Perfectly β Generalized Continuous Mappings in Intuitionistic Fuzzy Topological Spaces

Saranya M^1 and Jayanthi D^2

Department of Mathematics Avinashilingam University, Coimbatore, Tamil Nadu, India

Abstract

In this paper, we introduce intuitionistic fuzzy perfectly β generalized continuous mappings. Furthermore we provide some properties of the same mapping and discuss some fascinating theorems.

Keywords: Intuitionistic fuzzy sets, intuitionistic fuzzy topology, intuitionistic fuzzy β generalized closed sets, intuitionistic fuzzy β generalized continuous mappings, intuitionistic fuzzy perfectly β generalized continuous mappings.

I. INTRODUCTION

Atanassov [1] introduced the idea of intuitionistic fuzzy sets and Coker [2] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. Later this was followed by the introduction of intuitionistic fuzzy β generalized closed sets by Saranya, M and Jayanthi, D [5] in 2016 which was simultaneously followed by the introduction of intuitionistic fuzzy β generalized continuous mappings [7] by the same authors. We now extend our idea towards intuitionistic fuzzy perfectly β generalized continuous mappings and discuss some of their properties.

II. PRELIMINARIES

Definition 2.1 [1]: An *intuitionistic fuzzy set* (IFS for short) A is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

where the functions $\mu_A : X \to [0,1]$ and $v_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $v_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + v_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

An intuitionistic fuzzy set A in X is simply denoted by $A = \langle x, \mu_A, \nu_A \rangle$ instead of denoting $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}.$

Definition 2.2 [1]: Let A and B be two IFSs of the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \colon x \in X \}$$

and

$$B = \{ \langle x, \mu_B(x), \nu_B(x) \rangle : x \in X \}.$$

Then,

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$,
- (b) A = B if and only if $A \subseteq B$ and $A \supseteq B$,

(c)
$$A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle : x \in X \},\$$

- (d) A U B = { $\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle$: $x \in X$ },
- (e) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}.$

The intuitionistic fuzzy sets $0 = \langle x, 0, 1 \rangle$ and $1 = \langle x, 1, 0 \rangle$ are respectively the empty set and the whole set of X.

Definition 2.3 [2]: An *intuitionistic fuzzy topology* (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

- (i) $0_{\sim}, 1_{\sim} \in \tau$,
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,

(iii) $\bigcup G_i \in \tau$ for any family $\{G_i : i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called *intuitionistic fuzzy topological space* (IFTS in short) and any IFS in τ is known as an *intuitionistic fuzzy open set* (IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an *intuitionistic fuzzy closed set* (IFCS in short) in X.

Definition 2.4 [5]: An IFS A in an IFTS (X, τ) is said to be an *intuitionistic fuzzy* β *generalized closed set* (IF β GCS for short) if β cl(A) \subseteq U whenever A \subseteq U and U is an IF β OS in (X, τ).

Definition 2.5 [7]: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an *intuitionistic fuzzy* β *generalized continuous* (IF β G continuous for short) **mapping** if f⁻¹(V) is an IF β GCS in (X, τ) for every IFCS V of (Y, σ) .

Definition 2.6 [8] : A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be an *intuitionistic fuzzy almost* β *generalized continuous* (IFa β G continuous for short) **mapping** if f⁻¹(A) is an IF β GCS in X for every IFRCS A in Y.

Definition 2.7 [9]: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be an *intuitionistic fuzzy* completely β generalized continuous (IF completely β G continuous for short) mapping if f⁻¹(V) is an IFRCS in X for every IF β GCS V in Y.

Definition 2.8 [10] : A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be an *intuitionistic fuzzy weakly* β *generalized continuous* (IFW β G continuous for short) *mapping* if f⁻¹(V) $\subseteq \beta$ gint(f⁻¹(cl(V))) for each IFOS V in Y.

Definition 2.9 [4]: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be an *perfectly continuous* if $f^{-1}(V)$ is clopen in X for every open set $V \subset Y$.

III. PERFECTLY β GENERALIZED CONTINUOUS MAPPINGS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

In this section we introduce intuitionistic fuzzy perfectly β generalized continuous mappings and study some of their properties.

Definition 3.1: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be an *intuitionistic fuzzy perfectly* β *generalized continuous* (IFp β G continuous for short) *mapping* if f⁻¹(A) is clopen in (X, τ) for every IF β GCS A of (Y, σ) .

