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Abstract 

In this paper, the conditions for fuzzy simply* open sets to become fuzzy 

B* sets in fuzzy topological spaces are obtained. It is established that fuzzy 

pre -open sets with fuzzy Baire property, fuzzy β - open sets with fuzzy Baire 

property in fuzzy topological spaces and fuzzy residual sets with fuzzy Baire 

property in fuzzy P - spaces, are fuzzy B* sets. The conditions for fuzzy 

hyperconnected spaces to become fuzzy Baire spaces, fuzzy Volterra spaces 

are also obtained. 
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1. INTRODUCTION 

In order to deal with uncertainties, the idea of fuzzy sets, fuzzy set operations was 

introduced by L.A.ZADEH [ 19 ] in 1965. By applying the fuzzy set notions to 

general topology C.L.CHANG [ 5 ] introduced the theory of fuzzy topological 
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spaces. The paper of Chang paved the way for the subsequent tremendous growth of 

the numerous fuzzy topological concepts. 

 

D. K,GANGULY AND CHANDARANI MITRA [7] introduced and studied the 

concept of B* sets in classical topology. This notion in fuzzy setting was introduced 

and studied by the authors in [17]. The purpose of this paper is to study several 

characterizations of fuzzy B* sets in fuzzy topological spaces. In section 3, the 

conditions for fuzzy simply* open sets to become fuzzy B* sets in fuzzy topological 

spaces, are obtained. It is established that fuzzy pre -open sets with fuzzy Baire 

property, fuzzy β - open sets with fuzzy Baire property in fuzzy topological spaces 

and fuzzy residual sets with fuzzy Baire property in fuzzy P- spaces, are fuzzy B* 

sets. It is also established that in fuzzy topological spaces where fuzzy first category 

sets are not fuzzy dense sets, fuzzy residual sets with fuzzy Baire property, are fuzzy 

B* sets and fuzzy dense and fuzzy Gδ - sets with fuzzy Baire property in fuzzy GID 

spaces, fuzzy strongly irresolvable spaces are fuzzy B* sets. In section 4, the 

conditions under which hyper connected spaces become fuzzy Baire spaces, fuzzy 

Volterra spaces, are obtained. 

 

2. PRELIMINARIES 

In order to make the exposition self-contained, some basic notions and results used in 

the sequel are given. In this work (X,T) or simply by X, we will denote a fuzzy 

topological space due to Chang (1968). Let X be a non- empty set and I, the unit 

interval [0, 1]. A fuzzy set λ in X is a function from X into I . The null set 0 is the 

function from X into I which assumes only the value 0 and the whole fuzzy set 1 is 

the function from X into I takes the value 1 only.  

Definition 2.1 [5]: Let ( X,T) be a fuzzy topological space and λ be any fuzzy set in  

( X,T). The interior and the closure of λ defined as follows 

(i)  Int ( λ ) = ˅ { µ / µ ≤ λ, µ ∈ T }.  

(ii)  Cl( λ ) = ˄ { µ / λ ≤ µ, 1 − µ ∈ T }. 

Lemma 2.1 [1]: For a fuzzy topological space X, 

(i) 1 − int ( λ ) = cl ( 1 − λ) .   

(ii) 1 – cl ( λ ) = int ( 1 − λ). 
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Definition 2.2 : A fuzzy set λ in a fuzzy topological space ( X, T ) is called 

(i).  fuzzy dense if there exists no fuzzy closed set µ in (X,T) such that  

λ < µ< 1 [13]. 

(ii).  fuzzy nowhere dense if there exists no non - zero fuzzy open set µ in  

(X,T)   such that µ < cl (λ). That is, int cl ( λ ) = 0, in ( X, T) [13]. 

(iii).  fuzzy somewhere dense if int cl ( λ) ≠ 0, in (X,T) [10].  

(iv).  fuzzy first category set if λ =  ⋁ (∞
i=1  i), where ( i)’s are fuzzy nowhere 

dense sets in ( X,T). Any other fuzzy set in (X,T) is said to be of fuzzy 

second category [13]. 

(v).  fuzzy simply open set if Bd ( λ ) is a fuzzy nowhere dense set in (X,T).  

 That is, λ is a fuzzy simply open set in (X,T) if [ cl ( λ) ∧ cl ( 1− λ) ], is a 

fuzzy nowhere dense set in ( X,T) [6]. 

