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Abstract 
 

The microarray experiments are producing huge amount of data sets in almost 
all fields of biological research.It is needs to analyze and properly exploit all 
the available information inherently presents in the data sets. The Principal 
Component Analysis (PCA) has stronghold on microarray data analysis - A 
black box that is widely used but poorly understood. The goal of this article is 
to dispel the magic behind this black box and to focus on building a solid 
intuition for how and why principal component analysis works in huge 
numbers of high throughput microarray data set.It is a versatile and easy-to-
use multivariate mathematical statistical method developed to extract maximal 
information from large data matrices containing numerous columns and rows. 
It also makes possible the elucidation of the relationship between the columns 
and rows of any data matrix without being one of the dependent variable. So 
the PCA is a projection method representing the original data in smaller 
dimensions. We suppose that this article helpful for readers of all levels, 
researchers and students. They will be able to gain better understanding of the 
power of PCA as well as when, how and why of applying this technique in 
microarray data sets. 
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Introduction 
DNA microarray technology allows scientists to study the expression of thousands of 
genes - potentially entire genomes. It has been widely hailed as a powerful tool to 
study the global gene expression in organisms or tissues [1, 2]. Microarray can be 
applied to a wide range of studies including gene regulation, disease diagnosis and 
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prognosis, cancer classification, bio-marker discovery and drug development. The 
microarray’s capacity to compare gene expression patterns in different tissues or 
conditions threatens to change the way biology is practiced and understood. There are 
vast amount of gene expression data have generated across many conditions such as 
treatments or time points. But the problemis that the resultant mass of data is possibly 
irrelevant, insignificant or redundant. Therefore it is necessary to select methods for 
analyzing and representing these biological data, so it becomes possible to make a 
visual inspection of the relationship between conditions in such a multi-dimensional 
matrix. The PCA is the most important and broadly used statistical methods employed 
to dispel the complexity of biologic systems in analysis of microarray results. It is one 
of the tool for data analysis, visualization or compression and has a wide range of 
applications. It is finds linear combinations of the variables called principal 
components, corresponding to orthogonal directions maximizing variance in the data. 
Numerically, a full PCA involves a singular value decomposition of the data matrix. 
In other words, it is a mathematical algorithm that reduces the dimensionality of the 
data while retaining most of the variation in the data set [3]. It accomplishes this 
reduction by performing a covariance analysis between factors and identifying 
directions, called principal components, along which the variation in the data is 
maximal. By using a few components, each sample can be represented by relatively 
few numbers instead of by values for thousands of variables. Samples can then be 
plotted, making it possible to visually assess similarities and differences between 
samples and determine whether samples can be grouped. 
 Let’s take an example that illustrates how PCA works with a microarray 
experiment: suppose you measure 8000 differentially expressed genes in 4 different 
rice genotypes. These values could form a matrix of 4 x 8000 measurements. Now 
imagine that each of these 8000 genes is plotted in a multi-dimensional on a scatter 
plot consisting of 4 axes, 1 for each genotype. The result is a cloud of values in multi-
dimensional space.  
 
 
Functional concepts of Principal Component analysis  
To obtain more precise definition of goal, we need a more precise definition of data. 
A simple example to understand about the principal component analysis showed in 
figure -1.  
 A man moving along the x-axis, at that time three cameras measure the man’s 
position (system of interest) in a three-dimensional space (since we live in a three 
dimensional world). Each movie camera records an image indicating a two 
dimensional position of the man. Unfortunately, because of our ignorance, we do not 
even know what are the real “x”, “y” and “z” axes. Suppose the number of 
measurement in this case, 10000 data sets has been generated in 6-dimensional 
vectors, where each camera contributes a 2-dimensional projection of the man 
position. In general, each data sample is a vector in ‘n’ dimensional space, where ‘n’ 
is the number of measurement types. All measurement vectors in this space are a 
linear combination of this set of unit length basis vectors. A native and simple choice 
of a basis A is the identity matrix I. 



