THE UNIQUE PROOF OF BEAL'S CONJECTURE BY BABLU REGAR

If $A^x + B^y = C^z$

Where A,B,C,x,y, and z are positive integers with x,y,z>2, then A,B,C have common prime factor.

Equivalently,

There are no solutions to the above equation in positive integers A,B,C,x,y,z with A,B,C being pairwise co-prime and all of x,y,z being greater than 2.

Bablu Regar

Bablu Regar ¹

C/o Narottam Kanwaria

I(B.E; M. Tech in Computer science)

1,2 Near Raaj Ka Kuaa, Shahbad Ward Baran, Rajasthan-325205, India.

Abstract

The conjecture was formulated in 1993 by Andrew Beal, a banker and amateur mathematician, while investigating generalization of Fermat's last theorem. Since 1997, Beal has offered a monetary prize for a peer-reviewed proof of this conjecture or a counter example. The value of the prize has increased several times and is currently \$1 million.

In some venues, this conjecture has occasionally been referred to as a generalized Fermat equation,the Mauldin conjecture, and the Tijdeman-Zagier conjecture.

Keywords: Beal Conjecture, Co-prime Numbers, Two co-prime number Ratio, Common Prime Factor, Divisibility of Numbers.

THE UNIQUE PROOF OF BEAL'S CONJECTURE BY BABLU REGAR [B.E, M.TECH, in Computer Science]:

The Beal Conjecture: If $A^X + B^{\overline{Y}} = C^Z$, where A,B C and X,Y,Z are positive integers with x, y, z > 2, then A, B, C have a common prime factor. Equivalently,

There are no solutions to the above equation in positive integers A, B, C, X, Y, Z, with A, B, and C being pairwise co-prime and all of x, y, z being greater than 2.

PROOF:

Condition 1: Powers (x, y, z) such that X < Y < Z where x,y,z > 2

We have BEAL'S CONJECTURE $A^X + B^Y = C^Z$

Putt: A=ut, B=vt, C= wt

$$\Rightarrow$$
 $(ut)^x + (vt)^{x+1} = (wt)^{x+2}$

Putt w=1, so, $(w)^{x+2}=(1)^{x+2}=1$ where x>2

$$\Rightarrow t^{x}[(u)^{x} + (v)^{x+1} t] = t^{x} [t^{2}]$$
 (t^x is common both side)

$$\Rightarrow$$
 t^2 - $t(v)^{x+1}$ - $(u)^x = 0$ on transposing

we get quadratic equation in 't', using Sri Dhara Acharaya formula to get values of 't'.

we know that, if quadratic equation $ax^2 + bx + c = 0$ where $a \neq 0$ than

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \text{or} \qquad x = 2c/[-b \pm \sqrt{b^2 - 4ac}]$$

$$\Rightarrow$$
 $t^2 - t (v)^{x+1} - (u)^x = 0$ (i)

Putt v=p such that $-v^{x+1} = -p^x (q^x - 1)$ (ii)

Where
$$p = (q^x - 1)$$
(iii)

$$-\mathbf{u}^{\mathbf{x}} = (-\mathbf{p}^{\mathbf{x}} \mathbf{q}^{\mathbf{x}})(\mathbf{p}^{\mathbf{x}})$$

$$\Rightarrow \qquad \qquad u^x = (p^{2x}) (q^x) = (p^2 q)^x$$

 \Rightarrow $t^2 - v^{x+1}t - u^x = 0$ using Sri dhara acharya formula to get value of 't'

$$\Rightarrow t = [-(-v^{x+1}) \pm \sqrt{(-v^{x+1})^2 - 4(1)(-u^x)}]/2(1)$$

putt the value of $\ v$ and u from equation (ii) &(iv)

we get
$$t=[p^{x+1}\pm\sqrt{(-p^{x+1})^2+4(p^2q)^x}]/2$$

putt value of
$$q^x = p+1$$
 from equation (iii)

