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Abstract

In this paper, we prove the uniqueness theorems concerning with differential
difference polynomials for an entire functions by using the concept of weakly
weighted sharing and relaxed weighted sharing. We obtain some recent results
which improve and generalizes the earlier results of Roopa M. and Harina P.
Waghamore[19].
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1. INTRODUCTION AND MAIN RESULTS

In this research paper, we consider a meromorphic function which always meant a
meromorphic function in the complex plane C. Here authors are assumed that readers
are known about basic notations of Nevanlinna theory and uses some of the notations
like m(r, f), N(r, 0; f), N(r,∞; f), and T (r, f) etc., (see [4], [6], [22]). Denote
S(r, f) any quantity which satisfies S(r, f) = o{T (r, f)} as r → ∞ outside of an
exceptional set of finite linear measure and we are also denoting S(r, f) = T (r, α(z)),
where α(z) is a small function of f . Let k be a positive integer or infinity and
a ∈ C ∪ {∞}. Set E(a, f) = {z | f − a = 0}, where a zero with multiplicity k is
counted k times. If the zeros are counted only once, then we denote the set by E(a, f).



94 Harina P. Waghamore and Roopa M.

If E(a, f) = E(a, g) where f and g are two non-constant meromorphic functions, then
we say that f and g share a CM (counting multiplicity). If E(a, f) = E(a, g) then
we say that f and g share a IM (ignoring multiplicity). Denoting Ek)(a, f) by the set
of all a points of f with multiplicities not exceeding k, where an a points is counted
according to its multiplicity. Also we denote Ek)(a, f) the set of distinct a points of
f with multiplicities not exceeding k. We denote by Nk)(r, a; f) the counting function
of zeros of f − a with multiplicity less than or equal to k, and by Nk)(r, a; f) the
corresponding one for which multiplicity is not counted. Let N(k(r, a; f) the counting
function of zeros of f−a with multiplicity greater than or equal to k, and by N (k(r, a; f)

the corresponding one for which multiplicity is not counted. Set

Nk(r, a; f) = N(r, a; f) +N (2(r, a; f) + . . .+N (k(r, a; f).

Let us define P (z) = amz
m + am−1z

m−1 + . . . + a0 be a non-zero polynomial of
degree m, where am( ̸= 0), am−1, . . . , a0 ( ̸= 0) are complex constants and m is a
positive integer. Throughout the paper, we denote by ρ(f) = lim

r→∞
logT (r,f)

logr
the order

of f(z)[[4],[6],[22]].

2. SOME DEFINITIONS

The following definitions are necessary to prove our main results.

Definition 1. [10] Let f(z) be a nonconstant meromorphic function. An expression of
the form

P [f ] =

p∑
i=1

ai(z)

q∏
j=0

f j(z)lij ,

where ai(z) ∈ S(f) for i=1,2,. . . , p and lij are nonnegative integers for i =

1, 2, . . . , p; j = 0, 1, 2, . . . , q and d =
∑q

j=0 lij for each i = 1, 2, . . . , p is called
homogeneous differential polynomial of degree d generated by f(z).

Definition 2. [8] Let a ∈ C ∪ {∞}. Denote by NE(r, a; f, g)(NE(r, a; f, g)) by the
counting function (reduced counting function) of all common zeros of f − a and g − a

with same multiplicities by N0(r, a; f, g)(N0(r, a; f, g)) the counting function (reduced
counting function) of all common zeros of f − a and g − a IM. If

N(r, a; f) +N(r, a; g)− 2NE(r, a; f, g) = S(r, f) + S(r, g)

then we say that f and g share the value a CM. If

N(r, a; f) +N(r, a; g)− 2N0(r, a; f, g) = S(r, f) + S(r, g)

then we say that f and g share the value a IM.
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Definition 3. [7] Let f and g share the value a IM and k be a positive integer or
infinity. Then N

E

k)(r, a; f, g) denotes the reduced counting function of those a points
of f whose multiplicities are equal to the corresponding a points of g, and both of
their multiplicities are not greater than k. N

0

(k(r, a; f, g) denotes the reduced counting
function of those a points of f which are a points of g, and both of their multiplicities
are not less than k.