Theorem 3.2: Every IFp β G continuous mapping is an IF continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFp β G continuous mapping. Let A be an IFCS in Y. Since every IFCS is an IF β GCS [5], A is an IF β GCS in Y. Since f is an IFp β G continuous mapping, f⁻¹(A) is an IF clopen in X. Thus f⁻¹(A) is an IFCS in X. Hence f is an IF continuous mapping.

Example 3.3: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, $G_2 = \langle y, (0.5_u, 0.4_v), (0.5_u, 0.6_v) \rangle$. Then $\tau = \{0_{\sim}, G_{1,} 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_{2,} 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v.

Then, IF $\beta C(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

 $IF\beta O(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

 $IF\beta C(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1] / 0 \le \mu_u + \nu_u \le 1 \text{ and } 0 \le \mu_v + \nu_v \le 1\},$

 $IF\beta O(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1] / 0 \le \mu_u + \nu_u \le 1 \text{ and } 0 \le \mu_v + \nu_v \le 1 \}.$

The IFS A = $\langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$ is an IFCS in Y. Then f⁻¹ (A) is an IFCS in X. Therefore f is an IF continuous mapping, but not an IFp β G continuous mapping. Since for an IF β GCS A = $\langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$ in Y, and f⁻¹ (A) is not an IF clopen in X, as cl(f⁻¹ (A)) = G₁^c = f⁻¹ (A) and int(f⁻¹ (A)) = G₁ \neq f⁻¹ (A).

Theorem 3.4: Every IFp β G continuous mapping is an IF α continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFp β G continuous mapping. Let A be an IFCS in Y. Since every IFCS is an IF β GCS [5], A is an IF β GCS in Y. Since f is an IFp β G continuous mapping, f⁻¹ (A) is an IF clopen in X. That is f⁻¹ (A) is an IFCS in X. Since every IFCS is an IF α CS, f⁻¹ (A) is an IF α CS in X. Hence f is an IF α continuous mapping.

Example 3.5: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.4_a, 0.3_b), (0.5_a, 0.4_b) \rangle$, $G_2 = \langle y, (0.8_u, 0.8_v), (0.2_u, 0.2_v) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v.

Then, IF $\beta C(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

 $IF\beta O(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

IF $\beta C(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1] / \text{either}$ $\mu_u < 0.8 \text{ or } \mu_v < 0.8, 0 \le \mu_u + \nu_u \le 1 \text{ and } 0 \le \mu_v + \nu_v \le 1\},$

IF $\beta O(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], v_u \in [0,1], v_v \in [0,1] / \text{either} \\ \mu_u > 0.2 \text{ or } \mu_v > 0.2, 0 \le \mu_u + v_u \le 1 \text{ and } 0 \le \mu_v + v_v \le 1 \}.$

Here the mapping f is an IF α continuous mapping, but not an IFp β G continuous mapping. Since for an IF β GCS A = $\langle y, (0.1_u, 0.2_v), (0.9_u, 0.8_v) \rangle$ in Y, f⁻¹(A) is not an IF clopen in X, as cl(f⁻¹(A)) = G₁^c \neq f⁻¹(A) and int(f⁻¹(A)) = 0_~ \neq f⁻¹(A).

Theorem 3.6: Every IFp β G continuous mapping is an IFS continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFp β G continuous mapping. Let A be an IFCS in Y. Since every IFCS is an IF β GCS [5], A is an IF β GCS in Y. Since f is an IFp β G continuous mapping, f⁻¹ (A) is an IF clopen in X. That is f⁻¹ (A) is an IFCS in X. Since every IFCS is an IFSCS, f⁻¹ (A) is an IFSCS in X. Hence f is an IFS continuous mapping.

Example 3.7: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.6_a, 0.8_b), (0.4_a, 0.2_b) \rangle$, $G_2 = \langle y, (0.6_u, 0.8_v), (0.4_u, 0.2_v) \rangle$. Then $\tau = \{0_{\sim}, G_{1,} 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_{2,} 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v.