 $\Rightarrow t = [p^x(p) \pm \sqrt{p^2 x}(p^2) + 4p^{2x}(p+1)]/2$
 $\Rightarrow t = p^x[p \pm \sqrt{p^2 + 4(p+1)}]/2$
 $\Rightarrow t = p^x[p \pm \sqrt{(p)^2 + 2(2p) + 2^2}]/2$

using identity $(a+b)^2 = a^2 + b^2 + 2(a)(b)$
 $\Rightarrow t = p^x[p \pm \sqrt{(p+2)^2}]/2$
 $\Rightarrow t = p^x[p \pm (p+2)]/2$
 $\Rightarrow t = p^x[p \pm (p+2)]/2$
 $\Rightarrow t = p^x[2p+2]/2$
 $\Rightarrow t = (p^x)[(p+1)(2)]/2$
 $\Rightarrow t = (p^x)[(p+1)(2)/2$
 $\Rightarrow t = (p^x)[(p+1)(2)/2$
 $\Rightarrow t = (p^x)[(p+1$

 $[(p^2q)(p^x q^x)]^x + [(p)(p^x q^x)]^{x+1} = [(1)(p^x q^x)]^{x+2}$

 \Rightarrow

$$\Rightarrow \qquad [P^{x+2}q^{x+1}]^x \qquad +[p^{x+1}q^x]^{x+1} \qquad =[p^x \ q^x]^{x+2}$$

Putt value of $p=q^x-1$ from equation (iii)

$$\Rightarrow \qquad [(q^x - 1)^{x+2}(q)^{x+1}]^x \ + \ [(q^x - 1)^{x+1} \ (q)^x]^{x+1} \ = [(q^x - 1)^x(q)^x]^{x+2} \qquad \qquad \dots \dots (\text{vii})$$

Where $q\neq 1$; x>2

We have equation (vii) Generalization form of Beal's conjecture.

Equation (vii) has infinitely many solutions where the bases shere a positive integer common factor

We have common factor in equation : $[(q^x-1)^x(q)^x]$

We have common prime factor : (q^x-1) and (q)

 \Rightarrow A, B, C positive value are

$$\Rightarrow B = (q)^{x}(q^{x}-1)^{x+1} \qquad (ix)$$

$$\Rightarrow \qquad C = (q)^x (q^x - 1)^x \qquad \dots (x)$$

Example: Putt q=2 and x=3 x>2

In equation no. (vii)

We get

$$\Rightarrow \qquad [(q^{x}-1)^{x+2}(q)^{x+1}]^{x} + [(q^{x}-1)^{x+1}(q)^{x}]^{x+1} = [(q^{x}-1)^{x}(q)^{x}]^{x+2}$$

$$\Rightarrow$$
 Here $q^{x}-1=2^{3}-1=7$ and $q^{x}=2^{3}=8$

$$\Rightarrow \qquad [(7)^{3+2}(2)^{3+1}]^3 + [(7)^{3+1}(2)^3]^{3+1} = [(7)^3(2)^3]^{3+2}$$

$$\Rightarrow [(7)^5(2)^4]^3 + [(7)^4(2)^3]^4 = [(7)^3(2)^3]^5$$

⇒ A, B, C positive value are

$$\Rightarrow$$
 A= $(7)^5(2)^4$, B= $(7)^4(2)^3$, C= $(7)^3(2)^3$

We have common factor $= (7)^3(2)^3$

We have common prime factor = 7 and 2

We know that

Common factor \neq common prime factor.

We proved that

Beal's conjecture have A, B, C positive integer common prime factor.

Beal's conjecture have not A, B, C positive integer co-prime values.

Where x, y, z > 2

Condition 2:

Powers (x, y, z) such that X > Y > Z where x,y,z> 2

We have BEAL'S CONJECTURE

$$A^X + B^Y = C^Z$$

Putt: A=ut, B=vt, C= wt

$$\Rightarrow$$
 (ut) $x^{+2} + (vt)^{x+1} = (wt)^{x}$

Putt u=1, so, $(u)^{x+2}=(1)^{x+2}=1$ where x>2

$$\Rightarrow t^{x}[t^{2} (u)^{x+2} + (v)^{x+1} t] = t^{x}[w^{x}]$$
 (t^x is common both side)

$$\Rightarrow$$
 t^2+ $t(v)^{x+1}-(w)^x=0$ on transposing

we get quadratic equation in 't'.