In 2006, authors S. H Lin and W. C Lin [7] introduced the following definitions of
weakly weighted sharing which is a scaling between sharing IM and CM.

Definition 4. [7] Let a ∈ C ∪ {∞} and k be a positive integer or infinity. If

N(r, a; f | ≤ k)−N
E

k)(r, a; f, g) = S(r, f).

N(r, a; g| ≤ k)−N
E

k)(r, a; f, g) = S(r, g).

N(r, a; f | ≥ k + 1)−N
0

k+1)(r, a; f, g) = S(r, f).

N(r, a; g| ≥ k + 1)−N
0

k+1)(r, a; f, g) = S(r, g).

N(r, a; f)−N0(r, a; f, g) = S(r, f).

N(r, a; g)−N0(r, a; f, g) = S(r, g).

then we say that f and g share the value a weakly with weight k and we write f and g

share “(a, k)”.

In 2007, A. Banerjee and S. Mukherjee [5] introduced a new type of sharing known
as relaxed weighted sharing, weaker than weakly weighted sharing and is defined as
follows.

Definition 5. [5] We denote by N(r, a; f | = p; g| = q) the reduced counting function
of common a points of f and g with multiplicities p and q respectively.

Definition 6. [5] Let a ∈ C∪ {∞} and k be a positive integer or infinity. Suppose that
f and g share the value a IM. If for p ̸= q,∑

p,q≤k

N(r, a; f | = p; g| = q) = S(r),

then we say that f and g share the value a with weight k in a relaxed manner and in
that case we write f and g share (a, k)∗.

In 2015, Pulak Sahoo [11] proved the following results.
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Theorem 1. [11] Let f and g be two transcendental entire functions of finite order, and
α ( ̸≡ 0,∞) be a small function of both f and g. Suppose that η is non-zero complex
constant, n and m(≥ 1) are integers such that n ≥ m+ 6. If fn(fm − 1)f(z + η) and
gn(gm − 1)g(z + η) share “(α(z), 2)”, then f ≡ tg where tm = 1.

Theorem 2. [11] Let f and g be two transcendental entire functions of finite order, and
α(̸≡ 0,∞) be a small function of both f and g. Suppose that η is non-zero complex
constant, n and m(≥ 1) are integers such that n ≥ 2m+8. If fn(fm − 1)f(z+ η) and
gn(gm − 1)g(z + η) share (α(z), 2)∗, then f ≡ tg where tm = 1.

Theorem 3. [11] Let f and g be two transcendental entire functions of finite order, and
α ( ̸≡ 0,∞) be a small function of both f and g. Suppose that η is non-zero complex
constant, n and m(≥ 1) are integers such that n ≥ 4m + 12. If E2)(α(z), f

n(fm −
1)f(z + η)) = E2)(α(z), g

n(gm − 1)g(z + η)), then f ≡ tg where tm = 1.

In 2018, Pulak Sahoo and Gurudas Biswas [13] proved the following result.

Theorem 4. [13] Let f and g be two transcendental entire functions of finite order,
and α ( ̸≡ 0,∞) be a small function of both f and g. Suppose that η is non-zero
complex constant, n and m(≥ 1), k(≥ 0) are integers such that n ≥ 2k + m + 6. If
(fn(fm − 1)f(z + η))(k) and (gn(gm − 1)g(z + η))(k) share “(α(z), 2)”, then f ≡ tg

where tm = 1.