Understanding Principal C

 

Figure 1: A mod
 
 

  

 
 Where each row is a b
 At one point in time, 
Each trial can be expressed

   

 
 
 Where each camera c
coefficients in the naive b
what PCA does: PCA m
Linearity vastly simplifies
formalizing the implicit as
we have already assume
characterizes the dynamic
the superposition princip

Component Analysis

 
 

del for understanding principal component an

 

 

asis vector Ai with n components (n =1, 2,....
camera A records a corresponding position 
d as a six dimensional column vector  

contributes two points and the entire vector 
basis A. With this rigor one may now state 
makes one stringent but powerful assump
s the problem by restricting the set of poten
ssumption of continuity in a data set. A subtle
ed linearity by implicitly stating that the 
cs of the system. In other words, we are alre
pal of linearity to believe that the data c

57 

nalysis. 

....,n) 
(xa (t), ya (t)). 

 is the set of 
more precisely 

ption: linearity. 
ntial bases, and 
e point it is, but 
data set even 

eady relying on 
characterizes or 



58  Shiv Narayan Sharma et al 

 

provides an ability to interpolate between the individual data points. The above 
diagram has more than one dimensions and the aim of the statistical analysis of these 
data sets is usually to see that relationship between the dimensions.  
 
 
Basic statistics measures behind PCA  
The entire subject of statistics is based around the idea that you have this big set of 
data, and you want to analysis that set in terms of the relationships between the 
individual points in that data set. The basic statistical measures applied in the 
background of principal component analysis are important to apply PCA in 
microarray analysis. 
 Standerd deviation: It is the square root of mean of the squared deviation of 
individual values from their mean. It indicates a sort of group standerd spread of 
values from the mean. 

  ∑  

 
Variance: Variance is another measure of the spread of data in a data set. In fact it is 
almost identical to the standard deviation. Variance of a random variable X are.  

  ∑  
 
 
 Sample variance from datax1, . . . , xn: 

   ∑ ∑  
 
 If considered the data of height and yield of rice plant. So the statistical analysis 
based on the height of plant has any effect on their yield. In this case only standard 
deviation and variance was operated because the data have limited dimension. So that 
you could only calculate the standard deviation for each dimension of the data set 
independently of the other dimensions. However, it is useful to have a similar 
measure to find out how much the dimensions vary from the mean with respect to 
each other.  
 
Covariance: The standerd devation and veriance purely on dimensione data mesures. 
However many data sets have more than one dimension, and the aim of the statistical 
analysis of these data sets is usually to see if there is any relationship between the 
dimensions.Covariance is always worked on two dimensions.If you calculate the 
covariance between one dimension and itself, you get thevariance. So, if you had a 3-
dimensional data set (x, y , z), then you could measure the covariance between the x 
and y dimensions, the x and z dimensions, and the y and z dimensions. Measuring the 
covariance between x and x , or y and y, or  z and z would give the variance of the x , 
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y and z dimensions respectively. Covariance between random variablesxX, Y: 

  ,  
 
Sample covariance from data(x1, y1), . . . , (xn, yn): 

,
1

1
1

1
1

1   

 
Coveriance matrix: The covariance matrix generalizes the concept of variance 
to random vectors, or sets of random variables. Suppose the x and y random vector 
than  
  … ..   
  … ..   
  .  
 
 The experiment were design with many simultaneous random variables, put them 
into vectors. The variance-covariance matrix (or simply the covariance matrix ) of a 
random vector and  is given 
 If the data have a 3-dimensional (x, y, z), then you can measure the covariance 
between the x and y dimensions, the x and z dimensions, and the y and z dimensions. 
Measuring the covariance between x and x and y and y and z and z would give you 
the variance of the x, y and z dimensions respectively. If the data sets have more than 
two dimensions than more than one covariance can be calculated. For three 
dimensional data set (dimensions x, y, z ) you could calculate cov(x, y), cov(x, z) and 
cov(y, z). In fact, for n dimensional data calculate through !

