A Note on Fuzzy B* Sets

G.Thangaraj

Department of Mathematics, Thiruvalluvar University, Serkkadu, Vellore - 632 115, Tamilnadu, India.

S. Dharmasaraswathi

Research Scholar / Department of Mathematics Thiruvalluvar University, Serkkadu, Vellore - 632 115, Tamilnadu, India.

Abstract

In this paper, the conditions for fuzzy simply* open sets to become fuzzy B^* sets in fuzzy topological spaces are obtained. It is established that fuzzy pre -open sets with fuzzy Baire property, fuzzy β - open sets with fuzzy Baire property in fuzzy topological spaces and fuzzy residual sets with fuzzy Baire property in fuzzy P - spaces, are fuzzy B* sets. The conditions for fuzzy hyperconnected spaces to become fuzzy Baire spaces, fuzzy Volterra spaces are also obtained.

Keywords: Fuzzy G_{δ} - set, fuzzy first category set, fuzzy simply open set, fuzzy residual set, fuzzy simply* open set, fuzzy Baire property, fuzzy Baire space, fuzzy hyperconnected space.

2000 AMS CLASSIFICATION: 54 A 40, 03 E 72.

1. INTRODUCTION

In order to deal with uncertainties, the idea of fuzzy sets, fuzzy set operations was introduced by **L.A.ZADEH** [19] in 1965. By applying the fuzzy set notions to general topology **C.L.CHANG** [5] introduced the theory of fuzzy topological

spaces. The paper of Chang paved the way for the subsequent tremendous growth of the numerous fuzzy topological concepts.

D. K,**GANGULY AND CHANDARANI MITRA** [7] introduced and studied the concept of B* sets in classical topology. This notion in fuzzy setting was introduced and studied by the authors in [17]. The purpose of this paper is to study several characterizations of fuzzy B* sets in fuzzy topological spaces. In section 3, the conditions for fuzzy simply* open sets to become fuzzy B* sets in fuzzy topological spaces, are obtained. It is established that fuzzy pre -open sets with fuzzy Baire property, fuzzy β - open sets with fuzzy Baire property in fuzzy topological spaces and fuzzy residual sets with fuzzy Baire property in fuzzy for spaces, are fuzzy B* sets. It is also established that in fuzzy topological spaces where fuzzy first category sets are not fuzzy dense sets, fuzzy residual sets with fuzzy Baire property are fuzzy B* sets. In section 4, the conditions under which hyper connected spaces become fuzzy B* sets. In spaces, fuzzy Storegly irresolvable spaces are fuzzy B* sets.

2. PRELIMINARIES

In order to make the exposition self-contained, some basic notions and results used in the sequel are given. In this work (X,T) or simply by X, we will denote a fuzzy topological space due to Chang (1968). Let X be a non- empty set and I, the unit interval [0, 1]. A fuzzy set λ in X is a function from X into I. The null set 0 is the function from X into I which assumes only the value 0 and the whole fuzzy set 1 is the function from X into I takes the value 1 only.

Definition 2.1 [5]: Let (X,T) be a fuzzy topological space and λ be any fuzzy set in (X,T). The interior and the closure of λ defined as follows

- (i) Int $(\lambda) = \vee \{ \mu / \mu \leq \lambda, \mu \in T \}.$
- (ii) $\operatorname{Cl}(\lambda) = \wedge \{ \mu / \lambda \le \mu, 1 \mu \in T \}.$

Lemma 2.1 [1]: For a fuzzy topological space X,

- (i) $1 int (\lambda) = cl (1 \lambda)$.
- (ii) $1 \operatorname{cl}(\lambda) = \operatorname{int}(1 \lambda).$

Definition 2.2 : A fuzzy set λ in a fuzzy topological space (X, T) is called

- (i). *fuzzy dense* if there exists no fuzzy closed set μ in (X,T) such that $\lambda < \mu < 1$ [13].
- (ii). *fuzzy nowhere dense* if there exists no non zero fuzzy open set μ in (X,T) such that $\mu < \text{cl}(\lambda)$. That is, int cl (λ) = 0, in (X, T) [13].
- (iii). *fuzzy somewhere dense* if int cl (λ) \neq 0, in (X,T) [10].
- (iv). *fuzzy first category set* if $\lambda = \bigvee_{i=1}^{\infty} (\lambda_i)$, where (λ_i) 's are fuzzy nowhere dense sets in (X,T). Any other fuzzy set in (X,T) is said to be of fuzzy second category [13].
- (v). *fuzzy simply open set* if Bd (λ) is a fuzzy nowhere dense set in (X,T).