(vi).  fuzzy simply* open set if λ = µ ∨ δ, where µ is a fuzzy open set and δ is a 

fuzzy nowhere dense set in (X,T) and 1 – λ is called a fuzzy simply* 

closed set in (X,T) [6].  

(vii).  fuzzy 𝐆𝛅 - set in (X,T) if λ =  ⋀  ( λi )
∞
i=1 , where λi  ∈ T for i ∈ I [2]. 

(viii).  fuzzy  𝐅𝛔 - set in (X,T) if λ =  ⋁ (∞
i=1  i) where 1 − λi ∈ T for i ∈ I [2]. 

(ix).  fuzzy β -open in (X,T) if λ ≤ cl int cl(λ) and fuzzy closed if  

int cl int(λ) ≤ λ [3]. 

(x).  fuzzy strongly first category set if λ =  ⋀  (λi)
∞
i=1 , where ( λi)’s are fuzzy 

strongly nowhere dense sets in (X,T). Any other fuzzy set in (X,T) is said 

to be a fuzzy strongly second category set in (X,T) [9]. 

(xi).  fuzzy pre- open if λ ≤ int cl (λ) and fuzzy pre closed if cl int (λ) ≤ λ [4]. 

 

Definition 2.3 [ 13 ] : Let λ be a fuzzy first category set in a fuzzy topological space 

(X,T). Then, 1 – λ is called a fuzzy residual set in ( X,T).  

Definition 2.4 [9]: Let (X,T) be a fuzzy topological space. A fuzzy set λ defined on X 

is said to have the fuzzy Baire property, if λ = (μ ∨ δ) ∧ η, where μ is a fuzzy open 

set, δ is a fuzzy residual set and η is a fuzzy first category set in (X,T). 
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Definition 2.5 : A fuzzy topological space (X,T) is called a 

(i).  fuzzy Baire space if int ( ⋁ ( λi)
∞
i=1 ) = 0, where ( λi)

′s are fuzzy nowhere 

dense sets in (X,T) [11]. 

(ii).  fuzzy sub maximal space if for each fuzzy set λ in (X,T) such that  

cl(λ) = 1,then λ ϵ T in (X,T) [2]. 

(iii).  fuzzy strongly Baire space if cl( ⋀  (λi)
N
i=1 ) = 1, where ( λi)’s are fuzzy 

nowhere dense sets in (X,T) [9]. 

(iv).  fuzzy GID space if for each fuzzy dense and fuzzy Gδ set λ in (X,T), 

 clint(λ) = 1in (X,T) [16]. 

(v).  fuzzy P- space if each fuzzy Gδ – set in (X,T) is a fuzzy open set in (X,T) [12]. 

(vi).  fuzzy hyper-connected if each non-null fuzzy open subset of (X,T) is fuzzy 

dense set in (X,T). That is, a fuzzy topological space (X,T) is fuzzy hyper-

connected if cl (μ
i
) = 1, for all μ

i
∈ T [8]. 

(vii). fuzzy Volterra space if cl ( ⋀  (λi)
N
i=1 ) =  1, where (λi)’s are fuzzy dense and 

Gδ - sets in (X,T) [15]. 

(viii). fuzzy first category space if the fuzzy set 1x is a fuzzy first category set in 

(X,T). That is, 1x = ( ⋁ ( λi)
∞
i=1 ), where ( λi)

′s are fuzzy nowhere dense sets in 

(X,T) [1]. Otherwise ( X,T) is said to be of fuzzy second space [13]. 

Theorem 2.1 [6] : If λ is a fuzzy simply* open set in a fuzzy topological space (X,T), 

then int ( λ ) ≠ 0, in (X,T). 

Theorem 2.2 [6]: If λ is a fuzzy simply* open set in a hyper connected space (X,T), 

then λ is a fuzzy simply open set in (X,T). 

Theorem 2.3 [17]: If λ is a fuzzy B* set in a fuzzy hyper connected space (X,T), then 

1 − λ is a fuzzy nowhere dense set in (X,T). 

Theorem 2.4 [ 18]: If λ is a fuzzy residual set in a fuzzy P-space (X,T), then λ is a 

fuzzy somewhere dense set in (X,T). 

Theorem 2.5 [18]: If λ is a fuzzy residual set in a fuzzy topological space (X,T) in 

which fuzzy first category sets are not fuzzy dense sets, then λ is a fuzzy somewhere 

dense set in (X,T). 

