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Abstract 

In this paper, we find the metric dimension for join of two paths and 

generalized the Caser’s result for join of a path and a complete graph.  We 

have also improved the results given by Shahida, A. T. and M. S. Sunitha. 

Throughout the paper, finite and simple graphs have been considered. 
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1. INTRODUCTION 

Navigation can be studied in a graph structure framework in which the navigation 

agent moves from node to node of a graph space. The robot can locate itself by the 

presence of distinctly labeled landmark nodes in a graph space. If the robot knows its 

distances to a sufficiently large set of landmarks, its position on the graph is uniquely 

determined. This suggests the following problem: given a graph, what are the fewest 

number of landmarks needed, and where they should be located, so that the distance 

to the landmarks uniquely determines the robot’s position on the graph? A minimum 

set of landmarks which uniquely determines the robot’s position is called basis, and 

the minimum number of landmarks is called the metric dimension of graph. 

Motivated by this problem, the concept of metric dimension was introduced by Slater 

[7] and independently by Harary and Melter [1].  
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Let 1 2 3{ , , ,..., }kW w w w w be an ordered subset of ( )V G ; then the metric 

representation of ( )v V G with respect toW is defined as the k  tuple  

1 2 3( / ) { ( , ), ( , ), ( , ),..., ( , )}.kr v W d v w d v w d v w d v w  

The set W is called a resolving set of G if for all u v and , ( )u v V G satisfy 

( / ) ( / ).r v W r u W   

A resolving set W of G with the minimum cardinality is the basis of .G The number 

of elements in basis is called metric dimension of G and is denoted by ( )G , thus 

( ) min{| | : }.G W W is a resolving set of G   Khuller et al. [9] studied the metric 

dimension motivated by the robot navigation while Chartrand et al. [2] characterizes 

all the graphs of order n  having metric dimension 2.n   Caceres et al. [4] have 

determined the metric dimension for Cartesian product of graphs. Saputro et al. [10] 

have shown metric dimension of comb product of graphs. Buczkowski et al. [8] 

determined the metric dimension of wheel 1n nW K C  , for 3n  . Caceres et al. [5] 

the metric dimension of fan 1n nf K P  , for 1n  and Tomescu and Javaid [3] the 

metric dimension of Jahangir graph 2 ,nJ for 2n  . 

Motivated by [3], [4], [5], [6], [8], [10] and [11]; we have obtained some results under 

the join operation of two graphs. 

 

2. JOIN OF TWO GRAPHS 

The join of two graphs 1G and 2 ,G denoted by 1 2 ;G G is a graph with vertex set

1 2( ) ( )V G V G  and the edge set
1 2 1 2( ) ( ) { | ( ), ( )}E G E G uv u V G v V G    .In the 

graph 1 2G G  each vertex of 1G  is adjacent to the vertices of 2G  and vise versa i.e. 

1 2( , ) 1; ( ), ( ).i j i jd u v u V G v V G      

 Khuller et al. [9] have derived the following results: 

2.1: Metric dimension of a graph G  is 1  if and only if G is a path. 

2.2: If ( , )G V E  is a graph with metric dimension 2  and { , } ( )a b V G  is a basis 

for ,G then  

(i)   There is a unique shortest path between a and b . 

(ii)  The degrees of vertices a  and b are at most three. 

(iii)  Other vertices lying on unique shortest path between a and b  have degree at 

most five. 
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3. MAIN RESULT 

On the basis of above results, we have obtained necessary condition for the basis of 

join of two graphs:  

Lemma 3.1: If 1( )V G  and 2( )V G  are vertex sets of two non null graphs 1G  and 2G  

respectively and W is a basis of graph 1 2 ,G G then ( ) , 1,2iW V G i    . 

Proof: Let 1 1 2 3 2 1 2 3( ) { , , ..., }; ( ) { , , ..., };m nV G u u u u V G v v v v  be the vertex sets of 

graphs 1G and 2G  respectively and let W be the basis for the graph 1 2G G . 

If 1( ),W V G then we have 2( / ) ( / ) (1,1,1,...,1); ; , ( )j k j kr v W r v W j k v v V G      

and  it gives a contradiction. 

Similarly, if 2( )W V G , then 1( / ) ( / ) (1,1,1,...,1); ; , ( )j k j kr u W r u W j k u u V G      

and a contradiction again. So W can’t be a basis of 1 2.G G Thus W must contain at 

least one vertex of each graph. 