putt
$$(v)^{x+1} = p^x(q^x-1)$$

where
$$p=(q^{x}-1)$$
(i)

so, we get v=p(ii)

$$-(w)^{x} = -(p^{2}q)^{x}$$

$$W=p^2q$$
(iii)

$$\Rightarrow t^2 + t(v)^{x+1} - w^x = 0 \qquad \dots (iv)$$

we get quadratic equation in 't', using factorization method to get values of 't'.

we get two values of 't':

$$\Rightarrow$$
 $t^2+t(v)^{x+1}-w^x=0$

putt v, w values from equation (ii) and (iii) in equation (iv)

we get

$$\Rightarrow \qquad t^2 + t (p)^{x+1} - (p^2q)^x = 0 \qquad \qquad \text{putt} \qquad p^{x+1} = p^x(q^x - 1)$$

$$\Rightarrow t^2 + t[p^x(q^x-1)] - p^{2x}q^x = 0$$

$$\Rightarrow$$
 $t^2+t(p^xq^x)-tp^x-p^{2x}q^x=0$

$$\Rightarrow t(t+p^xq^x)-p^x(t+p^xq^x)=0$$

we have common $(t+p^xq^x)$

$$\Rightarrow$$
 $(t+p^xq^x)(t-p^x)=0$

If
$$(t+p^xq^x)=0$$

 \Rightarrow t=-p^xq^x negative value which is not permitted.

And if $(t-p^x)=0$

 \Rightarrow t= p^x positive value is permitted.

Putt all the values : $t=p^x$; u=1; $w=p^2q$; v=p in equation

$$\Rightarrow$$
 (ut) $^{x+2}$ + (vt) $^{x+1}$ = (wt) x

We get generalization equation

$$\Rightarrow$$
 $[p^x]^{x+2} + [p^{x+1}]^{x+1} = [p^{x+2}q]^x$ where $p=q^x-1$

Form in 'q'

$$\label{eq:continuous} \begin{array}{ll} \Leftrightarrow & [(q^x\text{-}1)^x]^{x+2} & +[(q^x\text{-}1)^{x+1}]^{x+1} \\ =[(q^x\text{-}1)^{x+2} \ q]^x & \dots \\ \text{where} & q \neq 1 \\ \end{array}$$

X>2

Example: putt q=2; x=3 than $q^x-1=2^3-1=7$

$$\Rightarrow$$
 $[7^3]^5 + [(7)^4]^4 = [7^5(2)]^3$

We have common prime factor = 7

We have common factor $= 7^3$

Also we have $A=7^3$; $B=7^4$; $C=2(7)^5$ positive integers values.

We know that

Common factor \neq common prime factor.

We proved that

Beal's conjecture have A, B, C positive integer common prime factor.

Beal's conjecture have not A, B, C positive integer co-prime values.

Condition 3:

Powers (x, y, z) such that X < Y > Z where x, y, z > 2

We have BEAL'S CONJECTURE $A^X + B^Y = C^Z$

$$A^{X} + B^{Y} = C^{Z}$$

A=ut, B=vt, C=wtPutt:

$$\Rightarrow (ut)^{x} + (vt)^{x+2} = (wt)^{x+1}$$

Putt v=1, so,
$$(v)^{x+2}=(1)^{x+2}=1$$
 where x>2

$$\Rightarrow t^{x}[t^{2} (v)^{x+2} - (w)^{x+1} t + u^{x}] = 0$$
 (t^x is common both side)

$$\Rightarrow$$
 t^2 - t^2

we get quadratic equation in 't'.

putt
$$- (w)^{x+1} = -p^{x}(q^{x}+1)$$
 where $p=(q^{x}+1)$ (i)

w=p(ii) so, we get

$$(u)^x = (p^2q)^x$$

$$u=p^2q$$
(iii)

$$\Rightarrow \qquad t^2 - t(w)^{x+1} + u^x = 0 \qquad \dots (iv)$$

we get quadratic equation in 't', using factorization method to get values of 't'.

we get two values of 't':

$$\Rightarrow$$
 t^2 - $t(w)^{x+1} + u^x = 0$

putt u, w values from equation (ii) and (iii) in equation (iv)

we get

$$\Rightarrow \qquad t^2\text{-t }(w)^{x+1} + (p^2q)^x = 0 \qquad \qquad \text{putt} \qquad -w^{x+1} = -p^x(q^x + 1)$$

$$\Rightarrow t^2-t[p^x(q^x+1)]+p^{2x}q^x=0$$

$$\Rightarrow t^2-t(p^xq^x)-tp^x+p^{2x}q^x=0$$

$$\Rightarrow t(t-p^xq^x)-p^x(t-p^xq^x)=0$$

 \Rightarrow we have common $(t-p^xq^x)$

$$\Rightarrow$$
 $(t-p^xq^x)(t-p^x)=0$

If
$$(t-p^xq^x)=0$$

 \Rightarrow t=p^xq^x positive value is permitted.