Theorem 5. [13] Let f and g be two transcendental entire functions of finite order,
and α ( ̸≡ 0,∞) be a small function of both f and g. Suppose that η is non-zero
complex constant, n and m(≥ 1), k(≥ 0) are integers such that n ≥ 3k + 2m + 8. If
(fn(fm − 1)f(z + η))(k) and (gn(gm − 1)g(z + η))(k) share (α(z), 2)∗, then f ≡ tg

where tm = 1.

Theorem 6. [13] Let f and g be two transcendental entire functions of finite order,
and α (̸≡ 0,∞) be a small function of both f and g. Suppose that η is non-zero
complex constant, n and m(≥ 1), k(≥ 0) are integers such that n ≥ 5k + 4m + 12. If
E2)(α(z), (f

n(fm−1)f(z+η))(k)) = E2)(α(z), (g
n(gm−1)g(z+η))(k)), then f ≡ tg

where tm = 1.

In 2022, B. Saha, S. Pal and T. Biswas [19] proved the following results.

Theorem 7. [19] Let f and g be two transcendental entire functions of finite order,
cj (j = 1, . . . , d) be finite complex constants and and α ( ̸≡ 0) be a small function
of both f and g with finitely many zeros. Suppose that n(≥ 1), m(≥ 1) and
k(≥ 0) are positive integers satisfying n ≥ max{2k + m + σ + 5, σ + 2d + 3}. If
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(
fn(fm − 1)

d∏
j=1

f(z + cj)
µj

)(k)

and

(
gn(gm − 1)

d∏
j=1

g(z + cj)
µj

)(k)

share “(α, 2)”

then f ≡ tg for some constant t such that tn+σ = tm = 1.

Theorem 8. [19] Let f and g be two transcendental entire functions of finite order,
cj (j = 1, . . . , d) be finite complex constants and and α (̸≡ 0) be a small function
of both f and g with finitely many zeros. Suppose that n(≥ 1), m(≥ 1) and
k(≥ 0) are integers satisfying n ≥ max{3k + 2m + 2σ + 6, σ + 2d + 3}. If(
fn(fm − 1)

d∏
j=1

f(z + cj)
µj

)(k)

and

(
gn(gm − 1)

d∏
j=1

g(z + cj)
µj

)(k)

share (α, 2)∗

then conclusion of Theorem 7 holds.

Theorem 9. [19] Let f and g be two transcendental entire functions of finite order,
cj (j = 1, . . . , d) be finite complex constants and and α ( ̸≡ 0) be a small function
of both f and g with finitely many zeros. Suppose that n(≥ 1), m(≥ 1) and
k(≥ 0) are integers satisfying n ≥ max{5k + 4m + 4σ + 8, σ + 2d + 3}. If

E2)

(
α(z),

(
fn(fm − 1)

d∏
j=1

f(z + cj)
µj

)(k))
and E2)

(
α(z),

(
gn(gm − 1)

d∏
j=1

g(z +

cj)
µj

)(k))
then conclusion of Theorem 7 holds.

Recently Roopa M. and Harina P. Waghamore [[18]] have proved the results on

uniqueness of differential difference polynomials of the form

(
fn(fm − 1)

d∏
j=1

f(z +

cj)
µj

)(k)

and

(
gn(gm − 1)

d∏
j=1

g(z + cj)
µj

)(k)

, where f(z) is a transcendental entire

function of finite order, n,m, j, d, k and µj(j = 1, 2, . . . , p) are non negative integers
and cj(j = 1, 2, ..., p) are distinct finite complex numbers. They have proved the
following uniqueness results which extend and improve the recent results in this
direction.