Then, IF $\beta C(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \text{ either} \\ \mu_a < 0.6 \text{ or } \mu_b < 0.8, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

IF $\beta O(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \text{ either } \mu_a > 0.4 \text{ or } \mu_b > 0.2, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

IF $\beta C(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], v_u \in [0,1], v_v \in [0,1] / \text{ either}$ $\mu_u < 0.6 \text{ or } \mu_v < 0.8, 0 \le \mu_u + v_u \le 1 \text{ and } 0 \le \mu_v + v_v \le 1\},$

$$\begin{split} \mathrm{IF}\beta O(Y) &= \{0_{\sim}, \ 1_{\sim}, \ \mu_u \in [0,1], \ \mu_v \in [0,1], \ \nu_u \in \ [0,1], \ \nu_v \in \ [0,1] \ / \ either \\ \mu_u &> 0.4 \ or \ \mu_v > 0.2, 0 \leq \ \mu_u + \nu_u \leq 1 \ and \ 0 \leq \mu_v + \nu_v \leq 1 \}. \end{split}$$

Here the mapping f is an IFS continuous mapping, but f is not an IFp β G continuous mapping. Since for an IF β GCS A = $\langle y, (0.1_u, 0.2_v), (0.9_u, 0.8_v) \rangle$ in Y, f⁻¹(A) is not an IF clopen in X. As cl(f⁻¹(A)) = G₁^c \neq f⁻¹(A) and int(f⁻¹(A)) = 0~ \neq f⁻¹(A).

Theorem 3.8: Every IFp β G continuous mapping is an IFP continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFp β G continuous mapping. Let A be an IFCS in Y. Since every IFCS is an IF β GCS [5], A is an IF β GCS in Y. Since f is an IFp β G continuous mapping, f⁻¹ (A) is an IF clopen in X. That is f⁻¹ (A) is an IFCS in X. Since every IFCS is an IFPCS, f⁻¹ (A) is an IFPCS in X. Hence f is an IFP continuous mapping.

Example 3.9: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.2_b), (0.4_a, 0.4_b) \rangle$, $G_2 = \langle y, (0.2_u, 0.6_v), (0.3_u, 0.4_v) \rangle$. Then $\tau = \{0_{\sim}, G_{1,} 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_{2,} 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v.

Then, IF $\beta C(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \text{ either} \\ \mu_a < 0.5 \text{ or } \mu_b < 0.2, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

$$\begin{split} IF\beta O(X) &= \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] \text{ /either } \mu_a > 0.4 \\ \text{or } \mu_b &> 0.4, 0 \leq \ \mu_a + \nu_a \leq 1 \text{ and } 0 \leq \mu_b + \nu_b \leq 1 \}, \end{split}$$

$$\begin{split} \mathrm{IF}\beta\mathrm{C}(\mathrm{Y}) \ = \ \{0_{\sim}, \ 1_{\sim}, \ \mu_u \in [0,1], \ \mu_v \in [0,1], \ \nu_u \in \ [0,1], \ \nu_v \in \ [0,1] \ /\text{either} \\ \mu_u < 0.2 \ \text{or} \ \mu_v < 0.6, 0 \le \ \mu_u + \nu_u \le 1 \ \text{and} \ 0 \le \mu_v + \nu_v \le 1 \}, \end{split}$$

IF β O(Y) = {0~, 1~, $\mu_u \in [0,1], \mu_v \in [0,1], v_u \in [0,1], v_v \in [0,1] / either <math>\mu_u > 0.3$ or $\mu_v > 0.4, 0 \le \mu_u + v_u \le 1$ and $0 \le \mu_v + v_v \le 1$ }.

Here the mapping f is an IFP continuous mapping, but not an IFp β G continuous mapping. Since for an IF β GCS A = $\langle y, (0.2_u, 0.2_v), (0.7_u, 0.8_v) \rangle$ in Y, f⁻¹(A) is not an IF clopen in X, as cl(f⁻¹(A)) = G₁^c \neq f⁻¹(A) and int(f⁻¹(A)) = 0_~ \neq f⁻¹(A).

Theorem 3.10: Every IFp β G continuous mapping is an IF β continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFp β G continuous mapping. Let A be an IFCS in Y. Since every IFCS is an IF β GCS [5], A is an IF β GCS in Y. Since f is an IFp β G continuous mapping, f⁻¹ (A) is an IF clopen in X. That is f⁻¹ (A) is an IFCS in X.

Since every IFCS is an IF β CS, f⁻¹(A) is an IF β CS in X. Hence f is an IF β continuous mapping.

Example 3.11: Let X = {a, b}, Y = {u, v} and G₁ = $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, G₂ = $\langle y, (0.6_u, 0.7_v), (0.4_u, 0.3_v) \rangle$. Then $\tau = \{0_{\sim}, G_{1,} 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_{2,} 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v.