! !
  different 

covariance values. A useful way to get all the possible covariance values between all 
the different dimensions is to calculate them all and put them in a matrix.  
    , ,  
 
 Where    is a matrix with n rows and n columns and is the x dimension. 
If n dimensions of data sets, then the matrix has n rows and columns (so is square) 
and each entry in the matrix is the result of calculating the covariance between two 
separate dimensions. Eg. the entry on row 2, column 3, is the covariance value 
calculated between the 2nd dimension and the 3rd dimension. Then, the covariance 
matrix has 3 rows and 3 columns, and the values are this 

  
,   ,  ,
,  ,  ,
,   ,  ,

 

 
 Understanding the problems with many simultaneous random variables put them 
into vectors. 
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 Where I is the n x n identity matrix. Now, in order for a non-zero vector v to 
satisfy this equation, A−λI must not be invertible. Scalar λ is called an eigenvalue of 
A, vector  ≠ 0 is called an eigenvector of A associated with eigenvalue and the null 
space of A−λI is called the eigenspace of A associated with eigenvalue. The 
eigenvectors can only be found for squarematrices but not every square matrix has 
eigenvectors. In the given n x n matrix that does have eigenvectors, there are n of 
them. The description of calculation of eigenvalue and eigenvector beyond the scope 
of this article. The reader may consult some specific topic.  
 
 
Principal component analysis for Evaluation of microarray data 
The study of gene expression has been greatly facilitated by the application of DNA 
microarray technology [4]. DNA microarrays consist of single-stranded DNA 
fragments affixed to a solid support [5, 6, 7]. It measures the expression of thousands 
of genes simultaneously. The each spot on the microarray consists of a population of 
identical DNA fragments that represent one particular gene. To measure expression, 
the total RNA of a cell is harvested and labelled with fluorescent nucleotide tags 
during reverse transcription to make fluorescent probes. Commonly, two cell 
populations are used—cells under control and experimental conditions. The probes 
are then placed on the chip and permitted to hybridize with the target fragments on the 
corresponding spot. The intensity of the spot is approximately proportional to the 
probe and hence mRNA concentration. In a typical experiment, two colors (red and 
green) are used to measure expression of the experimental population relative to the 
control. Equal total mRNA probe concentrations are used to query the microarray and 
intensity ratios between the colors are calculated and reported as data [4] (Fig. - 2).  

 

 
 

Figure 2:  overview of the microarray experiment, data generation and analysis. 
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 The anticipated flood of biological information produced by the microarray 
experiments will open new doors into genetic analysis [8].  Microarray data has been 
used to identify gene clusters based on co-expression [9, 10], define metrics that 
measure a gene’s involvement in a particular cellular event or process [11], predict 
regulatory elements [12], and reverse engineer transcription networks [13, 14]. It is 
high-throughput genomic tools have sparked a remarkable increase in data 
production, leading to new evolutionary insights but the resultant masses of data are 
possibly irrelevant, insignificant or redundant. Therefore, we should carefully select 
methods for analyzing and representing microarray data.  
 Microarray data have high levels of noise and scattered distribution, so that it is 
desirable to carry out the analysis of microarray data within a statistical framework. 
Pre-processing and normalisation is an important aspect of the analysis is the strategy 
required to reduce the impact of noise and correct for systematic variation introduced 
by experimental procedures. The common normalisation strategies on the distribution 
of measured expression levels are these. Normalization is a critical step for obtaining 
data that are reliable and usable for subsequent analysis such as identification of 
differentially expressed genes and clustering. 
 
Geometric mean (GM) normalisation 
Geometric mean normalisation involves a simple linear transformation of data 
fromeach chip experiment such that the logged expression data lies on a standard 
scalein which it has mean zero and unit variance. The mean and standard deviation 
arecalculated by ignoring data which is ± 3 standard deviations from the mean of 
theun-normalised data, in order to avoid bias introduced by outliers. Correcting forthe 
mean of the logged data corresponds to correcting by the geometric mean inthe un-
logged data, hence the name. We also correct for the variance of the loggeddata, since 
it appears that there are significant differences in this quantity betweenexperiments. 
 