Theorem 10. Let f and g be two transcendental entire functions of finite order,
cj (j = 1, . . . , d) be finite complex constants and and α ( ̸≡ 0) be a small function
of both f and g with finitely many zeros. Suppose that n(≥ 1), m(≥ 1) and
k(≥ 0) are positive integers satisfying n ≥ max{2k + Γ1 + σ + 5, σ + 2d + 3}. If(
fn(fm − 1)

d∏
j=1

f(z + cj)
µj

)(k)

and

(
gn(gm − 1)

d∏
j=1

g(z + cj)
µj

)(k)

share “(α, 2)”

then f ≡ tg for some constant t such that tn+σ = tm = 1.
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Theorem 11. Let f and g be two transcendental entire functions of finite order, cj (j =
1, . . . , d) be finite complex constants and and α ( ̸≡ 0) be a small function of both f

and g with finitely many zeros. Suppose that n(≥ 1), m(≥ 1) and k(≥ 0) are integers

satisfying n ≥ max{3k+2Γ1+2σ+6, σ+2d+3}. If

(
fn(fm−1)

d∏
j=1

f(z+cj)
µj

)(k)

and

(
gn(gm−1)

d∏
j=1

g(z+cj)
µj

)(k)

share (α, 2)∗ then conclusion of Theorem 10 holds.

Theorem 12. Let f and g be two transcendental entire functions of finite order,
cj (j = 1, . . . , d) be finite complex constants and and α ( ̸≡ 0) be a small function
of both f and g with finitely many zeros. Suppose that n(≥ 1), m(≥ 1) and
k(≥ 0) are integers satisfying n ≥ max{5k + 5Γ1 + 5σ + 6, σ + 2d + 3}. If

E2)

(
α(z),

(
fn(fm − 1)

d∏
j=1

f(z + cj)
µj

)(k))
and E2)

(
α(z),

(
gn(gm − 1)

d∏
j=1

g(z +

cj)
µj

)(k))
then conclusion of Theorem 10 holds.

Now we prove the following results.

Theorem 13. Let f and g be two transcendental entire functions of finite order,
cj (j = 1, . . . , d) be finite complex constants and and α ( ̸≡ 0) be a small function
of both f and g with finitely many zeros. Suppose that n(≥ 1), m(≥ 1) and k(≥ 0)

are positive integers satisfying n ≥ max{2k + m + σ + τ + 5, σ + τ + 2}, where

σ =
∑p

i=1 vi, and τ =
∑q

j=1 µj . If

(
fn(fm − 1)

p∏
i=1

f(z + ci)
vi

q∏
j=1

f (j)(z)µj

)(k)

and

(
gn(gm − 1)

p∏
i=1

g(z + ci)
vi

q∏
j=1

g(j)(z)µj

)(k)

share “(α, 2)” then f ≡ tg for some

constant t such that tn+σ+τ = tm = 1.

Theorem 14. Let f and g be two transcendental entire functions of finite order,
cj (i = 1, . . . , p) be finite complex constants and and α (̸≡ 0) be a small function
of both f and g with finitely many zeros. Suppose that n(≥ 1), m(≥ 1) and k(≥ 0)

are integers satisfying n ≥ max{3k + 2m + 2σ + 2τ + 6, σ + τ + 2}, where

σ =
∑p

i=1 vi, and τ =
∑q

j=1 µj . If

(
fn(fm − 1)

p∏
i=1

f(z + ci)
vi

q∏
j=1

f (j)(z)µj

)(k)

and(
gn(gm − 1)

p∏
i=1

g(z+ ci)
vi

q∏
j=1

g(j)(z)µj

)(k)

share (α, 2)∗ then conclusion of Theorem

13 holds.
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Theorem 15. Let f and g be two transcendental entire functions of finite order,
cj (j = 1, . . . , d) be finite complex constants and and α ( ̸≡ 0) be a small function
of both f and g with finitely many zeros. Suppose that n(≥ 1), m(≥ 1) and k(≥ 0) are
integers satisfying n ≥ max{5k+ 4m+ 4σ + 4τ + 8, σ + τ + 2}, where σ =

∑p
i=1 vi,

and τ =
∑q

j=1 µj . If E2)

(
α(z),

(
fn(fm − 1)

p∏
i=1

f(z + ci)
vi

q∏
j=1

f (j)(z)µj

)(k))
and

E2)

(
α(z),

(
gn(fm − 1)

p∏
i=1

g(z+ ci)
vi

q∏
j=1

g(j)(z)µj

)(k))
then conclusion of Theorem

13 holds.