That is, λ is a fuzzy simply open set in (X,T) if [cl (λ) \wedge cl (1- λ)], is a fuzzy nowhere dense set in (X,T) [6].

- (vi). *fuzzy simply* open set* if λ = μ ∨ δ, where μ is a fuzzy open set and δ is a fuzzy nowhere dense set in (X,T) and 1 λ is called a fuzzy simply* closed set in (X,T) [6].
- (vii). *fuzzy* \mathbf{G}_{δ} set in (X,T) if $\lambda = \Lambda_{i=1}^{\infty}$ (λ_i), where $\lambda_i \in T$ for $i \in I$ [2].
- (viii). *fuzzy* \mathbf{F}_{σ} set in (X,T) if $\lambda = \bigvee_{i=1}^{\infty} (\lambda_i)$ where $1 \lambda_i \in T$ for $i \in I$ [2].
- (ix). *fuzzy* β -open in (X,T) if $\lambda \le cl$ int $cl(\lambda)$ and fuzzy closed if int cl int(λ) $\le \lambda$ [3].
- (x). *fuzzy strongly first category set* if $\lambda = \bigwedge_{i=1}^{\infty} (\lambda_i)$, where (λ_i) 's are fuzzy strongly nowhere dense sets in (X,T). Any other fuzzy set in (X,T) is said to be a fuzzy strongly second category set in (X,T) [9].
- (xi). *fuzzy pre- open* if $\lambda \leq int cl (\lambda)$ and *fuzzy pre closed* if cl int $(\lambda) \leq \lambda$ [4].

Definition 2.3 [13] : Let λ be a fuzzy first category set in a fuzzy topological space (X,T). Then, $1 - \lambda$ is called a fuzzy residual set in (X,T).

Definition 2.4 [9]: Let (X,T) be a fuzzy topological space. A fuzzy set λ defined on X is said to have the fuzzy Baire property, if $\lambda = (\mu \lor \delta) \land \eta$, where μ is a fuzzy open set, δ is a fuzzy residual set and η is a fuzzy first category set in (X,T).

Definition 2.5 : A fuzzy topological space (X,T) is called a

- (i). *fuzzy Baire space* if int $(\bigvee_{i=1}^{\infty} (\lambda_i)) = 0$, where (λ_i) 's are fuzzy nowhere dense sets in (X,T) [11].
- (ii). *fuzzy sub maximal space* if for each fuzzy set λ in (X,T) such that $cl(\lambda) = 1$, then $\lambda \in T$ in (X,T) [2].
- (iii). *fuzzy strongly Baire space* if cl $(\Lambda_{i=1}^{N} (\lambda_{i})) = 1$, where (λ_{i}) 's are fuzzy nowhere dense sets in (X,T) [9].
- (iv). *fuzzy GID space* if for each fuzzy dense and fuzzy G_{δ} set λ in (X,T), clint(λ) = 1 in (X,T) [16].
- (v). *fuzzy P*-*space* if each fuzzy G_{δ} set in (X,T) is a fuzzy open set in (X,T) [12].
- (vi). *fuzzy hyper-connected* if each non-null fuzzy open subset of (X,T) is fuzzy dense set in (X,T). That is, a fuzzy topological space (X,T) is fuzzy hyper-connected if cl $(\mu_i) = 1$, for all $\mu_i \in T$ [8].
- (vii). *fuzzy Volterra space* if cl $(\bigwedge_{i=1}^{N} (\lambda_i)) = 1$, where (λ_i) 's are fuzzy dense and G_{δ} sets in (X,T) [15].
- (viii). *fuzzy first category space* if the fuzzy set 1_x is a fuzzy first category set in (X,T). That is, $1_x = (\bigvee_{i=1}^{\infty} (\lambda_i))$, where (λ_i) 's are fuzzy nowhere dense sets in (X,T) [1]. Otherwise (X,T) is said to be of fuzzy second space [13].

Theorem 2.1 [6] : If λ is a fuzzy simply* open set in a fuzzy topological space (X,T), then int (λ) \neq 0, in (X,T).