 



A Note on Fuzzy B* Sets 1033 

Theorem 2.6 [ 9 ]: If (X,T) is a fuzzy hyperconnected space (X,T), then (X,T) is a 

fuzzy strongly Baire space. 

 

3. FUZZY B* SETS  

Definition 3.1 [ 17]: Let ( X,T) be a fuzzy topological space. A fuzzy set λ defined on 

X is called a fuzzy B* set, if λ is a fuzzy set with fuzzy Baire property in ( X,T) such 

that int cl(λ) ≠ 0, in (X,T). That is, if λ is a fuzzy somewhere dense set having fuzzy 

Baire property in (X,T), then λ is a fuzzy B* set in (X,T). 

Proposition 3.1: If λ is a fuzzy simply* open set with fuzzy Baire property in a fuzzy 

topological space (X,T), then λ is a fuzzy B* set in ( X,T). 

Proof: Let λ be a fuzzy simply* open set with fuzzy Baire property in (X,T).  

Since λ is a fuzzy simply* open set in (X,T), by theorem 2.1, int (λ) ≠ 0 in (X,T).  

Now int (λ) ≤ int cl(λ) implies that intcl(λ) ≠ 0 in (X,T). Thus λ is a fuzzy somewhere 

dense set in (X,T) with the fuzzy Baire property. Hence λ is a fuzzy B* set in (X,T). 

Proposition 3.2 : If λ is a fuzzy simply* open set with fuzzy Baire property in a fuzzy 

hyperconnected space (X,T), then λ is a fuzzy B* set in (X,T) such that  

intcl [ bd (λ) ] = 0. 

Proof: Let λ be a fuzzy simply* open set with fuzzy Baire property in (X,T). Then, by 

proposition 3.1, λ is a fuzzy B* set in (X,T). Since (X,T) is a fuzzy hyperconnected 

space by theorem 2.2, the fuzzy simply* open set λ is a fuzzy simply open set in 

(X,T). Then, intcl [ bd (λ) ] = 0, in (X,T). Thus, λ is a fuzzy B* set in (X,T) such that 

int cl [ bd ( λ) ] = 0, in (X,T).  

Proposition 3.3: If λ is a fuzzy simply* open set with fuzzy Baire property in a fuzzy 

hyperconnected space (X,T), then λ is a fuzzy B* set such that int cl(λ) ≤ cl int (λ), in 

(X,T). 

Proof : Let λ be a fuzz simply* open set with the fuzzy Baire property in (X,T). Since 

(X,T) is a fuzzy hyperconnected space, by proposition 3.2, λ is a fuzzy B* set in (X,T) 

such that int cl [ bd (λ) ] = 0, in (X,T). Now int cl [ bd ( λ)] = intcl [ cl ( λ ) ∧ cl  

(1 − λ)] implies that int cl [ cl ( λ) ∧ cl (1 − λ) ] = 0 in (X,T). But, int [cl ( λ) ∧ cl (1 

−λ) ] ≤ int cl [ cl ( λ ) ˄ cl ( 1 −λ) ] implies that int [ cl ( λ ) ˄ cl ( 1 − λ)] = 0, in 

(X,T). Then, [ int cl ( λ) ] ∧ [ int cl (1− λ)] = 0 and thus int cl ( λ) ≤ ( 1 – [ int cl  

(1 – λ) ] ) and thus int cl ( λ) ≤ cl int ( λ) in (X,T). Hence λ is a fuzzy B* set in (X,T) 

such that int cl ( λ) ≤ cl int ( λ ), in (X,T).  
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Proposition 3.4 : If λ is a fuzzy simply* open set with fuzzy Baire property in a fuzzy 

hyperconnected space (X,T), then λ is a fuzzy B* set such that int cl (1 − λ) = 0, in 

(X,T).  

Proof : Let λ be a fuzzy simply* open set with fuzzy Baire property in a fuzzy 

hyperconnected space (X,T). Then by proposition 3.1, λ is a fuzzy B* set in (X,T). 

Since (X,T) is a fuzzy hyper-connected space, by theorem 2.3, 1 – λ is a fuzzy 

nowhere dense set in (X,T) and thus λ is a fuzzy B* set such that int cl (1− λ) = 0, in 

(X,T). 

Proposition 3.5 : If λ is a non- zero fuzzy pre -open set with fuzzy Baire property in a 

fuzzy topological space (X,T), then λ is a fuzzy B* set in (X,T). 