Then, IF $\beta C(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

 $IF\beta O(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

$$\begin{split} \mathrm{IF}\beta\mathrm{C}(\mathrm{Y}) \ = \ \{0_{\sim}, \ 1_{\sim}, \ \mu_u \in [0,1], \ \mu_v \in [0,1], \ \nu_u \in [0,1], \ \nu_v \in [0,1] \ \text{/either} \\ \mu_u < 0.6 \ \mathrm{or} \ \mu_v < 0.7, \ 0 \le \ \mu_u + \nu_u \le 1 \ \mathrm{and} \ 0 \le \mu_v + \nu_v \le 1 \}, \end{split}$$

IF $\beta O(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], v_u \in [0,1], v_v \in [0,1] / \text{either} \\ \mu_u > 0.4 \text{ or } \mu_v > 0.3, 0 \le \mu_u + v_u \le 1 \text{ and } 0 \le \mu_v + v_v \le 1 \}.$

Here the mapping f is an IF β continuous mapping, but not an IF β G continuous mapping. Since for an IF β GCS A = $\langle y, (0.5_u, 0.2_v), (0.5_u, 0.8_v) \rangle$ in Y, f⁻¹(A) is not an IF clopen in X, as cl(f⁻¹(A)) = G₁^c \neq f⁻¹(A) and int(f⁻¹(A)) = 0_~ \neq f⁻¹(A).

Theorem 3.12: Every IFp β G continuous mapping is an IF β G continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFp β G continuous mapping. Let A be an IFCS in Y. Since every IFCS is an IF β GCS [5], A is an IF β GCS in Y. Since f is an IFp β G continuous mapping, f⁻¹(A) is an IF clopen in X. Thus f⁻¹(A) is an IFCS in X. Since every IFCS is an IF β GCS, f⁻¹(A) is an IF β GCS in X. Hence f is an IF β G continuous mapping.

Example 3.13: Let X = {a, b}, Y = {u, v} and G₁ = $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, G₂ = $\langle y, (0.6_u, 0.7_v), (0.4_u, 0.3_v) \rangle$. Then $\tau = \{0_{\sim}, G_{1,} 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_{2,} 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v.

Then, IF $\beta C(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

 $IF\beta O(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

IF $\beta C(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], v_u \in [0,1], v_v \in [0,1] / \text{either}$ $\mu_u < 0.6 \text{ or } \mu_v < 0.7, 0 \le \mu_u + v_u \le 1 \text{ and } 0 \le \mu_v + v_v \le 1\},$

IF β O(Y) = {0~, 1~, $\mu_u \in [0,1], \mu_v \in [0,1], v_u \in [0,1], v_v \in [0,1] / either <math>\mu_u > 0.4$ or $\mu_v > 0.3, 0 \le \mu_u + v_u \le 1$ and $0 \le \mu_v + v_v \le 1$ }.

Now $G_2^c = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$ is an IFCS in Y. We have $f^{-1}(G_2^c) = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is an IFS in X. Now $f^{-1}(G_2^c) \subseteq G_1$. As $\beta cl(f^{-1}(G_2^c)) = f^{-1}(G_2^c) \subseteq G_1$, $f^{-1}(G_2^c)$ is an IF β GCS in X. Thus f is an IF β G continuous mapping. But f is not an IF β G continuous mapping. Since for an IF β GCS B = $\langle y, (0.5_u, 0.2_v), (0.5_u, 0.8_v) \rangle$ in Y, and $f^{-1}(B)$ is not an IF clopen in X, as $cl(f^{-1}(B)) = G_1^c \neq f^{-1}(B)$ and $int(f^{-1}(B)) = 0_{\sim} \neq f^{-1}(B)$.

Theorem 3.14: Every IFp β G continuous mapping is an IFa β G continuous mapping but not conversely in general.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IFp β G continuous mapping. Let A be an IFRCS in Y. Since every IFRCS is an IF β GCS [5], A is an IF β GCS in Y. By hypothesis, $f^{-1}(A)$ is an IF clopen in X. Thus $f^{-1}(A)$ is an IFCS in X. Since every IFCS is an IF β GCS, $f^{-1}(A)$ is an IF β GCS in X. Hence f is an IF $\alpha\beta$ G continuous mapping.