In the next lemma we have obtained the lower bound for metric dimension of 

join of two paths. 

Lemma 3.2: If mP  and ; 2, 2nP m n  are two paths, then  ( ) 3.m nP P    

Proof: Let mP  and nP be two paths and W  be a basis of m nP P .  Then there are 

following possible cases arise: 

Case I: If 2,m n  obviously 2 2 4P P K   and therefore 2 2( ) 3.P P    

Case II: If 2m   and 2,n  clearly 2( ) 1.nP P   Now we assume that

2( ) 2,nP P    then { , }i jW u v ; 2( )iu V P  and ( );j nv V P  forms a basis of 

2 .nP P  Degree of each 
iu  in this case is at least 4  in 2 ;nP P which is contradiction 

of  result  2.2(ii),  therefore W containing only two elements cannot be a basis for 

2 .nP P  

Case III: If 2m   and 2n  . Then clearly degree of each vertex of m nP P  is at 

least 4,  which is again a contradiction of result 2.2 (ii). Thus we conclude that no two 

vertices of m nP P   form a basis for m nP P  i.e. ( ) 3m nP P   . In the following Fig. 

1, Fig. 2 and Fig. 3, we have shown all the above three cases. 
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In the following theorem we have obtained sufficient condition for basis of join of 

two paths. 

Theorem 3.3: Let 1 ( )mW V P  and 2 ( )nW V P be two ordered sets of graph m nP P  

such that  
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(i) 1 1( / ) ( / ) ; , ( ) in context of graph  .i j i j m m nr u W r u W i j and u u V P P P       

(ii) 
2 2( / ) ( / ) ; , ( ) incontext of graph  .s t s t n m nr v W r v W s t and v v V P P P       

(iii) For each 1 1 ;i m and s n     both 1( / )ir u W  and 2( / )sr v W should not as 

(1,1,1,...,1)  at the same time i.e. if 1( / ) (1,1,1,...,1)ir u W  , then 

2( / ) (1,1,1,...,1)sr v W  and vice-versa.  

Then the ordered set 1 2W W W   is a resolving set for the graph m nP P  and if both 

1W and 2W are smallest sets also; then W is a basis for the graph .m nP P  

Proof: Let us take 1 2 1 2 3 1 2 3{ , , ..., , , , ..., }l kW W W u u u u v v v v    such that 

1 1( / ) ( / ), in .i j m nr u W r u W P P i j     

Then 

( / ) ( / ), (1)i jr u W r u W i j    

Similarly 

( / ) ( / ), (2)s tr v W r v W s t  

Now ( / ) ( / )i sr u W r v W is possible only when,  

( / ) ( / ) (1,1,1,...,1)i sr u W r v W   

But from condition (iii) of the theorem both 1( / )ir u W  and 2( / )sr v W should not as 

(1,1,1,...,1)  at the same time. Therefore  

 ( / ) ( / ); 1 1 . (3)i sr u W r v W i m and s n         (3) 

Then by (1), (2) & (3), we conclude that 

( / ) ( / ), , ( ) .i j i j m nr w W r w W w w V P P i j        

Thus 1 2. .W i e W W  is a resolving set for .m nP P  If 1W  and 2W are smallest then 

obviously 1 2W W W  is also a smallest set. Hence 1 2W W W   is a smallest 

resolving set i.e. a basis for the graph .m nP P  

Example 3.4: Let 4P  and 6P  be two paths, then consider two ordered subsets 

1 1 2{ , }W u u  and 2 2 4{ , }W v v  of 4P  and 6P  respectively. 

Now 3 1 4 6( / ) (2,1) in context of graph  .r u W P P   

4 1 4 6( / ) (2,2) in context of graph  .r u W P P   

1 2 4 6( / ) (1,2) in context of graph  .r v W P P   
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3 2 4 6( / ) (1,1) in context of graph  .r v W P P   

5 2 4 6( / ) (2,1) in context of graph  .r v W P P   

6 2 4 6( / ) (2,2) in context of graph  .r v W P P   

Here we find that  

(i) 1 1 4 4 6( / ) ( / ) ; and , ( ) in context of graph  .i j i jr u W r u W i j u u V P P P      

(ii) 
2 2 6 4 6( / ) ( / ) ; and , ( ) incontext of graph  .s t s tr v W r v W s t v v V P P P      

(iii) 1 4 6( / ) (1,1, ); 1 4 incontext of graph  .ir u W i P P      

Then by theorem 3.3; 1 2 1 2 2 4{ , , , }W W u u v v  is a resolving set for 4 6P P . Since 

both 1W and 2W are smallest sets; therefore 1 2 1 2 2 4{ , , , }W W u u v v  is a basis for the 

graph 4 6P P  and 4 6( ) 4P P   . 