And if $(t-p^x)=0$

 \Rightarrow t=p^x positive value is permitted.

Putt all the values : $t=p^x$; v=1; $u=p^2q$; w=p in equation

$$\Rightarrow$$
 (ut) x + (vt) $^{x+2}$ = (wt) $^{x+1}$

We get generalization equation

$$\Rightarrow \qquad [P^2qp^x]^x + [p^x]^{x+2} = [pp^x]^{x+1} \qquad \text{where } p=q^x+1$$

Form in 'q'

$$\Rightarrow \qquad [q(q^{x}+1)^{x+2}]^{x} + [(q^{x}+1)^{x}]^{x+2} = [(q^{x}+1)^{x+1}]^{x+1} \dots (v)$$

where X>2

Example: putt q=2; x=3 than $q^x+1=2^3+1=8+1=9=3^2$

$$\Rightarrow$$
 $[2(3^2)^5]^3 + [(3^2)^3]^5 = [(3^2)^4]^4$

We have common prime factor = 3

We have common factor $= 3^6$

We supply $t=p^xq^x$

Putt all the values : $t=p^xq^x$; v=1; $u=p^2q$; w=p in equation

$$\Rightarrow (ut)^{x} + (vt)^{x+2} = (wt)^{x+1}$$

We get generalization equation

$$\Rightarrow \qquad [P^2qp^xq^x]^x \quad +[p^xq^x]^{x+2} \ =[pp^xq^x]^{x+1} \qquad \qquad \text{where} \ \ p=q^x+1$$

Form in 'q'

$$\Rightarrow \qquad [(q)^{x+1}(q^x+1)^{x+2}]^x \quad +[(q)^x(q^x+1)^x]^{x+2} = [(q)^x(q^x+1)^{x+1} \]^{x+1}.....(vi)$$

where X>2

Example: putt q=2; x=3 than
$$q^x+1=2^3+1=8+1=9=3^2$$

 \Rightarrow $[2^4(3^2)^5]^3 + [2^3(3^2)^3]^5 = [2^3(3^2)^4]^4$

We have common prime factor = 2 and 3

We have common factor = $(3^6)(2^3)$

Also we have $A = 2^4(3^2)^5$; $B = 2^3(3^2)^3$; $C = 2^3(3^2)^4$ positive integers values. Power X=3; Y=5; Z=4 X,Y,Z>2

We know that

Common factor \neq common prime factor.

We proved that

Beal's conjecture have A, B, C positive integer common prime factor.

Beal's conjecture have not A, B, C positive integer co-prime values.

Aliter Method:

The Unique proof of Beal's conjecture is the following conjecture in number theory:

If
$$A^x + B^y = C^z$$

There are no solutions to the above equation in positive integers A,B,C,x,y,z with A,B,C being pairwise co-prime and all of x,y,z being greater than 2.

Power putt
$$x=4$$
; $z=4$ $y=n$ where $y>2$; $y\neq 4$
 $A^x + B^y = C^z$

On transposing

$$B^n \ = \ C^4 - A^4 \!\! = \!\! (C^2 \!\! - \! A^2)(C^2 \!\! + \! A^2) \!\! = \!\! (C \!\! + \! A)(C \!\! - \! A)(C^2 \!\! + \! A^2)$$

Assume that
$$C+A=p^n$$
.....(i)
$$C-A=q^n$$
.....(ii)
$$C^2+A^2=r^n$$
.....(iii)

Where p ,q ,r are co-prime numbers.