Proof : Let λ be a non-zero fuzzy pre-open set in (X,T). Then λ ≤ int cl ( λ), in (X,T). 

Then, int cl ( λ) ≠ 0, in (X,T). Thus, λ is a fuzzy somewhere dense set with fuzzy 

Baire property in (X,T) and hence λ is a fuzzy B* set in (X,T).  

Proposition 3.6 : If λ is a non- zero fuzzy β-open set with fuzzy Baire property in a 

fuzzy topological space (X,T), then λ is a fuzzy B* set in (X,T).  

Proof : Let λ be a non zero fuzzy β-open set with fuzzy Baire property in (X,T). Since 

λ is a fuzzy β –open set in (X,T), λ ≤ cl int cl(λ), in (X,T). Then, int cl (λ) ≠ 0, in 

(X,T) [ otherwise, int cl ( λ ) = 0, will implies that λ ≤ cl(0) and in turn it will be that 

λ = 0, a contradiction ]. Thus, λ is a fuzzy somewhere dense set with the fuzzy Baire 

property and hence λ is a fuzzy B* set in (X,T). 

Proposition 3.7: If λ is a non-zero fuzzy β-open set with cl (λ) having the fuzzy Baire 

property in a fuzzy topological space (X,T), then cl (λ) is a fuzzy B* set in (X,T).  

Proof : Let λ be a non zero fuzzy β-open set in (X,T). Then, as in the proof of 

proposition 3.6, int cl ( λ) ≠ 0 in (X,T) and int cl( λ) ≤ int cl [cl (λ)] implies that  

int cl [cl (λ)] ≠ 0 and thus cl (λ) is a fuzzy somewhere dense set in (X,T).  

By hypothesis cl (λ) is a fuzzy set with fuzzy Baire property in (X,T). Thus, the fuzzy 

somewhere dense set cl (λ) with the fuzzy Baire property, is a fuzzy B* set in (X,T). 

Proposition 3.8 : If λ is a fuzzy residual set with fuzzy Baire property in a fuzzy  

P -space (X,T), then λ is a fuzzy B* set in (X,T).  

Proof : Let λ be a fuzzy residual set with fuzzy Baire property in (X,T). Since (X,T) 

is a fuzzy P-space, by theorem 2.5, the fuzzy residual set λ is a fuzzy somewhere 

dense set in (X,T). Hence λ is a fuzzy B* set in (X,T).  
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Proposition 3.9: If λ is a fuzzy residual set with fuzzy Baire property in a fuzzy 

topological space (X,T) in which fuzzy first category sets are not fuzzy dense sets, 

then λ is a fuzzy B* set in (X,T).  

Proof: Let λ be a fuzzy residual set with fuzzy Baire property in (X,T). By hypothesis 

the fuzzy first category sets are not fuzzy dense sets in (X,T). Then, by theorem 2.6,  

λ is a fuzzy somewhere dense set in (X,T). Hence the fuzzy residual set λ is a fuzzy 

somewhere dense set with fuzzy Baire property and thus λ is a fuzzy B* set in (X,T). 

Proposition 3.10: If λ ≤ μ and λ is a fuzzy somewhere dense set and μ is a fuzzy set 

with fuzzy Baire property in a fuzzy topological space (X,T), then μ is a fuzzy B* set 

in (X,T).  

 Proof: Suppose that λ ≤ μ in (X,T). Then, int cl (λ) ≤ int cl(μ) in (X,T). Since  is a 

fuzzy somewhere dense set in (X,T) int cl( λ) ≠ 0 in (X,T) and then int cl(μ) ≠ 0 Thus 

μ is a fuzzy somewhere dense set with fuzzy Baire property in (X,T). Hence μ is a 

fuzzy B* set in (X,T). 

Proposition 3.11: If ( λ ∨ μ) is a fuzzy set with fuzzy Baire property, where λ is a 

fuzzy set defined on X and μ is a fuzzy somewhere dense set in (X,T), then ( λ ∨ μ) is 

a fuzzy B* set in (X,T). 

