1} \sum_{j=i+1}^{\phi(4l+3)M_n^{4l+3}-1} x_l^{i+j} \rho_{j-i} \\ = 2 t_n^2 \frac{x_l^2 \left\{ \phi(4l-1)M_n^{4l-1}+1 \right\}}{1-x_l^2} \left\{ \sum_{i=1}^m \rho_i x_l^i - \sum_{i=1}^m \rho_i x_l^2 \left\{ \phi(4l+3)M_n^{4l+3} - \phi(4l-1)M_n^{4l-1} \right\} - i \right\} \\ \geq \frac{B'}{A'} t_n^2 \phi(4l+1) M_n^{4l}$$

where $\rho_0 = \sum_{j=1}^m \rho_j$ and A' and B' are positive constants satisfying A' > 1 and 0 < B' < 1. So we get

$$\sigma_l^2 > \alpha_1^2 t_n^2 \phi(4l+1) M_n^{4l}$$

where α_1 is a positive constant, as required.

LEMMA 2.2

$$\Pr\left(\left\{\omega : \left|\sum_{l} a_{\nu}(\omega) b_{\nu} x_{l}^{\nu}\right| > \lambda_{l} \tilde{\sigma}_{l}\right\}\right) < \sqrt{\frac{2}{\pi}} \frac{1}{\lambda_{l}} e^{-\lambda_{l}^{2}/2}$$

where

$$\tilde{\sigma}_l^2 = \sum_{i=0}^{\phi(4l-1)M_n^{4l-1}} b_i^2 x_l^{2i} + 2 \sum_{i=0}^{\phi(4l-1)M_n^{4l-1}-1} \sum_{j=i+1}^{\phi(4l-1)M_n^{4l-1}} b_i b_j x_l^{i+j} \rho_{j-i}.$$

Proof. We get

$$\Pr\left(\left\{\left.\omega:\left|\sum_{l}a_{\nu}(\omega)b_{\nu}x_{l}^{\nu}\right|>\lambda_{l}\tilde{\sigma}_{l}\right\}\right)=\sqrt{\frac{2}{\pi}}\int_{\lambda_{l}}^{\infty}e^{-u^{2}/2}du<\sqrt{\frac{2}{\pi}}\frac{1}{\lambda_{l}}e^{-\lambda_{l}^{2}/2}$$

by Feller's inequality.

Lemma 2.3

$$\Pr\left(\left\{\omega : \left|\sum_{3} a_{\nu}(\omega) b_{\nu} x_{l}^{\nu}\right| > \lambda_{l} \tilde{\tilde{\sigma}}_{l}\right\}\right) < \sqrt{\frac{2}{\pi}} \frac{1}{\lambda_{l}} e^{-\lambda_{l}^{2}/2}$$

where

$$\tilde{\tilde{\sigma}}_{l}^{2} = \sum_{i=\phi(4l+3)M_{n}^{4l+3}+1}^{n} b_{i}^{2} x_{l}^{2i} + 2 \sum_{i=\phi(4l+3)M_{n}^{4l+3}+1}^{n-1} \sum_{j=i+1}^{n} b_{i} b_{j} x_{l}^{i+j} \rho_{j-i}.$$

Proof. The proof is similar to Lemma 2.2.

Lemma 2.4 For a fixed l,

$$\Pr\left(\left\{ \omega; |R_l(\omega)| < \sigma_l \right\}\right) > 1 - 2\sqrt{\frac{2}{\pi}} \frac{1}{\lambda_l} e^{-\lambda_l^2/2}.$$

