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Abstract 
 

In this paper, we introduce the notion of bi-cubic subgroup and related 
properties are investigated. Using S -idempotent interval t-conorm, we 
study the characterizations of a  
bi-cubic subgroups are established and how the images or inverse 
images of bi-cubic subgroups become bi-cubic subgroups. 
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1. Introduction 
The theory of fuzzy set was first developed by Zadeh[9] and has been applied to many 
branches in mathematics. Later fuzzification of the “Group” concept into “Fuzzy 
subgroup” was made by Rosenfeld[8]. This work was the first fuzzification of any 
algebraic structures and thus opened a new direction, new exploration, new path of 
thinking to mathematicians, engineers, computer scientists and many others in various 
tests. Also, Zadeh[9] have introduced the concept of fuzzy set by an interval-valued 
fuzzy set (i.e. a fuzzy set with an interval-valued membership function) and he 
constructed a method of approximate inference using his interval-valued set, interval-
valued fuzzy subgroup where first defined and studied by Biswas[1]. Based on the 
interval-valued fuzzy set, Jun etal[3] introduced the notion of cubic sub algebras/ideals 
in BCK/BCI- algebra and then they investigated several properties. They discussed 
relationship between a cubic sub algebra and a cubic ideal. Also they provided 
characterization of cubic sub algebras/ideals, and considered a method to make a new 
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of cubic sub algebra from old method. Jun etal[5] introduced the notion of cubic o- sub 
algebras and cloud cubic ideals in BCK/BCI algebra , and then they investigated to 
several properties. They also investigated a condition for a cubic set in a BCK – 
algebra with condition(s) to be a cubic ideal. Finally, they dealt with a characterization 
of a cubic ideal in a BCK/BCI- algebra. 

Jun et al [4]introduced the notion of cubic q-ideals in BCI-algebras. They 
discovered relation between a cubic ideal and cubic q-ideal and provided conditions 
for a cubic ideal to be a cubic q-ideal. They also established characterizations of q-
ideals and considered the cubic extension property for a cubic q-ideal. 

 
2. Preliminaries 
In this section, we recall some basic definitions for the sake of completeness. 

In what follows let G denote a group unless otherwise specified. 
 

2.1 Definition [9] 
Let G be a non-empty set . A fuzzy subset μ on G is defined byμ ∶ G → [0,1] for all 
x ∈G.  
 
2.2 Definition [8]  
Let μ be a fuzzy subset in a group G. Then μ is called a fuzzy subgroup of G if (i) 
μ(xy)) ≥ min{ μ(x), μ(y)} for all x, y ∈G (ii) μ(x ) ≥ μ(x)for all x ∈G.  

An interval number on [0, 1], say a, is a closed subinterval of [0, 1], that is  
a= [a , a ] where 0≤ a  ≤ a ≤ 1. Let D[0,1] denotes the family of all closed 

sub intervals of [0,1], 0=[0,0] and 1=[1,1]. Let us define what is known as refined 
minimum (briefly rmin) of two elements in D[0,1]. Now we define “≤”, “≥”, “=”, 
“rmin”, “rmax” in case of two elements in D[0,1]. Consider two elements a= [a , a ] 
and b= [b , b ] in D[0,1], then  

(i) a ≤ b if and only if a ≤ b and a ≤ b , 
(ii) a ≥ b if and only if a ≥ b and a ≥ b , 
(iii) a = b if and only if a = b and a = b , 
(iv) rmin{ a, b} = [ min{ a , b  } , min{ a , b  }], 
(v) rmax{a, b} = [ max{ a , b  } , max{ a , b  }]. 