Now we have
$$B^{n} = (p^{n})(q^{n})(r^{n})...(iv)$$

We get from equation (i) and (ii)

$$C=[p^n+q^n]/2$$
 and $A=[p^n-q^n]/2$; $CA=[p^{2n}-q^{2n}]/4$

Using factorization formula $[C^2+A^2]=[(C+A)^2-2CA]$

We have
$$C^2+A^2=r^n$$
, $(C+A)^2-2CA=r^n$(v)

We get
$$r^n=p^{2n}-[2(p^{2n}-q^{2n})]/4=[p^{2n}+q^{2n}]/2.....(vi)$$

Putt in equation no.(iv)

$$B^n = (p^n)(q^n)(r^n)$$

$$B^n=p^n q^n [p^{2n}+q^{2n}]/2=p^nq^nq^{2n}[1+(p/q)^{2n})]/2$$

$$B^n = p^n q^{3n} [1 + (p/q)^{2n})]/2....(vii)$$

Where p, q are prime numbers.

We know that

Two prime number ratio (p/q) always gives non-integer value.

In the equation no. (vii) we have factor $[1+(p/q)^{2n}]/2$ always gives non-integer value that is not permitted in the co-prime factor of 'B'. So we have not co-prime bases in Beal's equation.

If the factor $[1+(p/q)^{2n})]/2$ gives value integer

In only one case: putt p=q in above factor

Putt (p/q)=1

We get $[1+(p/p)^{2n}]/2=[1+(1)^{2n}]/2=[1+1]/2=1$.

Because we have $(1)^{2n}=1$. Then equation will be

$$A^x + B^y = C^z$$

Putt value A, B, C, and x=4; y=n; z=4

We get

$$\Rightarrow$$
 $[(p^n-q^n)/2]^4 + [pq^3]^n = [(p^n+q^n)/2]^4$

Where p=q

Putt p=q

$$\Rightarrow$$
 $[(p^n-p^n)/2]^4 + [pp^3]^n = [(p^n+p^n)/2]^4$

$$\Rightarrow$$
 $[(0)/2]^4 + [p^4]^n = [(2p^n)/2]^4$

$$\Rightarrow$$
 $[(0]^4 + [p^4]^n = [(p)^n]^4 \dots (viii)$

Putt 0=(0)(p) in equation (viii)

$$\Rightarrow$$
 [(0)(p)]⁴ + [p⁴]ⁿ = [(p)ⁿ]⁴....(ix)

Equation no. (ix) shows that

- A, B, C have common factor 'p'
- A, B, C have not co-prime factor.

If we have: $p\neq q$

$$A^x + B^y = C^z$$

Putt
$$A = \ [(p^n - q^n)/2] \quad ; \ B = p \, q \, [(p^{2n} + q^{2n})/2]^{1/n} \quad ; \ C = [(p^n + q^n)/2]$$
 We get

$$\Rightarrow \qquad \qquad [(p^n \hbox{-} q^n)/2]^4 \ + \ [pq \, \{(p^{2n} \hbox{+} q^{2n})/2\}^{1/n}]^n = \ [(p^n \hbox{+} q^n)/2]^4$$

$$\Rightarrow \qquad \text{Where} \quad n{>}2, \quad n{\neq}4 \; ; \quad p{>}q \quad ; \qquad \qquad p \; , q \quad \text{prime number}$$

Example:

Putt prime number p=5 ;q=3; and power n=3

$$\Rightarrow [(5^3-3^3)/2]^4 + [(5)(3)\{(5^6+3^6)/2\}^{1/3}]^3 = [(5^3+3^3)/2]^4$$

$$\Rightarrow$$
 $[49]^4 + [(5)(3)(37)^{1/3}(221)^{1/3}]^3 = [76]^4$

$$\Rightarrow [7^2]^4 + [(5)(3)(37)^{1/3}(221)^{1/3}]^3 = [19(2)^2]^4$$

- *⇒* 5764801+27597375 =33362176
- \Rightarrow 33362176=33362176 Hence proved.

In above equation have $A=7^2$; $B=(5)(3)(37)^{1/3}(221)^{1/3}$; $C=19(2)^2$ Bases 'B'have not integer value.

We proved that

There are no solutions to the above equation in positive integers A,B,C,x,y,z with A,B,C being pairwise co-prime and all of x,y,z being greater than 2.