Least squares (LS) normalisation 
One common normalisation approach is to do a linear regression of expressiondata 
from one chip to expression data on a reference chip followed by a 
lineartransformation to ensure all experiments have the same slope and intersect. This 
is unprincipled since standard linear regressionassumes that only one experiment is 
noisy (the measurement) while theother experiment can be considered a reference 
variable. In practice all experimentsconsidered will have comparable noise levels. The 
use of standard linearregression therefore leads to an asymmetrical method in which 
the result of normalisationis not equivalent for different choices of reference chip. A 
nice exampleof this asymmetry effect in regression is given by Hastie and Stuetzle 
[15] whoconsider a simple one dimensional example where interchanging the 
measurementand reference variables results in a significantly different regression line.  
 A major problem in microarray analysis is the large number of dimensions. In 
gene expression experiments each gene and each experiment may represent one 
dimension. For example, a set of 10 experiments involving 20,000 genes may be 
conceptualized as 20,000 data points (genes) in a space with 10 dimensions 
(experiments) or 10 points (experiments) in a space with 20,000 dimensions (genes). 
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Both situations are beyond the capabilities of current visualization tools and beyond 
the visualization capabilities of our brains. A natural solution would be to try to 
reduce the number of dimensions by eliminating those dimensions that are not 
“important”. The PCA does exactly that by ignoring the dimensions in which data do 
not vary much. PCA calculates a new system of coordinates. The directions of the 
coordinate system calculated by PCA are the eigenvectors of the covariance matrix of 
the patterns. An eigenvector of a matrix A is defined as a vector z such as: 
   
 
where λ is a scalar called eigenvalue. For instance, the matrix: 

  1 1
0 2  

 
 The eigenvalues λ1= -1 and λ2= - 2 and the eigenvectors 1

0  and 1
1  

 In intuitive terms, the covariance matrix captures the shape of the set of data 
points. PCA captures, by the eigenvectors, the main axes of the shape formed by the 
data diagram in an n-dimensional space. The eigenvalues describe how the data are 
distributed along the eigenvectors and those with the largest absolute values will 
indicate that the data have the largest variance along the corresponding eigenvectors. 
For instance, the figure below shows a data set with data points in a 2-dimensional 
space. However, most of the variability in the data lies along a one-dimensional space 
that is described by the first principal component (P1). In this example the second 
principle component (P2) can be discarded because the first principle component 
captures most of the variance present in the data (fig. - 3). 

 

 
 

Figure 3: Each data point in this diagram has two coordinates. However, this data set 
is essentially one dimensional because most of the variance is along the first 
eigenvector p1. The variance along the second eigenvector p2is marginal, thus, p2 may 
be discarded. 
 
 
 It is important to notice that in some circumstances, the direction of the highest 
variance may not be the most useful. For example, in gene expression diagram which 
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describes gene expression levels from two samples, the PCA would capture two axes. 
One axis would represent the within-experiment variation, while the other would 
represent the inter-experiment variation. Although the within-experiment axis could 
show much more variance than the inter-experiment axis, the within-experiment axis 
is of no use for us. This is because we know a priorithat genes will be expressed at all 
levels [16]. The dimensionality reduction is achieved through PCA by selecting a 
small number of directions and look at the projection of the data in the coordinate 
system formed with only those directions. In spite of its usefulness, PCA has also 
limitations. Those limitations are mainly related to the fact that PCA only takes into 
consideration the variance of the data which is a first order statistical characteristic of 
the data. Another major limitation is that PCA takes into account only the variance of 
the data and completely discards the class of each data point. 
 
 
Hypotehetical example of typical microarrya analysis  
To understand the principal component analysis in a microarray hybridization 
experiement a simple experimentgiven with ‘g’ gene on ‘n’ number of hybridization 
than the data matrix  gene by array. The intensity indicate that the upregulation 
and down regulation of the gene.The extent of florecent intensity with negative sine 
showed the extent of down-regulation wheras the positive sign shows the extent of 
up-regulation of the gene. The valus of intensity used for constration of matrix for 
PCA analysis.  
 