 

2.3 Definition [7] 
Let G be a set. An interval-valued fuzzy set A defined on G is given by  

A= {( x,μ (x), μ (x)}, for all x ∈G.Briefly denote A by A= [μ ,μ ] where 
μ  and μ are Lower and Upper fuzzy sets in G such that μ (x) ≤ μ (x) for all 
x ∈G. 
2.4 Definition [2] 
An interval-valued fuzzy set ‘A’ in G is called an interval-valued fuzzy subgroup of G 
if 

(i) μA(xy) ≥ rmin {μA (x)μA(y)} for all x, y ∈G, 
(ii) μA(x ) ≥ μA (x) for all x ∈G. 
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2.5 Definition [2] 
A mapping S: [0,1] × [0,1] → [0,1] is called a t-conorm if for every x, y, z ∈[0,1], it 
satisfies the following conditions : 

(i) S(x,0) = x, 
(ii) S(x, y) = S(y, x), 
(iii) S(S(x, y), z) = S(x,S(y, z)), 
(iv) S(x, y) ≤S( x, z), if y ≤ z. 
Let ‘S’ be a t-conorm, if for arbitrary x ∈ [0,1], it satisfies S(x, x) = x, then S is  

called an idempotent t-conorm. 

 
2.6 Definition [2] 
Let S be an idempotent t-conorm. Define the mapping S : D[0,1] × D[0,1] → D[0,1] 
by (a, b) →  S (a, b) = [ S ( a , b  ),S(a , b  ) ], then S  is called an idempotent 
interval t-conorm. 
 
2.7 Definition [2] 
Let G be a group and S  be an idempotent interval t-conorm. An interval-valued fuzzy 
set A in G is called an S -interval-valued fuzzy subgroup of G if the following 
condition hold, 

(i) μA(xy) ≤ S  {μA (x), μA(y)} for all x, y ∈G, 
(ii) μA(x ) ≤ μA (x) for all x ∈G. 

 
2.8 Definition 
Let G be a non-empty set. A bi-cubic set A in a set G is a structure A ={( 
x, μA(x), V (x)) ∶  x ∈ G } which is briefly denoted by A = < μA,V >where 
μA=[μ , μ ] is an interval-valued fuzzy set in G,V  is a vague set in G. Denote by 
C(G) the family of bi-cubic in a set G. 
 
2.9 Definition 
Let G be a group and S  be an idempotent interval t-conorm. A bi-cubic set A = 
(μA,V ) in G is called a bi-cubic subgroup of G if it satisfies: for all x, y ∈G, 

(i) μA(xy) ≤ S  {μA (x), μA(y)}  
(ii) μA( x ) ≤ μA (x) 
(iii) V (xy) ≥min{ V (x), V (y)} 
(iv) V ( x ) ≥  V (x) 

Example: Let G be the Klein’s four group. We have G={e, a, b, ab} where a = e =
b  and  

ab = ba. We define μA= [μ ,μ ] and V = [t  , f ] by  

 μA =
e a

[0.2,0.6]  [0.3,0.7] 
b  ab

[0.5,0.8] [0.3,0.7]  and 

V =  
e a

(0.4,0.8) (0.1,0.6) 
b ab

(0.2,0.8) (0.3,0.5)  . 
Then A = (μA,V ) is a bi-cubic group. 
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2.10 Definition [2] 
Let A = (μA,V ) be a bi-cubic set in a set G(γ,δ)∈ [0,1] and [α,β] ∈ D[0,1] the set ∪ 
(A ; [α,β] , (γ, δ) ) = { x ∈G / μA(x)≤[α, β] , V (x) ≥(γ, δ) } is called the cubic level 
set of A. .  
 
3. Properties of Bi-Cubic Groups 
3.1 Proposition 
Let A = (μA,V ) be a bi-cubic subgroup of G. Then μA(x ) = μA (x) and V (x ) =
 V (x)for all x ∈G. 

Proof: For all x ∈G, we have μA (x) =μA((x ) ) ≤ μA(x ) ≤ μA (x) and  
V (x)= V ((x ) ) ≥ V (x ) ≥  V (x). Hence μA(x ) = μA (x) and V (x ) =

 V (x). 