Example 3.15: Let X = {a, b}, Y = {u, v} and G₁ = $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, G₂ = $\langle y, (0.3_u, 0.2_v), (0.7_u, 0.8_v) \rangle$. Then $\tau = \{0_{\sim}, G_{1,} 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_{2,} 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: (X, τ) \rightarrow (Y, σ) by f(a) = u and f(b) = v.

Then, IF $\beta C(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

 $IF\beta O(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

 $IF\beta C(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1] / 0 \le \mu_u + \nu_u \le 1 \text{ and } 0 \le \mu_v + \nu_v \le 1\},$

 $IF\beta O(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1] / 0 \le \mu_u + \nu_u \le 1 \text{ and } 0 \le \mu_v + \nu_v \le 1 \}.$

Now $G_2^{c} = \langle y, (0.7_u, 0.8_v), (0.3_u, 0.2_v) \rangle$ is an IFRCS in Y, Since $cl(int(G_2^{c})) = cl(G_2) = G_2^{c}$. We have $f^{-1}(G_2^{c}) = \langle x, (0.7_a, 0.8_b), (0.3_a, 0.2_b) \rangle$ is an IFS in X. Now $f^{-1}(G_2^{c}) \subseteq 1_{\sim}$. As $\beta cl(f^{-1}(G_2^{c})) = f^{-1}(G_2^{c}) \subseteq 1_{\sim}$, $f^{-1}(G_2^{c})$ is an IF β GCS in X. Thus f is an IF β G continuous mapping. But f is not an IF β G continuous mapping. Since

for an IF β GCS B = $\langle y, (0.5_u, 0.3_v), (0.2_u, 0.1_v) \rangle$ in Y and f⁻¹ (B) is not an IF clopen in X, as cl(f⁻¹ (B)) = 1~ \neq f⁻¹ (B) and int(f⁻¹ (B)) = 0~ \neq f⁻¹ (B).

Theorem 3.16: Every IFp β G continuous mapping is an IFW β G continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFp β G continuous mapping. Let A be an IFOS in Y. Then A is an IF β GOS in Y. Since f is an IFp β G continuous mapping, f⁻¹ (A) is an IFclopen in X. Now f⁻¹ (A) = int(f⁻¹ (A)) \subseteq \beta gint(f⁻¹ (A)) = \beta gint(cl(f⁻¹ (A))). Thus f⁻¹ (A) = cl(f⁻¹ (A)). This implies f⁻¹ (A) \subseteq \beta gint(cl(f⁻¹ (A))). Hence f is an IFW β G continuous mapping.

Example 3.17: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, $G_2 = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v.

Then, IF $\beta C(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

 $IF\beta O(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$

 $IF\beta C(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1] / 0 \le \mu_u + \nu_u \le 1 \text{ and } 0 \le \mu_v + \nu_v \le 1\},$

 $IF\beta O(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1] / 0 \le \mu_u + \nu_u \le 1 \text{ and } 0 \le \mu_v + \nu_v \le 1\}.$

The IFS $G_2 = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$ is an IFOS in Y. Now $G_2^c = \langle y, (0.6_u, 0.7_v), (0.4_u, 0.3_v) \rangle$ is an IFCS in Y.

We have $\beta gint(f^{-1}(cl(G_2))) = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$. Hence $f^{-1}(G_2) \subseteq \beta gint(f^{-1}(cl(G_2)))$. Therefore f is an IFW βG continuous mapping. But f is not an IFp βG continuous mapping. Since the IFS $B = \langle y, (0.5_u, 0.3_v), (0.2_u, 0.1_v) \rangle$ is an IF βGCS in Y, but $f^{-1}(B)$ is not an IF clopen in X. As $cl(f^{-1}(B)) = 1 \sim \neq f^{-1}(B)$ and $int(f^{-1}(B)) = 0 \sim \neq f^{-1}(B)$.

Theorem 3.18: Every IFp β G continuous mapping is an IF completely β G continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFp β G continuous mapping. Let A be an IF β GCS in Y. By hypothesis, f⁻¹ (A) is an intuitionistic fuzzy clopen in X. Therefore

 $cl(f^{-1}(A)) = f^{-1}(A)$ and $int(f^{-1}(A)) = f^{-1}(A)$. Now $cl(int(f^{-1}(A))) = cl(f^{-1}(A)) = f^{-1}(A)$. Therefore $f^{-1}(A)$ is an IFRCS in X. Hence f is an IF completely βG continuous mapping.

