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Abstract 

A number of ways to view the correlation coefficient has been identified. This 

paper provides a new perspective, one based on Euclidian Geometry. This 

perspective also can be used in statistical education, providing students with a 

hitherto overlooked geometric approach to undertanding correlation and 

regression. 
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Launching from a paper by Rodgers and Nicewander (1988), Rovine and Van Eye ( 

1997) presented a 14th way to look at the correlation coefficient, p(X1, X2), where X1 

and X2 are random variables and p(X1, X2) = r, where  -1 ≤ r ≤ 1. Using a geometric 

interpretation of the correlation coefficient (Swanson,1977), I present yet another way 

to look at the correlation coefficient - by viewing it from the perspective of Euclidian 

N-Space. 

Following Swanson (1977), let the sum of the N values of random variable X equal Σni. 

These same N values form the N elements of vector V1. There are exactly N -1 

additional vectors, V2, V3, …,Vs, that can be formed by permuting the N elements of 

V1 such that V1 + V2 + V3 +…+ VN = (Σni1, Σni2, Σni3, ,…, Σnis) = Vs. Multiplying Vs 

by the scalar (1/N) gives Vm, the point in N-space that is (1/N)th the distance from the 

origin to Vs. Let D be the Euclidian distance between V1 and Vm. By multiplying D by 

the scalar (1/N)½, the standard deviation of random variable X can be presented as σ = 

(1/N)½D.1 
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Now, let D12 = ((D1 + D2) + (εD1D2))
½ 

where 

ε= 2r 

Di = (1/N)-½ σi 

D12
2 = (1/N) σ1+2

2 

and 

p(X1, X2) = D12 = ((D1 + D2) + (εD1D2))
½. 

This N-space representation can be used to show the following relationships 

(1) If p(X1, X2) = +1 

then D12 = ((D1 + D2) + (εD1D2))
½ 

(2) If p(X1, X2) =  0 

then D12 = ((D1 + D2)
½ 

(3) If p(X1, X2) = -1 

then D12 = ((D1 + D2) + (-εD1D2))
½ 

This interpretation adds to the contribution by Falk and Well (1997) aimed at enhancing 

statistical education in that they give no mention of a geometric interpretation of the 

correlation coefficient. 

It is worthwhile to note that Dodge and Roussan (2021) show that the cube of a 

correlation is not symmetric in X and Y (where X =  X1 in the notation given above and 

Y = X2 ) under certain assumptions, which leads them to suggesting that one could 

select the associated regression model for which the response variable has the smallest 

skewness (i.e. select Yi = aYX + bYXXi + 𝜀i  as the model if Y has a smaller skewness 

than X, and select Xi = aXY + bXY Yi + 𝜀′ i as the model  if X has a smaller skewness 

than Y) 

 

Endnote 

1. Because D = [Σ (pi – qi)2]½ , where p and q are the Cartesian coordinates in N-

dimensional Euclidian space and i = 1 to N, it requires no formal proof that D(1/N)½ 

can be interpreted as the standard deviation of Vm (see, e.g., Spiegel,1961: 70; 

Swanson,2023). 
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