3. SOME LEMMAS

The following sequence of Lemmas will be helpful to prove our main results.
We denote H by the following function.

H =
F ′′

F ′ −
2F ′

F − 1
− G′′

G′ +
2G′

G− 1

Lemma 1. [1] Suppose f is a meromorphic function in the complex plane C and the
polynomial is defined by P (z) = anf

n + an−1f
n−1 + . . . + a1f + a0, where an(̸≡ 0),

a0, a1, , . . . , an−1 are small functions of f . Then

T (r, P (f)) = mT (r, f) + S(r, f).

Lemma 2. [3] Let f(z) be a nonconstant meromorphic function and P [f ] be defined
by (1). Then

T (r, P ) ≤ dT (r, f) +QN (r,∞; f) + S(r, f)

≤ QN (r,∞; f) + dN (r, 0; f) + S(r, f).

and

N (0r, 0;P [f ]) ≤ T (r, P [f ])− dT (r, f) + dN (r, 0; f) + S(r, f)

Lemma 3. [5] Let H be defined as above. If F and G share “(1, 2)” and H ̸≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F )

+N2(r,∞;G)−
∞∑
p=3

N (p

(
r,

G

G′

)
+ S(r, F ) + S(r,G).
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Lemma 4. [5] Let H be defined as above. If F and G share (1, 2)∗ and H ̸≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +N(r, 0;F )

+N(r,∞;G)−m(r, 1;G) + S(r, F ) + S(r,G).

Lemma 5. [6] Let F and G be two non-constant entire functions and p ≥ 2 be an
integer. If Ep)(1, F ) = Ep)(1, G) and H ̸≡ 0, then

T (r, F ) ≤ N2(, 0;F ) +N2(r, 0;G) + 2N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G).

Lemma 6. [14] Let H be defined as above. If F and G share (1, 2)∗ and H ≡ 0 and

lim
r→∞

N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G) +N(r,∞;G)

T (r)
< 1, r ∈ I.

where T (r) = max{T (r, F ), T (r,G)} and I is a set with linear measure, Then F ≡ G

or FG ≡ 1.

Lemma 7. [20] Let f be a non-constant meromorphic function, and let s, k be two
positive integers. Then

Ns

(
r,

1

F

)
≤ T (r, f (k))− T (r, f) +Ns+k

(
r,

1

f

)
+ S(r, f).

Ns

(
r,

1

F

)
≤ kN(r, f) +Ns+k

(
r,

1

f

)
+ S(r, f).

Clearly, N
(
r, 1

f (k)

)
= N1

(
r, 1

f (k)

)
.

Lemma 8. [13] Let f and g be two transcendental entire function of finite order and
cj(j = 1, 2, . . . , s) be finite complex constants. Let m(≥ 1) and n(≥ 1) be integers
such that n ≥ σ + τ + 2. If(
fn(fm − 1)

p∏
i=1

f(z + ci)
vi

q∏
j=1

f (j)(z)µj

)(k)

≡

(
gn(gm − 1)

p∏
i=1

g(z + ci)
vi

q∏
j=1

g(j)(z)µj

)(k)

then f ≡ tg for some constant t such that tm = tn+σ+τ = 1

Lemma
9. [[19],[3]] Let f and g be two entire functions, n(≥ 1),m(≥ 1), k(≥ 0), p, q, i, j

be integers and let us define F =

(
fn(fm − 1)

p∏
i=1

f(z + ci)
vi

q∏
j=1

f (j)(z)µj

)(k)

and

G =

(
gn(gm − 1)

p∏
i=1

g(z + ci)
vi

q∏
j=1

g(j)(z)µj

)(k)

. If there exists non-zero constants

c1 and c2 such that N(r, c1;F ) = N(r, 0;G) and N(r, c2;G) = N(r, 0;F ) then
n ≤ 2k +m+ σ + τ + 2.
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4. PROOF OF MAIN RESULTS

Proof of Theorem 10.