Genes   Arrays 
Array1 Array2 Array3 Array4 Array5 …… 
0.46 0.30 0.80 1.51 0.90 …… 
-0.10 0.49 0.24 0.06 0.46 …… 
0.15 0.74 0.04 0.10 0.20 …… 
-0.45 -1.03 -0.79 -0.56 -0.32 …… 
-0.06 1.06 1.35 1.09 -1.09 ….. 
….. …… …… …… …… …… 

 
Figure 8: the measurement of florescent intensity of microarray data for G gene and n 
hybridization. 
 
 
 Here we consider only 5 array and 25 spots in above example for the calculating 
PCA. M is 5 x 25. Where M (Original value) M` transform value of original value 
(Y=Xi -  ) 
 

X Array1 Array2 Array3 Array4 Array5 Average SD Variance
Gene A 0.46 0.3 0.8 1.51 0.9 0.794 0.468914 0.21988 
Gene B -0.1 0.49 0.24 0.06 0.46 0.23 0.254165 0.0646 
Gene C 0.15 0.74 0.04 0.1 0.2 0.246 0.282454 0.07978 
Gene D -0.45 -1.03 -0.79 -0.56 -0.32 -0.63 0.2824 0.07975 
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Gene E -0.06 1.06 1.35 1.09 -1.09 0.47 1.027302 1.05535 
Y=Xi -  -0.334 -0.494 0.006 0.716 0.106    
 -0.33 0.26 0.01 -0.17 0.23    
 -0.096 0.494 -0.206 -0.146 -0.046    
 0.18 -0.4 -0.16 0.07 0.31    
 -0.53 0.59 0.88 0.62 -1.56    

 
 Where `  is 25 x 25! 
 
 Covariances of the gene and array matrix are 
 

 Gene A Gene B Gene C Gene D Gene E 
Gene A 0.175904     
Gene B -0.0231 0.05168    
Gene C -0.06452 0.03446 0.063824   
Gene D 0.0439 -0.02112 -0.04128 0.0638  
Gene E 0.03388 -0.02542 0.02846 -0.18248 0.84428 

 
 
 The Singular Value Decomposition of M is M = USVT, where 
 U is orthonormal, p × p. 
 V is orthonormal, q × q. 
 S is a diagonal p × q matrix, s1 ≥ s2 ≥ · · · ≥ 0. 

 

U
0.01 0.85 0.51 0.09 0.07
0.00 0.15 0.23 0.63 0.73
0.00 0.40 0.51 0.44 0.62
0.01 0.03 0.65 0.64 0.38

1.00 0.00 0.01 0.01 0.00
S

0.87 0.00 0.00 0.00 0.00
0.00 0.20 0.00 0.00 0.00
0.00 0.00 0.09 0.00 0.00
0.00 0.00 0.00 0.05 0.00
0.00 0.00 0.00 0.00 0.04

 =

V
0.04 0.03 0.03 0.21 0.98
0.97 0.14 0.19 0.10 0.02
0.25 0.50 0.68 0.45 0.12
0.03 0.65 0.04 0.74 0.18

0.01 0.56 0.70 0.44 0.05

 

 
 Mis now decomposed into three matrices with SVD (singular value 
decomposition); i.e., A = USVT. These terms are defined as follows. VTis the 
transpose of V and S is a diagonal matrix that stores singular values (i.e., λi… λi + 1… 
λk). U and V are orthogonal matrices. 
 Their column vectors are the so-called left and right eigenvectors of A. 
 When these eigenvectors multiply Y, coordinates are shifted and rotated until they 
end up aligned with vectors, termed now basis vectors. This is an affine 
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transformation since it involves translation. Note that PCA now re-expresses the data 
as a linear combination of its basis vectors, YV. Vcolumns (VTrows) are found to 
produce the desired linear combinations. The first column of V corresponds to the 
largest PC, the second column corresponds to the second largest PC, and so on. These 
define the direction in which the variability of the original data set is maximized. 
Compute V from VTand YV and plot the first two columns of YV. 
 