Proof: Now int cl ( λ ∨ μ) = int[ cl(λ) ∨ cl(μ) ] ≥ int cl(λ) ∨ intcl(μ) ≥ intcl(μ), where 

λ and μ are fuzzy sets defined on X. Since μ is a fuzzy somewhere dense set in (X,T), 

int cl(μ) ≠ 0 in (X,T) and thus int cl (λ ∨μ) ≥ 0. This implies that ( λ ˅ μ) is a fuzzy 

somewhere dense set in (X,T). By hypothesis ( λ ∨ μ ) is a fuzzy set with fuzzy Baire 

property in (X,T) and thus ( λ ∨ μ) is a fuzzy somewhere dense set with fuzzy Baire 

property in (X,T). Hence ( λ ∨ μ) is a fuzzy B* set in (X,T). 

Proposition 3.12: If λ is a fuzzy B* set in a fuzzy topological space (X,T), then there 

exists a fuzzy closed set μ in (X,T) such that int (1 − λ) ≤ μ 

Proof: Let λ be a fuzzy B* set in (X,T). Then λ is a fuzzy somewhere dense set with 

fuzzy Baire property in (X,T). Since λ is a fuzzy somewhere dense set in (X,T), 

 int cl (λ) ≠ 0 in (X,T) and then 1− int cl(λ) ≠ 1 and hence cl int (1 − λ) ≠ 1, in (X,T). 

Thus int (1− λ) is not a fuzzy dense set in (X,T). Then there exist a fuzzy closed set μ 

in (X,T) such that int (1 – λ ) ≤ μ. 

Proposition 3.13: If λ is a fuzzy Gδ -set with fuzzy Baire property such that cl( λ ) = 1 

in a fuzzy GID space (X,T), then λ is a fuzzy B* set in (X,T). 
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Proof: Let λ be a fuzzy Gδ-set with fuzzy Baire property in (X,T). Now cl ( λ) = 1, in 

(X,T) implies that λ is a fuzzy dense and fuzzy Gδ -set in (X,T). Since (X,T) is a fuzzy 

GID space, cl int(λ) = 1 in (X,T). Then, int ( λ ) ≠ 0 and this implies that int cl ( λ) ≠ 0 

in (X,T). Hence λ is a fuzzy somewhere dense set in (X,T) with fuzzy Baire property. 

Hence λ is a fuzzy B* set in (X,T). 

Proposition 3.14: If λ is a fuzzy Gδ-set with fuzzy Baire property such that cl (λ) = 1 

in a fuzzy strongly irresolvable space, then λ is a fuzzy B* set in (X,T).  

Proof: Let λ be a fuzzy Gδ set with fuzzy Baire property in (X,T). By hypothesis cl(λ) 

= 1 in (X,T). Since (X,T) is a fuzzy strongly irresolvable space, for the fuzzy dense set 

λ in (X,T), cl int (λ) = 1 in (X,T). Then, int (λ) ≠ 0, in (X,T). Since int(λ) ≤ int cl(), 

int c(λ) ≠ 0 in (X,T) and thus λ is a fuzzy somewhere dense set in (X,T). Hence λ is a 

fuzzy somewhere dense set fuzzy Baire property in (X,T) and therefore λ is a fuzzy 

B* set in (X,T). 

Proposition 3.15 : If λ is a fuzzy simply* open set with fuzzy Baire property in a 

fuzzy hyperconnected space (X,T), then λ is a fuzzy dense set in (X,T) . 

 Proof: Let λ be a fuzzy simply* open set with fuzzy Baire property in (X,T). Since 

(X,T) is a fuzzy hyperconnected spaces, by proposition 3.4, int cl(1 − λ ) = 0, in 

(X,T). Then, 1 – cl int (λ) = 0, and thus clint(λ) = 1, in (X,T). But clint ( λ) ≤ cl(λ) 

implies that 1 = cl(λ) in (X,T). Hence λ is a fuzzy dense set in ( X,T).  

 

4. FUZZY B* SETS, FUZZY STRONGLY BAIRE SPACES, FUZZY BAIRE 

SPACES 

The following propositions give conditions for fuzzy hyperconnected spaces to 

become fuzzy Baire spaces 

Theorem 4.1 [9]: If cl (µ) = 1, for a fuzzy strongly first category set µ in a fuzzy 

topological space (X,T), then (X,T) is a fuzzy strongly Baire space. 

Proposition 4.1: If cl ( ⋀ (λ
i

∞
i=1 )) = 1, where ( λi)

′s are fuzzy simply* open sets with 

fuzzy Baire property in a fuzzy hyperconnected space (X,T), then (X,T) is a fuzzy 

Baire space. 