Proof. Let F =
F

(k)
1

α(z)
and G =

G
(k)
1

α(z)
where F1 = fn(fm−1)

p∏
i=1

f(z+ ci)
vi

q∏
j=1

f (j)(z)µj

and G1 = gn(gm − 1)

p∏
i=1

g(z + ci)
vi

q∏
j=1

g(j)(z)µj . Then F and G are transcendental

meromorphic functions that share “(1, 2)” except the zeros and poles of α(z). From
Lemma 1, Lemma 2 and Lemma 7 we see that

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 )

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+2(r, 0;F1) + S(r, f)

≤ T (r, F )− (n+m+ σ + τ)T (r, f) +Nk+2(r, 0;F1) + S(r, f).

which gives

(n+m+ σ + τ)T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f). (1)

Also, by Lemma 7, we obtain,

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 ) + S(r, f)

≤ Nk+2(r, 0;F1) + S(r, f).
(2)

Similarly,
N2(r, 0;G) ≤ Nk+2(r, 0;G1) + S(r, g). (3)

By using the inequalities (2) and (3) and Lemma 2 we get from (1)

(n+m+ σ + τ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F )

+N2(r,∞;G) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + S(r, f) + S(r, g)

≤ (k + 2){N(r, 0;F1) +N(r, 0;G1)}

+N(r, 1; fm) +N(r, 1; gm) +N

(
r, 0;

p∏
i=1

f(z + ci)
vi

)

+N

(
r, 0;

q∏
j=1

f (j)(z)µj

)
+N

(
r, 0;

p∏
i=1

g(z + ci)
vi

)

+N

(
r, 0;

q∏
j=1

g(j)(z)µj

)
+ S(r, f) + S(r, g)

≤ (k +m+ σ + τ + 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).
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Therefore,

(n+m+σ+τ)T (r, f) ≤ (k+m+σ+τ+1){T (r, f)+T (r, g)}+S(r, f)+S(r, g). (4)

Similarly,

(n+m+σ+τ)T (r, g) ≤ (k+m+σ+τ+1){T (r, g)+T (r, f)}+S(r, g)+S(r, f). (5)

Adding the inequalities (4) and (5), we get,

(n− 2k −m− σ − τ − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

which is obviously a contradiction as n ≥ 2k +m+ σ + τ + 5.
Consider the case when H ≡ 0. i.e.,

H =
F ′′

F ′ −
2F ′

F − 1
− G′′

G′ +
2G′

G− 1
≡ 0

Integrating the above equation, we get,

1

F − 1
=

P

G− 1
+Q (6)

where P ̸= 0 and Q are integrating constants. From the equation (6) it is clear that F
and G share 1 CM and hence they share “(1, 2)”. Therefore n ≥ 2k +m+ σ + τ + 5.
Upon considering the some of the cases separately, we obtain as follows.

Case 1. Suppose Q ̸= 0 and P = Q then from equation (6), we get,

1

F − 1
=

QG

G− 1
. (7)

If B = −1 then from equation (7), we get, FG ≡ 1.
i.e.,fn(fm − 1)

p∏
i=1

f(z + ci)
vi

q∏
j=1

f (j)(z)µj

(k)gn(gm − 1)

p∏
i=1

g(z + ci)
vi

q∏
j=1

g(j)(z)µj

(k)

≡ ψ2

Since the number of zeros of φ(z) is finite, it follows that f as well as g has finitely
many zeros. We put f(z) = h(z)eβ(z), where h(z) is a nonzero polynomial and β(z) is a
nonconstant polynomial. Now replacing