Theorem 3.5: Let mP and nP be two paths, then metric dimension of m nP P  is  

3; 2 5and 2 3,

4; 2 5and 6 4 6and 4 5,

5; 6.

; 2 3 and 7,
( ) 2

1; 4 6 and 7,
2

2; 7 and 7,
2 2

m n

m n

m n or m n

m n

n
m n

P P

n
m n

n m
m n



   
       


 

        

       

             

 

Proof: Let { | ( )}i i mu u V P  and { | ( )}i i nv v V P be the vertex sets of paths mP  and nP

respectively. Then   

Case I: If 2 5and2 3.m n      

(a) If 2 5and 2 3m n    . Suppose 1 2 1{ , , } ( ),m m m nW v u u V P P    we show that 

W is a resolving set for m nP P . For this we take the representation of any vertex of 

( ) \m nV P P W with respect toW : 
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2

3

( / ) (1,1,1)

( / ) (2,1,1)

.

.

.

( / ) (1, 2,1)m

r v W

r v W

r u W







 

Since these representations are pair wise distinct it follows that ( ) 3m nP P   . But 

( ) 3m nP P   .Therefore ( ) 3m nP P   ; when 2 5and 2 3.m n     

 

(b) If 2 and 2 3,m n   we consider the set 2 

Now the representations of  ( ) \m nV P P W  with respect toW : 

2

3

( / ) (1,1,1)

( / ) (2,1,1)

r v W

r v W




 

Proceeding in same way as above, we observe that there are no two vertices having 

the same metric representations with respect to ,W implying that ( ) 3m nP P    and

( ) 3m nP P   . So ( ) 3,m nP P    for 2and 2 3.m n    

Case II: If 2 5and 6m n   or 4 6and 4 5,m n    then 

 (a)If 2 5and 6,m n   Consider the set 2 4 1{ , , , } ( ).m m nW v v u u V P P   Now the 

representations of  ( ) \m nV P P W  with respect to W : 

1

3

5

6

3

2

1

( / ) (1, 2,1,1)

( / ) (1,1,1,1)

( / ) (2,1,1,1)

( / ) (2, 2,1,1)

( / ) (1,1,1, 2)

( / ) (1,1, 2, 2)

( / ) (1,1, 2,1)

m

m

m

r v W

r v W

r v W

r v W

r u W

r u W

r u W





















 

We find that there are no two vertices having same representations implying that

( ) 4.m nP P   Now we show that ( ) 4m nP P   , by proving that there is no 

resolving set W with cardinality 3. 

Now following sub cases arise: 
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(i) If W contains one vertex of mP  and two vertices of nP  i.e. { , , }i j kW u v v , we 

observe that 

(a) For 2 and 4 3 and 5j k or j k    different vertices of nP have different 

representations with respect to W but in this case 

1( / ) (1,1,1); (1)jr v W j k  

and 

( / ) (1,1,1); ( ) (2)l l ir u W u N u 

Therefore 1( / ) ( / );j lr v W r u W   thus a contradiction. 

(b) If 2 and 4 3 and 5;j k or j k    then there exist at least two vertices of 

( ) \m nV P P W having the same metric representation with respect to ,W a 

contradiction again. Therefore cardinality of W can’t be three in this case i.e. 

( ) 4m nP P   . So ( ) 4.m nP P    

(ii) Similarly if W contains two vertices of mP  and one vertex of ;nP we again get a 

contradiction. 