 
3.2 Proposition 
A bi-cubic set A = (μA,V ) in G is a bi-cubic subgroup of G if and only if it  
Satisfies  

(i) μA(xy ) ≤ S  {μA (x), μA(y)} 
(ii) V (xy ) ≥ min{V (x), V (y)} for all x, y ∈G . 
Proof: Assume that A = (μA,V ) is a bi-cubic subgroup of G and let x, y ∈G. 
Then μA(xy ) ≤ S {μA (x), μA(y )} = S  {μA (x),μA(y)} proposition 3.1 and 
V (xy ) ≥ min {V (x), V (y )} = min{ V (x), V (y)} by proposition 3.1. 
Conversely, suppose that (I)and (II)are valid. If we take y = x in (I) and (II), 
then μA(e) =  μA (xx ) ≤ S  {μA (x),μA(x)} = μA (x) and  
 V (e) = V (xx )  ≥  min{V (x), V (x)} = V (x). It follows from (I) and 

(II) that 
μA(y )=μA(ey )  ≤ S  {μA (e), μA(y)}=μA(y)and  
V (y ) = V (ey ) ≥ min { V (e), V (y)}=V (y) 
So that μA(xy) = μA(x(y ) ) ≤ S {μA (x), μA(y )}≤ S  {μA (x), μA(y)} and 

V (xy) = V (x(y ) ) ≥ min {V (x), V (y )}≥min{ V (x), V (y)}.  
Therefore A = (μA,V ) is a bi-cubic subgroup of G. 

 
3.3 Proposition 
Let A = (μA,V ) be a bi-cubic subgroup of G, then μA(e) ≤  μA (x) and V (e) ≥
V (x) for all x ∈G, where e is the identity element in G. 

Proof: Let x ∈G, Using proposition-3.2 we have 
μA(e) =  μA (xx ) ≤ S {μA (x), μA(x)} = μA (x) and 
V (e) = V (xx )  ≥  min{V (x), V (x)} = V (x), this complete the proof.  
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3.4 Proposition 

If A = (μA,V ) be a bi-cubic subgroup of G, then the set  
S = { x ∈G/ μA(x) =  μA (e) , V (x) = V (e)} is a subgroup of G. 
Proof: Let x, y ∈G, then μA (x) = μA(e) = μA(y)and V (x) = V (e) = V (y). It 

follows from  
proposition-3.2 that μA(xy ) ≤ S {μA (x),μA(y)}= μA(e) and  
V (xy ) ≥min{ V (x), V (y)}=V (e)so from proposition-3.3 that 

μA(xy )=μA(e) and V (xy )=V (e). Hence xy ∈S,and so S is a sub group of G.  
 
3.5 Proposition 
Let A = (μA,V ) be a bi-cubic subgroup of G,then the following conditions are 
equivalent: 

(i) A = (μA,V ) is a bi-cubic subgroup of G. 
(ii) The non empty cubic level set of A = (μA,V ) is a sub group of G. 
Proof: Assume that A = (μA,V ) is a bi-cubic subgroup of G. Let x, y ∈ ∪ (A: 

[α, β] , (γ,δ) )for all (γ, δ) ∈ [0,1] and [α, β] ∈ D[0,1], then μA(x)≤[α, β] , 
V (x) ≥(γ, δ) and μA(y)≤[α,β] , V (y) ≥(γ,δ). It follows from the proposition-3.2 
that μA(xy ) ≤ S {μA (x),μA(y)}≤[α,β] and V (xy ) ≥min{ V (x), V (y)}≥(γ, δ) 
so that xy ∈ ∪ (A : [α,β] , (γ, δ) ). Therefore the non empty cubic level set of A = 
(μA,V )is a subgroup of G. 