 Gene A Gene B Gene C Gene D Gene E 
V 0.04 -0.03 0.03 -0.21 0.98 
 -0.97 0.14 0.19 0.1 0.02 
 -0.25 -0.5 0.68 0.45 0.12 
 -0.03 -65 -0.04 -0.74 -0.18 
 0.01 0.56 0.7 0.44 0.05 
YV PC1 PC2 PC3 PC4 PC5 
 0.44 -46.54 -0.05 -0.46 -0.46 
 -0.26 11.22 0.21 0.33 -0.27 
 -0.43 9.64 -0.08 0.06 -0.08 
 0.44 -4.36 0.03 -0.07 0.15 
 -0.85 -41.52 -0.42 -0.58 -0.59 

 
 Plotting of above matrix in two dimensional plot (Figure - 4) 

 

PC - 
1

PC - 
2

 
 

Figure 4 
 
 
Another Approach for Analysis of Microarray Data  
The given a matrix of expression data (fig. -5), where each row corresponds to a 
different gene and each column corresponds to one of several different conditions to 
which the cells were exposed. The aitentry of the matrix contains the ith gene’s relative 
expression ratio with respect to a control population under condition t. To equalize the 
influence of induction and repression for microarray analysis natural log transform to 
all ratios need to be applying [17]. Up-regulated genes have a positive log expression 
ratio, while down-regulated genes have a negative log expression ratio. 
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Figure5: microarray profile of gene and condition metrix. 
 
 
 To compute the principal components, the n eigenvalues and their corresponding 
eigenvectors are calculated from the nxn covariance matrix of conditions. Each 
eigenvector defines a principal component. A component can be viewed as a weighted 
sum of the conditions, where the coefficients of the eigenvectors are the weights. 
Each of the n components can be calculated for a given gene: 
  ∑   

 
 
 Where vtjis the tth coefficient for the jth principal component; ait is the expression 
measurement for gene i under the tth condition. A’ is the data in terms of principal 
components. Since V is an orthonormal matrix, A’ is a rotation of the data from 
theoriginal space of observations to a new space with principal component axes.The 
variance accounted for by each of the components is its associatedeigenvalue; it is the 
variance of a component over all genes. Consequently, theeigenvectors with large 
eigenvalues are the ones that contain most of theinformation; eigenvectors with small 
eigenvalues are uninformative.Determining r, the true dimensionality of the data, and 
eliminating noisycomponents is often ad hocand many heuristics exist. Eliminating 
low variancecomponents, while reducing noise, also discards some valuable 
information.  
 Theabove approach for analysis of microarray data by using principal component 
analysis given by Sager [18] in which the nucleotide base used for the coding the 
sequence of gene. He defined alignment matrix F, each row of which is a sequence 
vector Fkfor the kth gene sequence. Each base is encoded to a 4-bit binary number (A, 
C, G and T are respectively encoded to 1000, 0100, 0010 and 0001). A sequence 
vector consists of 1s and 0s, and corresponds to a point in 4l -dimensional space, 
where l is the length of the sequence. The number Ckk’of matchedmasses between 
genes k and k’ can be expressed as the inner product of the gene vector. A 
comparisonmatrix C, each element of which is the number of matches for all pairs of 
genes can thus be expressedas the matrix product between alignment F and its 
transpose FT. The principal axes upare definedas Cup= λpupwhere up is an eigenvector 
and λp is the corresponding eigenvalue of comparisonmatrix C. Each genes is plotted 
on the two-dimensional plane called gene space. The coordinatexk

pof gene k in 
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dimension p is given by xk
p= λpuk

pGenes are classified into one or more 
groups,according to the distance between the two-dimensional gene plots. The 
coordinates ypof condition inthe sequence are given by yp= FT up. The ith element of 
ypcorresponds to a condition at positioni in the gene, and characteristic conditions of 
each group are detected by comparing the conditionswith the group of genes (fig. - 6). 