Case II (b): If 4 6and 4 5m n    . Suppose 2 4 3 4{ , , , } ( ),m nW v v u u V P P   then 

1

3

5

6

1

2

5

( / ) (1,2,1,1)

( / ) (1,1,1,1)

( / ) (2,1,1,1)

( / ) (2,2,1,1)

( / ) (1,1,2,2)

( / ) (1,1,1,2)

( / ) (1,1,2,1)

r v W

r v W

r v W

r v W

r u W

r u W

r u W















 

There are no two vertices having the same metric representations with respect to ,W

implying that ( ) 4m nP P   . Now proceeding on the same manner as above 

( ) 4,m nP P   therefore ( ) 4; when 4 6 and 4 5.m nP P m n        

Case III: For 6;m n  consider the set 3 4 6 3 5{ , , , , },W v v v u u then the metric 

representations of the vertices of ( ) \m nV P P W with respect to :W  
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1

2

5

1

2

4

6

( / ) (2, 2, 2,1,1)

( / ) (1, 2, 2,1,1)

( / ) (2,1,1,1,1)

( / ) (1,1,1, 2, 2)

( / ) (1,1,1,1, 2)

( / ) (1,1,1,1,1)

( / ) (1,1,1, 2,1)

r v W

r v W

r v W

r u W

r u W

r u W

r u W















 

Different vertices of ( ) \m nV P P W  have different metric representations with 

respect to ,W therefore 

( ) 5. (3)m nP P   Now 

in order to prove that ( ) 5;m nP P   we show that there is no resolving setW such that

| | 4.W   For this following possible cases arises: 

(i) When W contains one vertex of mP and three vertices of nP  i.e. { , , , }i j k lW u v v v

then at least two vertices , ( )mu u V P   such that 

( / ) (2,1,1,1) ( / );r u W r u W   a contradiction. 

(ii) Similarly whenW contains one vertex of nP and remaining three vertices of mP , then 

 at least two vertices , ( )nv v V P   such that ( / ) ( / );r v W r v W  again a 

contradiction. 

(iii) When W contains equal number of vertices from both mP  and nP  i.e. 

{ , , , };i j k lW u u v v then we observe that 

(a) For 2 and 4 3 and 5i j or i j     different vertices of mP  have different 

representations with respect toW and   

1( / ) (1,1,1,1); (4)ir u W i j  

Similarly for 2 and 4 3 and 5k l or k l     different vertices of mP  have 

different representations with respect to W  and in this case 

1( / ) (1,1,1,1); (5)kr v W k l  

By (4) and (5) we conclude that 1 1( / ) ( / );i kr v W r u W   and this is a contradiction. 

(b) For 2 and 4 or 3 and 5;i j i j    2 and 4 or 3 and 5;k l k l     then 

there exist at least two vertices of ( ) \m nV P P W having the same metric 

representation with respect to ,W which is a contradiction. Hence W can’t be a 

resolving set with | | 4 . . ( ) 4m nW i e P P    and also 
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( ) 3; 2 5 and 2 3m nP P m n        so ( ) 3m nP P   in this case. Therefore

( ) 5 (6)m nP P  

By (3) and (6)  ( ) 5;when 6.m nP P m n      

Case IV: For 2 3 and 7m n    

(a) If n is even and 7,n   in this we take 1W consisting of a single vertex of mP  and 

an ordered set 2W of vertices of nP  such that 1 1{ }W u  and 2 3 5 1{ , ,..., }nW v v v  ,we 

get 

2 1( / ) (1)r u W   in the context of graph m nP P . 

3 1( / ) (2)r u W   in the context of graph m nP P . 

Obviously, 1 1( / ) ( / ); ;i jr u W r u W i j    in the context of graph m nP P  and 

2 , 3.i j   

And 

1 2( / ) (2,2,..., 2)r v W   in the context of graph .m nP P  

2 2( / ) (1,2,..., 2)r v W   in the context of graph .m nP P  

4 2( / ) (1,1,..., 2)r v W   in the context of graph .m nP P   

So on, 2( / ) (2,2,...,1)nr v W   in the context of graph .m nP P  

Here we find that  

(i) 2 2( / ) ( / )i jr v W r v W  in the context of graph ; .m nP P i j    

(ii) 2( / ) (1,1,1,...,1)ir v W i   in the context of graph m nP P . 

Then by theorem 3.3, 1 2W W  is a resolving set for m nP P .To make 1 2| |W W

minimum; both 1| |W and 2| |W should be minimum separately. Here we have to make 

2| |W minimum; since 1| |W  containing one element is minimum. 

For making 2| |W minimum; we follow the steps given below: 

(i) We omit end vertices of nP . 

(ii) We select alternating vertices as the elements of 2W . 