Proof. By Lemma 2.2 and 2.3, we get for a given l,

$$|R_l(\omega)| < \lambda_l \left(\tilde{\sigma}_l + \tilde{\tilde{\sigma}}_l \right)$$

outside a set of measure at most $2\sqrt{\frac{2}{\pi}}\frac{1}{\lambda_l}e^{-\lambda_l^2/2}$. Again we have

$$\sum_{i=0}^{\phi(4l-1)M_n^{4l-1}} b_i^2 x_l^{2i} \leq 2k_n^2 \phi(4l-1) M_n^{4l-1},$$

$$\sum_{i=0}^{\phi(4l-1)M_n^{4l-1}-1} \sum_{j=i+1}^{\phi(4l-1)M_n^{4l-1}} b_i b_j x_l^{i+j} \rho_{j-i} \leq k_n^2 \sum_{i=1}^m \rho_i \sum_{j=1}^{\phi(4l-1)M_n^{4l-1}-i+1} x_l^{2j+i-2} \\ \leq k_n^2 \phi(4l-1) M_n^{4l-1} \rho_0.$$

Hence we get for a positive constant α_2 ,

$$\tilde{\sigma}_l^2 \le \alpha_2^2 k_n^2 \phi(4l-1) M_n^{4l-1}.$$

Since $\phi(4l-1) < \frac{\phi(4l+1)}{16l^2}$, we obtain

$$\tilde{\sigma}_l^2 \le \alpha_2^2 k_n^2 \frac{\phi(4l+1)}{l^2} M_n^{4l-1}.$$

Similarly, we have

$$\tilde{\tilde{\sigma}}_l^2 \le \alpha_3^2 k_n^2 \frac{\phi(4l+1)}{I^2} M_n^{4l-2}$$

for a positive constant α_3 . Therefore we obtain outside the exceptional set,

$$|R_l(\omega)| \le \left(\frac{\alpha_2 + \alpha_3}{\alpha_1} \frac{k_n}{t_n}\right) \frac{\lambda_l}{l} \frac{\sigma_l}{M_*^{\frac{1}{2}}} \le \sigma_l$$

by Lemma 2.1 and (7).

Let us define random events E_p , F_p and G_p by

$$\begin{split} E_p &= \{\omega \; ; \; U_{3p}(\omega) \geq \sigma_{3p}, \; U_{3p+1}(\omega) < -\sigma_{3p+1} \} \; , \\ F_p &= \{\omega \; ; \; U_{3p}(\omega) < -\sigma_{3p}, \; U_{3p+1}(\omega) \geq \sigma_{3p+1} \} \; \text{and} \\ G_p &= \{\omega \; ; \; |R_{3p}(\omega)| < \sigma_{3p}, \; |R_{3p+1}(\omega)| < \sigma_{3p+1} \} \end{split}$$

for (3p, 3p + 1) such that $\left\lceil \frac{k}{2} \right\rceil + 1 \leq 3p < 3p + 1 \leq k$. It can be easily seen that

$$\Pr(E_p \cup F_p) = \delta_p \ (say) > \delta$$

where $\delta > 0$ is a certain constant. And we define random variables η_p, ζ_p and ξ_p such that

$$\eta_p = \begin{cases} 1 & \text{on } E_p \cup F_p \\ 0 & \text{elsewhere,} \end{cases}$$

$$\zeta_p = \begin{cases} 0 & \text{on } G_p \\ 1 & \text{elsewhere} \end{cases}$$

and

$$\xi_p = \eta_p - \eta_p \zeta_p.$$

If $\xi_p = 1$, there is a root of the polynomial in the interval (x_{3p}, x_{3p+1}) . Let p_{\min} and p_{\max} be the integers such that

$$\begin{aligned} p_{\min} &= & \min \left\{ p \in \mathcal{N} \left| \left[\frac{k}{2} \right] + 1 \leq 3p < 3p + 1 \leq k \right. \right\} \\ p_{\max} &= & \max \left\{ p \in \mathcal{N} \left| \left[\frac{k}{2} \right] + 1 \leq 3p < 3p + 1 \leq k \right. \right\}. \end{aligned}$$

Then the number of roots in the $(x_{\left[\frac{k}{2}\right]+1}, x_k)$ must exceed $\sum_{p=p_{\min}}^{p_{\max}} \xi_p$.

We shall need the strong low of large numbers in the following form.