∏p
i=1 h(z+ ci)

vi by µ(z) and
∑p

i=1 viβ(z+ ci)
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by γ(z) we deduce that,(
fn(fm − 1)

p∏
i=1

f(z + ci)
vj

q∏
j=1

f (j)(z)µj

)(k)

=
(
hn(z)enβ(z)

(
hm(z)emβ(z) − 1

)
h(z + c)eβ(z+c)

)(k)
=
(
hn(z)µ(z)enβ(z)+γ(z)

(
hm(z)emβ(z) − 1

))(k)
=
(
hn+m(z)µ(z)e(n+m)β(z)+γ(z) − hn(z)µ(z)enβ(z)+γ(z)

)(k)
= e(n+m)β(z)+γ(z)P1(β(z), γ(z), h(z), µ(z), . . . , β

(k)(z), γ(k),

h(k)(z), µ(k)(z))− enβ(z)+γ(z)P2(β(z), γ(z), h(z), µ(z), . . . ,

β(k)(z), γ(k), h(k)(z), µ(k)(z))

= enβ(z)+γ(z)
(
P1e

mβ(z) − P2

)
.

Obviously P1e
mβ(z) − P2 has infinite number of zeros, which contradicts with the fact

that g is an entire function.
It can be easily verified from above that, N(r, 0; f) = S(r, f) and N(r, 1; f) = S(r, f).
Thus

δ(0, f) + δ(1, f) + δ(∞, f) = 3.

which is not possible.
If B ̸= −1 from equation (7), we have, 1

F
= QG

(1+Q)G−1
and so N

(
r, 1

1+Q
;G
)

=

N(r, 0;F ). Using Lemma 7 and Second main theorem of Nevanlinna, we get

T (r,G) ≤ N(r, 0;G) +N
(
r,

1

1 +Q
;G
)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G)

≤ Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1)− (n+m+ σ + τ)T (r, g) + S(r, g).

Therefore,

(n+m+ σ + τ)T (r, g) ≤ (k +m+ σ + τ + 1){T (r, f) + T (r, g)}+ S(r, g). (8)

Likewise, we also get,

(n+m+ σ + τ)T (r, f) ≤ (k +m+ σ + τ + 1){T (r, g) + T (r, f)}+ S(r, f). (9)

From the inequalities (8) and (9) we obtain a contradiction as n ≥ 2k+m+ σ+ τ +3.
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Case 2. Let Q ̸= 0 and P ̸= Q, then from equation (6) we get,

F =
(Q+ 1)G− (Q− P + 1)

QG+ (P −Q)

and so N
(
r, Q−P+1

Q+1
;G
)
= N(r, 0;F ). By providing the same argument as in case 1,

we obviously get a contradiction.

Case 3. If Q = 0 and P ̸= 0 then from equation (6) we get F = G+P−1
P

and

G = PF − (P − 1). If P ̸= 1, it follows that N
(
r, P−1

P
;F
)

= N(r, 0;G)

and N(r, 1 − A;G) = N(r, 0;F ). Now by using Lemma 9, it can be shown that
n ≤ 2k +m+ σ + τ + 2, a contradiction. Thus P = 1 and then F ≡ G i.e.,(
fn(fm − 1)

p∏
i=1

f(z + ci)
µj

q∏
j=1

f (j)(z)µj

)(k)

≡

(
gn(gm − 1)

p∏
i=1

g(z + ci)
µj

q∏
j=1

g(j)(z)µj

)(k)

Anti-Differentiate the above equation, we get,(
fn(fm − 1)

p∏
i=1

f(z + ci)
µj

q∏
j=1

f (j)(z)µj

)(k−1)

≡

(
gn(gm − 1)

p∏
i=1

g(z + ci)
µj

q∏
j=1

g(j)(z)µj

)(k−1)

+ Ek−1.

where Ek−1 is a constant. If Ek−1 ̸= 0, using Lemma 9 it follows that n ≤
2k + m + σ + τ + 2, which is a contradiction. Hence Ek−1 = 0. Repeating the
above process k times we get(
fn(fm − 1)

p∏
i=1

f(z + ci)
vi

q∏
j=1

f (j)(z)µj

)
≡

(
gn(gm − 1)

p∏
i=1

g(z + ci)
vi

q∏
j=1

g(j)(z)µj

)

which gives f = tg, where t is a constant satisfying tn+m+σ = 1.