Thus; for 2

2
; | | , 7

2
n

n
P W n


  is minimum and ( ) (7)

2
m n

n
P P    
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(b) If n is odd, then similarly 1 1{ }W u is a smallest ordered set in mP  such that 

1 1( / ) ( / ) the context of graph ;i j m nr u W r u W in P P i j    and 2 , 3.i j   

Now let 2 3 5 7{ , , ,... };nW v v v v then  

1 2( / ) (2,2,..., 2) in the context of graph m nr v W P P   

2 2( / ) (1,2,..., 2) in the context of graph m nr v W P P   

4 2( / ) (1,1,..., 2) in the context of graph m nr v W P P   

So on finally  1 2( / ) (2,...,1,1) in the context of graph .n m nr v W P P    

Here we see that 

(i) 2 2( / ) ( / ) in the context of graph .i j m nr v W r v W P P i j     

(ii) 2( / ) (1,1,1,...,1)ir v W i   in the context of graph .m nP P  

Therefore 1 2W W W  is a resolving set for m nP P . 

Now we have to make 2| |W minimum; since 1| |W  containing one element is 

minimum. 

For making 2| |W minimum; we follow the steps given below: 

(i) We omit one end vertex of .nP  

(ii) We select alternating vertices as the elements of 2 .W  

Thus; for 2

1
; | | , 7.

2
n

n
P W n


   

Therefore minimum 

1 2

1 1
| | 1 . . ( ) (8)

2 2
m n

n n
W W i e P P

 
      

By (7) and (8) ( ) ; 2 3 and 7.
2

m n

n
P P m n

 
     

 
  

Case V: For 4 6 and 7m n   ; then 

(a) If n is even, then we take two ordered sets 1W and 2W from mP  and nP  respectively 

such that 1 2 4{ , }W u u  and 2 3 5 7 1{ , , ... }nW v v v v  ,then 

1 1( / ) (1,2) in the context of graph m nr u W P P   
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3 1( / ) (1,1) in the context of graph m nr u W P P   

5 1( / ) (2,1) in the context of graph m nr u W P P   

6 1( / ) (2,2) in the context of graph m nr u W P P   

Here we find that 1W is also smallest ordered set such that   

1 1( / ) ( / );i jr u W r u W in the context of ,m nP P i j   ; because if we take 

1| | 1;W  then there exist at least two vertices of mP  having same metric 

representation with respect to 1 in the context of graph .m nW P P  

And in same way as case IV (a); 2W  is a smallest ordered set such that  

(i) 2 2( / ) ( / ) in the context of graph ;i j m nr v W r v W P P i j    . 

(ii) 1( / ) (1,1,1,...,1)ir v W i   in the context of graph m nP P  

Then 1 2W W W  is a basis for m nP P  and  

1 2

2
( ) | | | | ( ) 2 ( ) 1 (9)

2 2
m n m n m n

n n
P P W W P P P P  


            

(b) If n is odd, then similarly 1 2 4{ , }W u u and 2 3 5 7{ , , ,... };nW v v v v are the smallest 

ordered sets in mP and nP respectively such that  

(i) 1 1( / ) ( / ) in the context of graph ;i j m nr u W r u W P P i j    . 

(ii) 2( / ) (1,1,1,...,1)ir v W i   in the context of graph m nP P . 

(iii) 2 2( / ) ( / ) ini j m nr v W r v W P P i j    . 

So 1 2W W W   is a basis for m nP P  and  

1 1
( ) 2 ( ) 1 (10)

2 2
m n m n

n n
P P P P 

 
        

By (3) and (4) ( ) 1; 4 6 and 7.
2

m n

n
P P m n

 
      

 
 

Case VI: If , 7m n   

(a) If ( )m or n is even and ( )n or m is odd. Consider two ordered sets 

1 3 5 7 1{ , , ,..., }mW u u u u   and 2 3 5 7{ , , ... }nW v v v v , then in similar manner as above we 

can show that 1 2W W  is a basis for m nP P . Therefore 
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2 1 1
( ) ( ) 2 (11)

2 2 2 2
m n m n

m n m n
P P P P 

  
         

(b) If both m and n are even, then we can discuss as above that order sets 

1 3 5 7 1{ , , ,..., }mW u u u u  and 2 3 5 7 1{ , , ... }nW v v v v   are such that 

1 2

2 2
( ) | | ( ) ( ) 2 (12)

2 2 2 2
m n m n m n

m n m n
P P W W P P P P  

 
           

(c) If both m and n are odd, then we can discuss as above that the order sets 

1 3 5 7{ , , ,..., }mW u u u u and 2 3 5 7{ , , ... }nW v v v v  are such that  

1 2

1 1 1 1
( ) | | ( ) ( ) 2 (13)

2 2 2 2
m n m n m n

m n m n
P P W W P P P P  

   
           

(11), (12) and (13) ( ) 2.
2 2

m n

m n
P P

   
       

   
 

Remark 3.6: According to Shahida, A. T. and M. S. Sunitha [11] the metric 

dimension of join of two paths m nP and P  is ( ) 1; 1, 4.
2

m n

m
P P n n m

 
      

 
 

Let us take 6 4m and n  , then 6 4

6
( ) 4 1 6

2
P P

 
     

 
. 