Theorem If $\eta_2, \eta_3, ...$ are independent random variables with $V(\eta_i) < 1$ for all i, then for given any $\varepsilon > 0$, we have

$$\Pr\left(\left\{\sup_{p_{\max}-p_{\min}+1\geq k_0}\left|\frac{1}{p_{\max}-p_{\min}+1}\sum_{p=p_{\min}}^{p_{\max}}\left(\eta_p-E(\eta_p)\right)\right|\geq\varepsilon\right\}\right)\leq \frac{D}{\varepsilon^2k_0}$$

where D is a positive constant.

Here we get

$$\left| \sum_{p=p_{\min}}^{p_{\max}} \left(\xi_p - E\left(\eta_p \right) \right) \right| \le \left| \sum_{p=p_{\min}}^{p_{\max}} \left(\eta_p - E\left(\eta_p \right) \right) \right| + \sum_{p=p_{\min}}^{p_{\max}} \zeta_p.$$

Since

$$E\left(\eta_p\right) \le 4\sqrt{\frac{2}{\pi}} \frac{1}{\lambda_{3p}} e^{-\lambda_{3p}^2/2}$$

from Lemma 2.4, we have

$$\sum_{p=p_{\min}}^{p_{\max}} \zeta_p < (p_{\max} - p_{\min} + 1) \varepsilon_1$$

outside an exceptional set of measure at most

$$4\sqrt{\frac{2}{\pi}} \sum_{p=p_{\min}}^{p_{\max}} \frac{1}{(p_{\max}-p_{\min}+1)\,\varepsilon_1} \frac{1}{\lambda_{3p}} e^{-\lambda_{3p}^2/2} < C_5 \frac{1}{\lambda_{3p_{\min}}} e^{-\lambda_{3p_{\min}}^2/2}.$$

Thus we obtain

$$\sup_{p_{\max}-p_{\min}+1 \ge k_0} \frac{1}{p_{\max}-p_{\min}+1} \sum_{p=p_{\min}}^{p_{\max}} \zeta_p < \varepsilon_1$$

outside an exceptional set of measure at most

$$C_5 \sum_{p_{\text{max}} - p_{\text{min}} + 1 \ge k_0} \frac{1}{\lambda_{3p_{\text{min}}}} e^{-\lambda_{3p_{\text{min}}}^2/2}.$$

By using the strong law of large numbers since the η_p 's are independent for sufficiently large n, we have

$$\sup_{p_{\max}-p_{\min}+1\geq k_{0}}\frac{1}{p_{\max}-p_{\min}+1}\left|\sum_{p=p_{\min}}^{p_{\max}}\left(\xi_{p}-E\left(\eta_{p}\right)\right)\right|<\varepsilon$$

outside an exceptional set of measure at most

$$C_5 \sum_{p_{\text{max}} - p_{\text{min}} + 1 > k_0} \frac{1}{\lambda_{3p_{\text{min}}}} e^{-\lambda_{3p_{\text{min}}}^2/2} + \frac{C_6}{k_0}$$

where C_6 is a constant. A simple calculation shows that

$$p_{\max} = \left[\frac{k+2}{3}\right] - 1$$
 and $p_{\min} = \left[\frac{k}{6}\right] + 1$.

Hence we obtain

$$\frac{1}{p_{\max} - p_{\min} + 1} \sum_{p = p_{\min}}^{p_{\max}} \xi_p > \frac{1}{p_{\max} - p_{\min} + 1} \sum_{p = p_{\min}}^{p_{\max}} E\left(\eta_p\right) - \varepsilon$$

for all k such that $p_{\text{max}} - p_{\text{min}} + 1 \ge k_0$ outside an exceptional set. Applying $E(\eta_p) > \delta$ and using (8),

$$N_n > \sum_{p=p_{\text{max}}}^{p_{\text{min}}} \xi_p > (p_{\text{max}} - p_{\text{min}} + 1) (\delta - \varepsilon) > C_7 k > C_8 \varepsilon_n \log n$$

for all k such that $p_{\max} - p_{\min} + 1 \ge k_0$ outside an exceptional set, where C_7 and C_8 are constants.