This completes the proof of Theorem 10.

Proof of Theorem 11.

Proof. Let F , G, F1 and G1 be defined as in the proof of Theorem 10. Then F and G

are transcendental meromorphic functions that share (1, 2)∗ except the zeros and poles
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of α(z). Let H ̸≡ 0. Then by using Lemma 3, Lemma 7 and Lemma 8, we get,

(n+m+ σ + τ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

+N(r, 0;F ) +N(r,∞;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ (2k + 2m+ 2σ + 2τ + 3)T (r, f)

+ (k +m+ σ + τ + 2)T (r, g) + S(r, f) + S(r, g).

Therefore,

(n+m+ σ + τ)T (r, f) ≤ (2k + 2m+ 2σ + 2τ + 3)T (r, f)

+ (k +m+ σ + τ + 2)T (r, g) + S(r, f) + S(r, g).
(10)

Likewise,

(n+m+ σ + τ)T (r, g) ≤ (2k + 2m+ 2σ + 2τ + 3)T (r, g)

+(k +m+ σ + τ + 2)T (r, f) + S(r, f) + S(r, g).
(11)

Adding the inequalities (10) and (11), we get,

(n+m+ σ + τ){T (r, f) + T (r, g)} ≤ (3k + 3m+ 3σ + 2τ + 5)

+ {T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

which is a contradiction as n ≥ 3k + 2m + 2σ + 2τ + 6. Thus H ≡ 0. Proceeding
similarly as done in Theorem 10 we get the proof of Theorem 11.

Proof of Theorem 12.

Proof. Let F , G, F1 and G1 be defined as in the proof of Theorem 10. Then F and G

are transcendental meromorphic functions such that E2)(1;F ) = E2)(1;G) except the
zeros and poles of α(z). Let H ̸≡ 0. Then by using Lemma 5, Lemma 7, we get,

(n+m+ σ + τ)T (r, f) ≤ N2(r, 0;G) + 2N(r, 0;F ) +N(r, 0;G)

+Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + 2Nk+1(r, 0;F1)

+Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤ (3k + 3m+ 3σ + 3τ + 4)T (r, f)

+ (2k + 2m+ 2σ + 2τ + 3)T (r, g) + S(r, f) + S(r, g).

Therefore,

(n+m+ σ + τ)T (r, f) ≤ (3k + 3m+ 3σ + 3τ + 4)T (r, f)

+ (2k + 2m+ 2σ + 2τ + 3)T (r, g) + S(r, f) + S(r, g).

(12)
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Likewise,

(n+m+ σ + τ)T (r, g) ≤ (3k + 3m+ 3σ + 3τ + 4)T (r, g)

+ (2k + 2m+ 2σ + 2τ + 3)T (r, f)S(r, f) + S(r, g).
(13)

Adding the inequalities (12) and (13), we get,

(n+m+ σ + τ){T (r, f) + T (r, g)} ≤ (5k + 5m+ 5σ + 5τ + 7){T (r, f)
+ T (r, g)}+ S(r, f) + S(r, g).

which is a contradiction as n ≥ 5k + 4m + 4σ + 4τ + 8. Thus H ≡ 0. Proceeding
similarly as done in Theorem 10 we get the proof of Theorem 12.

5. CONCLUSION

The main aim of this paper is to generalize and improve the some of the results of
differential difference polynomial by using the concepts of weakly weighted sharing
“(α, 2)” and relaxed weighted sharing (α, 2)∗. We have proved three theorems which
extends the previous results of Roopa M. and Harina P. Waghamore.
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