 Now we show that 6 4( ) 4P P   . Let 4 6( ) ( );1 4,1 6i ju V P and v V P i j      . 

Consider 1 2 2 4 6 4{ , , , } ( );W u u v v V P P    then metric representations of  

6 4( ) \V P P W  with respect toW are: 

3( / ) (2,1,1,1)r u W   

4( / ) (2,2,1,1)r u W   

1( / ) (1,1,1,2, )r v W   

3( / ) (1,1,1,1)r v W   

5( / ) (1,1,2,1)r v W   

6( / ) (1,1,2,2)r v W   

Here we find that all these metric representations are different, therefore

6 4( ) 4P P   . 

In theorem 3.5 we have shown ( ) 3 2 5and 2 3m nP P when m n      
 
and for 

all other values of m and n ( ) 4m nP P   . Therefore 6 4( ) 4.P P    
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Theorem 3.7: Let mK  be a complete graph with 2m  vertices and G be any 

connected graph, then basis of graph mK G must contains 1m  vertices of mK . 

Proof Let 1 2 3{ , , ..., }mv v v v be the vertex set of mK  and W be a basis for mK G . 

Suppose basis of mK G  contains at most 2m  vertices of mK , then we have 

( / ) ( / ) (1,1,1...,1); ,i j i jr v W r v W v v W     

Which is a contradiction so any basis of mK G must contains 1m  vertices of mK . 

Lemma 3.8: Let mK  be a complete graph and G is a connected graph. If W is a basis 

for ,mK G then W contains at least m vertices. 

Proof Let W be a basis for ;mK G then basis of mK G must contain 1m  vertices 

of mK  and by lemma 3.1, basis of mK G  must contain at least one vertex of each 

graph. Therefore | | 1 1 ( ) .mW m K G m       

Caceres et al. [5] have obtained the metric dimension for the graph

1; {1,2,3,6}nP K n  . We have generalized the result of [5] in the following 

theorem. 

Theorem 3.9: Let nP be a path of n vertices and mK be a complete graph with m

vertices then 

1; 2 5

( ) 2; 6 8

2; 9
2

n m

m n

P K m n

n
m n




   




    


  

    
 

 

Proof: Let 1 2 3{ , , ,..., }nu u u u  and 1 2 3{ , , ,..., }mv v v v  be the vertex sets of path nP and 

complete graph mK  respectively. Following cases arise: 

Case I (a): If 2 5n  , let us suppose 1 2 3 1 1 2{ , , ,... , , } ( )m n mW v v v v u u V P K   . 

Now metric representation of any vertex of ( ) \n mV P K W with respect to W are 

respectively: 
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3

4

( / ) (1,1,1,...,1,1)

( / ) (1,1,1,..., 2,1)

( / ) (1,1,1,..., 2, 2)

mr v W

r u W

r u W







 

Obviously all these representations of vertices of graph n mP K  are different. So W is 

a resolving set for the graph n mP K . Therefore ( ) 1n mP K m     

Now if possible, let 1 2 3 1{ , , ,... , };m iW v v v v u vig | |W m  then at least one vertex 

( )j nu V P  different from iu W such that ( / ) (1,1,1,...,1) ( / )m jr v W r u W  ; a 

contradiction. So W  cannot be resolving set and therefore it cannot be a basis for 

n mP K  if | |W m  i.e. ( ) 1n mP K m    . 

Therefore ( ) 1.n mP K m     

Case I (b): If 5;n  then in similar manner 1 2 1 2 3{ , ,... , , }mW v v v u u can be proved a 

basis for the graph n mP K . So ( ) 1; 2 5.n mP K m n       

Case II (a): For 6 8n  .  