Theorem 3.19: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFp β G continuous mapping if and only if the inverse image of each IF β GOS [6] in Y is an intuitionistic fuzzy clopen in X.

Proof: Necessity: Let a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ be IFp β G continuous mapping. Let A be an IF β GOS in Y. Then A^c is an IF β GCS in Y. Since f is an IFp β G continuous mapping, f⁻¹ (A^c) is IF clopen in X. As f⁻¹ (A^c) = (f⁻¹ (A))^c, we have f⁻¹ (A) is IF clopen in X.

Sufficiency: Let B be an IF β GCS in Y. Then B^c is an IF β GOS in Y. By hypothesis, f⁻¹ (B^c) is IF clopen in X. Which implies f⁻¹ (B) is IF clopen in X, as f⁻¹ (B^c) = (f⁻¹ (B))^c. Therefore f is an IF β G continuous mapping.

Theorem 3.20: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IF continuous mapping and g: $(Y, \sigma) \rightarrow (Z, \delta)$ is IFp β G continuous mapping, then g \circ f : $(X, \tau) \rightarrow (Z, \delta)$ is an IFp β G continuous mapping.

Proof: Let A be an IF β GCS in Z. Since g is an IF β G continuous mapping, g⁻¹(A) is an IF clopen in Y. Since f is an IF continuous mapping, f⁻¹(g⁻¹(A)) is an IFCS in X, as well as IFOS in X. Hence gof is an IF β G continuous mapping.

Theorem 3.21: The composition of two IFp β G continuous mapping is an IFp β G continuous mapping in general.

Proof: Let f: $X \to Y$ and g: $Y \to Z$ be any two IFp β G continuous mappings. Let A be an IF β GCS in Z. By hypothesis, g⁻¹(A) is IF clopen in Y and hence an IFCS in Y. Since every IFCS is an IF β GCS, g⁻¹(A) is an IF β GCS in Y. Further, since f is an IFp β G continuous mapping, f⁻¹ (g⁻¹(A)) = (g \circ f)⁻¹ (A) is IF clopen in X. Hence g \circ f is an IFp β G continuous mapping.

Theorem 3.22: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFp β G continuous mapping and g: $(Y, \sigma) \rightarrow (Z, \delta)$ is an IF β G irresolute mapping [9], then $g \circ f : (X, \tau) \rightarrow (Z, \delta)$ is an IFp β G continuous mapping.

Proof: Let A be an IF β GCS in Z. By hypothesis, g⁻¹ (A) is an IF β GCS in Y. Since f is an IF β G continuous mapping, f⁻¹(g⁻¹(A)) = (g \circ f)⁻¹ (A) is IF clopen in X. Hence gof is an IF β G continuous mapping.

6464

IV. REFERENCES

- [1] Atanassov, K., Intuitionistic Fuzzy Sets, Fuzzy sets and systems, 1986, 87-96.
- [2] Coker, D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 1997, 81 89.
- [3] Gurcay, H., Coker, D., and Haydar, Es. A., On fuzzy continuity in intuitionistic fuzzy topological spaces, The J. Fuzzy Mathematics, 1997, 365 378.
- [4] Noiri, T., Super continuity and some strong forms of continuity, Indian J. Pure. Appl.Math. 15 (3) 1984, 241-250.
- [5] Saranya, M., and Jayanthi, D., On Intuitionistic fuzzy β Generalized Closed Sets, International Journal of Computational Engineering Research, 6(3), 2016, 37 - 42.
- [6] Saranya, M., and Jayanthi, D., On Intuitionistic Fuzzy β Generalized Open Sets, International Journal of Engineering Sciences & Management Research, 3(5), 2016, 48 - 53.
- [7] Saranya, M., and Jayanthi, D., On Intuitionistic Fuzzy β Generalized Continuous Mappings, International Journal of Advance Foundation and Research in Science & Engineering, 2(10), 2016, 42 51.
- **[8]** Saranya, M., and Jayanthi, D., Intuitionistic Fuzzy Almost β Generalized Continuous Mappings (accepted)
- **[9]** Saranya, M., and Jayanthi, D., Completely β Generalized Continuous Mappings in Intuitionistic Fuzzy Topological Spaces (accepted)
- [10] Saranya, M., and Jayanthi, D., Weakly β Generalized Continuous Mappings in Intuitionistic Fuzzy Topological Spaces, Advances in Fuzzy Mathematics, 12(3), 2017, 381 – 388.

Saranya M and Jayanthi D

6466