It can be seen that the set $\{k \in \mathcal{N} \mid p_{\max} - p_{\min} + 1 \ge k_0\}$ are included by the set $\{k \in \mathcal{N} \mid k \ge 6k_0 - 2\}$. If $n = n_0$ corresponds to $k = 6k_0 - 2$, then all $n > n_0$ will correspond to $k > 6k_0 - 2$. Therefore we have for all $n > n_0$,

$$N_n > \varepsilon_n \log n$$

outside a set of measure at most

$$C_5 \sum_{p_{\text{max}} - p_{\text{min}} + 1 \ge k_0} \frac{1}{\lambda_{3p_{\text{min}}}} e^{-\lambda_{3p_{\text{min}}}^2/2} + \frac{C_6}{k_0} \le C_9 \sum_{q \ge k_0} \frac{1}{\lambda_{3q}} e^{-\lambda_{3q}^2/2} + \frac{C_6}{k_0}$$

where C_9 is a constant.

ACKNOWLEDGMENT

The author would like to thank Shishido, K. and Okada, R. for their attitude in preparing this paper.

REFERENCES

- [1] Littlewood, J. E. and Offord, A. C., 1939, "On the number of real roots of a random algebraic equation II", Proceedings of the Cambridge Philosophical Society, vol.35, pp.133-148.
- [2] Evans, E. A., 1965, "On the number of real roots of a random algebraic equation", Proceedings of the London Mathematical Society. Third Series, vol.15, no.3, pp.731-749.
- [3] Samal, G., 1962, "On the number of real roots of a random algebraic equation", Proceedings of the Cambridge Philosophical Society, vol.58, pp.433-442.
- [4] Samal, G. and Mishra, M. N., 1973, "On the lower bound of the number of real roots of a random algebraic equation with infinite variance. III", Proceedings of the American Mathematical Society, vol.39, no.1, pp.184-189.
- [5] Renganathan, N. and Sambandham, M., 1982, "On the lower bounds of the number of real roots of a random algebraic equation", Indian Journal of Pure and Applied Mathematics, vol.13, no.2, pp.148-157.
- [6] Samal, G. and Pratihari, D., 1976, "Strong result for real zeros of random polynomials", The Journal of the Indian Mathematical Society, vol.40, pp.223-234.

Takashi Uno

[7] Uno, T., 2007, "On the lower bound for the number of real roots of a random algebraic equation", Journal of Applied Mathematics and Stochastic Analysis, vol.2007, Article ID 74191.

- [8] Yoshihara, K., 1992, Weakly dependent stochastic sequences and their applications. Vol. I. Summation theory for weakly dependent sequences, Sanseido, Tokyo, Japan.
- [9] Uno, T., 2001, "Strong result for real zeros of random algebraic polynomials", Journal of Applied Mathematics and Stochastic Analysis, vol.14, no.4, pp.351-359.
- [10] Samal, G. and Mishra, M. N., 1972, "On the lower bound of the number of real roots of a random algebraic equation with infinite variance. II", Proceedings of the American Mathematical Society, vol.36, pp.557-563.
- [11] Nayak, N. N. and Mohanty, S. P., 1985, "On the lower bound of the number of real zeros of a random algebraic polynomial", The Journal of the Indian Mathematical Society. New Series, vol.49, no.1-2, pp. 7-15.
- [12] Samal, G. and Mishra, M. N., 1972, "On the lower bound of the number of real roots of a random algebraic equation with infinite variance", Proceedings of the American Mathematical Society, vol.33, pp.523-528.
- [13] Samal, G. and Pratihari, D., 1977, "Strong result for real zeros of random polynomials (II)", The Journal of the Indian Mathematical Society, vol.41, pp.395-403.
- [14] Uno, T., 1996, "On the lower bound of the number of real roots of a random algebraic equation", Statistics & Probability Letters, vol.30, no.2, pp.157-163.