Now if possible 1 2 3 1{ , , ,... , , };m i jW v v v v u u where | | 1,W m  then  at least two 

vertices ,k lu u  in ( )nV P  having the same metric representation with respect toW as: 

 

( / ) (1,1,..., 2, 2) ( / )

or

( / ) (1,1,..., 2,1) ( / )

or

( / ) (1,1,...,1, 2) ( / )

or

( / ) (1,1,...,1,1) ( / )

k l

k l

k l

k m

r u W r u W

r u W r u W

r u W r u W

r u W r v W

 

 

 

 

 

Which are contradictions; therefore ( ) 1n mP K m    .  

Now let us take 1 2 3 1 3 5 6{ , , ,... , , , } ( );m n mW v v v v u u u V P K   then the metric 

representation of any vertex of ( ) \n mV P K W with respect to W are: 

1

2

4

7

( / ) (1,1,...,1,1,1)

( / ) (1,1,..., 2, 2, 2)

( / ) (1,1,...,1, 2, 2)

( / ) (1,1,...,1,1, 2)

( / ) (1,1,..., 2, 2,1)

mr v W

r u W

r u W

r u W

r u W










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This shows that all vertices of n mP K  have different metric representations with 

respect to W , so W is a resolving set and it is least resolving set containing 

1 3 . . 2m i e m   elements  ( ) 2; 6 8n mP K m n        

Case II (b): If 8;n   then in similar manner 1 2 1 3 5 7{ , ,... , , , }mW v v v u u u can be 

proved basis for n mP K . So ( ) 2; 6 8.n mP K m n       

Case III (a): If 9n   and n  is even. Let 

1 2 3 1 3 5 7 1{ , , ,... , , , ... } ( );m n n mW v v v v u u u u V P K    then the metric representation of 

vertices of ( ) \n mV P K W with respect to W are: 

 

 

 

 

 

 

 

 

 

These all the representations are distinct with respect toW . So W is a resolving set for

n mP K .
2

( ) | | 1 ( ) 2
2 2

n m n m

n n
P K W m P K m 


          . 

Now if we consider an ordered set 'W such that ( ) | ' |n mP K W   and 

| ' | | |,W W then we find that there exist at least two vertices in ( ) \ 'n mV P K W

having the same metric representation with respect to '.W  

For example if  3' ,W W u  then 

1 2( / ') (1,1,...,1,2,2,...,2) ( / ');r u W r u W   a contradiction. 

If  5' ,W W u  then 

1 5( / ) (1,1,...,1,2,2,...,2) ( / );r u W r u W   a contradiction. 

If  7' ,W W u  then 

1 7( / ) (1,1,...,1,2,2,...,2) ( / );r u W r u W  a contradiction. 

1

2

4

6

8

( / ) (1,1,...,1,1,1,1)

( / ) (1,1,..., 2, 2, 2, 2)

( / ) (1,1,...,1, 2, 2, 2)

( / ) (1,1,...,1,1, 2, 2)

( / ) (1,1,..., 2,1,1, 2)

( / ) (1,1,..., 2, 2,1,1)

.

.

.

( / ) (1,1,..., 2, 2, 2,1)

m

n

r v W

r u W

r u W

r u W

r u W

r u W

r u W














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So on finally  1' ,nW W u   then 

1 1( / ) (1,1,...,1,2,2,..., 2) ( / );nr u W r u W   a contradiction again. 

Similarly for all other cases we get a contradiction. It means that any ordered set 'W

such that | ' | | | 2
2

n
W W m    can’t be a resolving set for n mP K .  

It implies that W is a smallest resolving set for n mP K  and 

( ) 2; 9 and n is even (1)
2

n m

n
P K m n       

Case III (b): If 9n  and n is odd. Let 

1 2 3 1 3 5{ , , ,... , , ,..., } ( );m n n mW v v v v u u u V P K   then as above we can show that 

different vertices of n mP K  have different metric representation with respect to W

therefore  

1 1
( ) | | 1 ( ) 2

2 2
n m n m

n n
P K W m P K m 

 
          . 

Now if we take any ordered set 'W such that | ' | | |,W W then we observe that there 

exist at least two vertices in ( ) \ 'n mV P K W having the same metric representation 

with respect to 'W . So ( )n mP K  can’t less than 
1

2
2

n
m


   i.e. 

1
( ) 2

2
n m

n
P K m


    .Therefore

1
( ) 2; 9 and n isodd (2)

2
n m

n
P K m n


      

Now by (1) and (2) implying together 

( ) 2; 9.
2

n m

n
P K m n

 
     

 
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