Proof: Suppose that cl( ⋀ ( λ
i

∞
i=1 )) = 1, where ( λi)

′s are fuzzy simply* open sets with 

fuzzy Baire property in (X,T). Since (X,T) is a fuzzy hyperconnected space, by 

proposition 3.4, (1− i)’s are fuzzy nowhere dense sets in (X,T). Now cl ( ⋀ (λ
i

∞
i=1 )) = 1, 
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implies that 1 − cl( ⋀ (λ
i

∞
i=1 )) = 0 and then int(1 − ⋀ (λ

i
∞
i=1 )) = 0.  

Then int ( ⋁ ( 1 − λi)
∞
i=1 ) = 0 in (X,T) . Hence, int ( ⋁ ( 1 −  λi)

∞
i=1 ) = 0,  

where (1− λi)’s are fuzzy nowhere dense sets in (X,T), implies that (X,T) is a fuzzy 

Baire space. 

Theorem 4.2 [9] : If 1 – λ is a fuzzy nowhere dense set in a fuzzy topological space 

(X,T), then λ is a fuzzy strongly nowhere dense set in (X,T). 

Proposition 4.2: If cl ( ⋁ ( λi)
∞
i=1 ) = 1, where ( λi)

′s are fuzzy B* sets in a fuzzy 

hyperconnected space (X,T), then (X,T) is a fuzzy strongly Baire space. 

Proof: Let ( λi)
′s (i = 1 to ∞ ) be fuzzy B* sets in (X,T). Since (X,T) is a fuzzy 

hyperconnected space, by theorem 2.4, (1− i )’s are fuzzy nowhere dense sets in 

(X,T). Then, by theorem 4.2, ( λi)
′s are fuzzy strongly nowhere dense sets in (X,T). 

Then ⋁ ( λi)
∞
i=1  is a fuzzy strongly first category set in (X,T). Let μ = ⋁ ( λi)

∞
i=1  . Then 

μ is a fuzzy strongly first category set in (X,T). The hypothesis cl ( ⋁ (  λi)
∞
i=1 ) = 1, 

implies that cl (μ) = 1, in (X,T). Then by theorem 4.1, (X,T) is a fuzzy strongly Baire 

space. 

Theorem 4.3 [9] : If int (μ) = 0 for a fuzzy strongly first category set μ in a fuzzy 

topological space (X,T), then (X,T) is a fuzzy Baire space. 

Proposition 4.3 : If int ( ⋁ ( λi)
∞
i=1 ) = 0, where ( λi)

′s are fuzzy B* sets in a fuzzy 

hyperconnected space (X,T), then (X,T) is a fuzzy Baire space. 

Proof: Let  ( λi)
′s (i = 1 to ∞ ) be fuzzy B* sets in (X,T). Since (X,T) is a fuzzy 

hyperconnected space, by theorem 2.4, (1− i )’s are fuzzy nowhere dense sets in 

(X,T) and then, by theorem 4.2, ( λi)
′s are fuzzy strongly nowhere dense sets in (X,T). 

Then ⋁ ( λi)
∞
i=1  is a fuzzy strongly first category set in (X,T). Let μ = ⋁ ( λi)

∞
i=1  . Then 

μ is a fuzzy strongly first category set in (X,T). The hypothesis int ( ⋁ (  λi)
∞
i=1 ) = 0, 

implies that int (μ) = 0, in (X,T). Then, by theorem 4.3, ( X,T) is a fuzzy Baire space. 

 

The following proposition gives a condition for fuzzy hyperconnected and fuzzy 

GID space to become a fuzzy Volterra space. 

Theorem 4.4 [ 14]: If the fuzzy topological space (X,T) is a fuzzy Baire and fuzzy 

GID space, then (X,T) is a fuzzy Volterra space. 

Proposition 4.4: If int ( ⋁ ( λi)
∞
i=1 ) = 0, where( λi)

′s are fuzzy B* sets in a fuzzy 

hyperconnected and fuzzy GID space (X,T), then (X,T) is a fuzzy Volterra space. 
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Proof: Let  ( λi)
′s (i = 1 to ∞ ) be fuzzy B* sets in (X,T) such that int ( ⋁ (  λi)

∞
i=1 ) = 0 

in (X,T). Since (X,T) is a fuzzy hyperconnected space, by proposition 4.3, (X,T) is a 

fuzzy Baire space. Also since (X,T) is a fuzzy GID space, by theorem 4.4, (X,T) is a 

fuzzy Volterra space. 
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