Conversely, let (γ,δ) ∈ [0,1] and [α,β] ∈ D[0,1] be such that ∪ (A: [α,β], (γ,δ))≠
∅, and ∪ (A: [α,β], (γ,δ)) is a subgroup of G. Suppose that the Proposition 3.2 (i) is 
not true and proposition 3.2 (ii) is valid. Then there exists [α ,β ] ∈D[0,1] and a, b ∈ 
G such that μA(ab ) ≥[α , β ]≥ S  {μA (a), μA(b)} and 
V (ab ) ≥ min{V (a), V (b)}. It follows that a, b ∈∪ (A : [α , β ] , min{ 
V (a), V (b)}) but ab ∈ ∪ (A : [α ,β ] , min{ V (a), V (b)}). This is contradiction 
of Proposition 3.2 (i) is true and proposition 3.2 (ii) is not valid, then μA(ab ) ≤ S  
{μA (a),μA(b)} and V (ab ) ≤(훾 ,δ )  ≤ min { V (a), V (b)} for some (훾 ,δ )  ∈
 [0,1] and a, b ∈ G. Thus a, b ∈ ∪ (A:S  {μA (a), μA(b)} , (훾 ,δ )) but ab ∈ ∪ (A: 
S  {μA (a), μA(b)} , (훾 ,δ )) which is contradiction. Assume that there exists [α , β ] ∈ 
D[0,1] , (훾 ,δ )  ∈ [0,1] and a, b ∈ G such that μA(ab ) ≥[α ,β ]≥ S  {μA 

(a),μA(b)} and V (ab ) ≤ (훾 ,δ )  ≤min { V (a), V (b)} then a, b ∈∪ (A: [α ,β ], 
(훾 ,δ )) but ab ∈ ∪ (A: [α ,β ], (훾 ,δ )). This is also a contradiction. Hence (i) and 
(ii) of proposition-3.2 are true. Therefore A is a bi-cubic subgroup of G. 
 
3.6 Proposition 
Let f: G → G′ be a homomorphism of groups. If A = (μ ,V ) is a bi-cubic subgroup 
of G′ then A f= (μ ,V ) is bicubic sub group of G. 

Proof: Let x, y ∈G, 
μ (xy) = μ (f(xy)) 
= μ (f (x).f(y)) 
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≤ S {μA (f (x)),μA (f (y))} 
= S  {μ (x),μ (y)} 
μ (x ) = μ  f ( x ). 
 ≤  μA (f(x))  

 = μ (x) and 
V (xy) =  V (f (xy)) 
= V (f (x).f (y)) 
≥ min {V (f (x)), V (f (y))} 
= min{V (x),V (y)} 
V (x ) = V f ( x ). 
 ≥ V (x)  

A f= (μ ,V ) is bicubic sub group of G.  
 
3.7 Proposition 
Let A be a bi-cubic set in G. If (μA,V ) be a S  bi-cubic subgroup of G, then 
(μ ,V ) is T  bi-cubic subgroup of G. 

Proof: Let A be a bi-cubic subgroup of G, then for all x, y ∈G. 

μ (xy) = G μ (xy) 

 ≤ G
S  {μ (x),μ (y) }  

 = T G
μ (x) , G

μ (y)  

 = T  {μ (x),μ (y )} where T  is the idempotent t-norm in G. 
μ (x ) = G μ (x ) 

 ≤ G
μ (x) 

 = μ (x) 

V (xy) = G V (xy) 

 ≥ G
min{V (x), V (y) }   

 = max G
V (x) , G

V (y)  

 = max{V (x),V (y) } 
V (x ) = G

V (x ) 

 ≥ G
V (x) 

 = V (x) 

(μ ,V ) is anti bi-cubic subgroup of G. 
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Conclusion 
Jun etal introduced the notion of cubic ideal in BCK Algebra and cubic-o sub algebras. 
In this paper, we have to investigate the concept of bi-cubic group and its 
characterization. 
 
 
Future Work 
One can obtain the similar results by changing soft sets or rough sets instead of vague 
set. 
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