 

 
 

Figure 6: Characteristic bases on 2nd principal axis (left) and 3rd principal axis (right). 
 
 
Principal Component Analysis based Clustering 
Principal components analysis is often used as a pre-processing step to clustering 
[19]. It is a widely used technique for summarising expression levels obtained from 
microarray data and as an exploratory technique for finding functional analogues.It is 
sometimes applied to reduce the dimensionality of the data set prior to clustering.The 
hope for using PCA prior to cluster analysis is that PC’s may “extract” the cluster 
structure in the data set. Since PC’s are uncorrelated and ordered, the first few PC’s, 
which contain most of the variations in the data, are usually used in cluster analysis, 
for example [20]. There are some common rules of thumb to choose how many of the 
first PC’s to retain, but most of these rules are informal and unplanned [21]. On the 
other hand, there is a theoretical result showing that the first few PC’s may not 
contain cluster information: assuming that the data is a mixture of two multivariate 
normal distributions with different means but with an identical within-cluster 
covariance matrix [22] showed that the first few PC’s may contain less cluster 
structure information than other PC’s.  For example a subset of the sporulation data 
(477 genes) were classified into 7 temporal patterns [23]. Figure 7(a) is a visualization 
of this data in the space of the first 2 PC’s, which contains 85.9% of the variation in 
the data. Each of the seven patterns is represented by a different color or different 
shape. The seven patterns overlap around the origin in figure 7(a). However, if we 
view the same subset of data points in the space of the first 3 PC’s (containing 93.2% 
of the variation in the data) in figure 7(b), the seven patterns are much more 
separated. This example shows that a small variation (7.4%) in the data helps to 
distinguish the patterns, and different numbers and different sets of PC’s have varying 
degree of effectiveness in capturing cluster structure. Therefore, there is a great need 
to investigate the effectiveness of PCA as a preprocessing step to cluster analysis on 
gene expression data before one can identify clusters in the space of the PC’s.  
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Figure 7: Visualization of a subset of the sporulation data. 
 
 
 K-means and Hierarchical clusteringis a commonly used data clustering for 
performing unsupervised learning tasks. New lower bounds for K-means objective 
function are derived by substracting total variance with the eigenvalues of the data 
covariance matrix. These results indicate that unsupervised dimension reduction is 
closely related to unsupervised learning.   
 The use of PCA before clustering can be justified by the fact that the larger 
principal components are expected to capture the structure in the data set.However, 
standard PCA does not always improve the clustering, since the dominant 
components, which contain most of the variation in the data, are highly influenced by 
the very noisy data points.By accounting for the variance in the log expression levels, 
our algorithm automatically down weights noisy values and ensures that the 
components we extract accurately reflect the structure of the data.The clustering is 
further improved when performed on the denoised reconstructed profiles, as these are 
the best estimates of the true profiles. This leads to much tighter and biologically 
plausible clusters in the data set under consideration, as shown in figure-8. 

 

 
 

Figure 8: Hierarchical clustering of microarray data left: the top 50 genes in the 
second principal component obtained using our model (denoised profiles);middle: the 
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top 50 genes in the second principal component obtained using our model (original 
profiles) and right: the top 50 genes in the second principal component obtained by 
standard PCA. Clustering was performed using the GeneCluster software from the 
Eisen Lab. 
 
 
Conclusion  
The concluding remark is that, the PCA is a great tool to reduce dimensionality of 
biological data sets for visualization and interpretationbecause it is a simple, non-
parametric method of extracting relevant information from confusing data sets. That’s 
why PCA is used abundantly in all forms of analysis - from neuroscience to computer 
graphics. With a minimal additional effort PCA provides a roadmap for how to reduce 
a complex data set to a lower dimension to reveal the sometimes hidden, simplified 
dynamics that often underlie it. The data clusteringfollowed PCs enhance cluster 
quality only when right number of components or when the right set of PCs chosen.  
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