Theorem 2.2 [6]: If λ is a fuzzy simply^{*} open set in a hyper connected space (X,T), then λ is a fuzzy simply open set in (X,T).

Theorem 2.3 [17]: If λ is a fuzzy B* set in a fuzzy hyper connected space (X,T), then $1 - \lambda$ is a fuzzy nowhere dense set in (X,T).

Theorem 2.4 [18]: If λ is a fuzzy residual set in a fuzzy P-space (X,T), then λ is a fuzzy somewhere dense set in (X,T).

Theorem 2.5 [18]: If λ is a fuzzy residual set in a fuzzy topological space (X,T) in which fuzzy first category sets are not fuzzy dense sets, then λ is a fuzzy somewhere dense set in (X,T).

Theorem 2.6 [9]: If (X,T) is a fuzzy hyperconnected space (X,T), then (X,T) is a fuzzy strongly Baire space.

3. FUZZY B* SETS

Definition 3.1 [17]: Let (X,T) be a fuzzy topological space. A fuzzy set λ defined on X is called a fuzzy B* set, if λ is a fuzzy set with fuzzy Baire property in (X,T) such that int $cl(\lambda) \neq 0$, in (X,T). That is, if λ is a fuzzy somewhere dense set having fuzzy Baire property in (X,T), then λ is a fuzzy B* set in (X,T).

Proposition 3.1: If λ is a fuzzy simply* open set with fuzzy Baire property in a fuzzy topological space (X,T), then λ is a fuzzy B* set in (X,T).

Proof: Let λ be a fuzzy simply* open set with fuzzy Baire property in (X,T). Since λ is a fuzzy simply* open set in (X,T), by theorem 2.1, int (λ) \neq 0 in (X,T). Now int (λ) \leq int cl(λ) implies that intcl(λ) \neq 0 in (X,T). Thus λ is a fuzzy somewhere dense set in (X,T) with the fuzzy Baire property. Hence λ is a fuzzy B* set in (X,T).

Proposition 3.2 : If λ is a fuzzy simply* open set with fuzzy Baire property in a fuzzy hyperconnected space (X,T), then λ is a fuzzy B* set in (X,T) such that intcl [bd (λ)] = 0.

Proof: Let λ be a fuzzy simply* open set with fuzzy Baire property in (X,T). Then, by proposition 3.1, λ is a fuzzy B* set in (X,T). Since (X,T) is a fuzzy hyperconnected space by theorem 2.2, the fuzzy simply* open set λ is a fuzzy simply open set in (X,T). Then, intel [bd (λ)] = 0, in (X,T). Thus, λ is a fuzzy B* set in (X,T) such that int cl [bd (λ)] = 0, in (X,T).

Proposition 3.3: If λ is a fuzzy simply* open set with fuzzy Baire property in a fuzzy hyperconnected space (X,T), then λ is a fuzzy B* set such that int $cl(\lambda) \leq cl$ int (λ), in (X,T).

Proof : Let λ be a fuzz simply* open set with the fuzzy Baire property in (X,T). Since (X,T) is a fuzzy hyperconnected space, by proposition 3.2, λ is a fuzzy B* set in (X,T) such that int cl [bd (λ)] = 0, in (X,T). Now int cl [bd (λ)] = intcl [cl (λ) \wedge cl (1 – λ)] implies that int cl [cl (λ) \wedge cl (1 – λ)] = 0 in (X,T). But, int [cl (λ) \wedge cl (1 – λ)] \leq int cl [cl (λ) \wedge cl (1 – λ)] implies that int cl [cl (λ) \wedge cl (1 – λ)] = 0 in (X,T). Then, [int cl (λ) \wedge cl (1 – λ)] = 0 and thus int cl (λ) \leq (1 – [int cl (1 – λ)]) and thus int cl (λ) \leq cl int (λ) in (X,T). Hence λ is a fuzzy B* set in (X,T) such that int cl (λ) \leq cl int (λ), in (X,T).

Proposition 3.4 : If λ is a fuzzy simply* open set with fuzzy Baire property in a fuzzy hyperconnected space (X,T), then λ is a fuzzy B* set such that int cl $(1 - \lambda) = 0$, in (X,T).

Proof: Let λ be a fuzzy simply* open set with fuzzy Baire property in a fuzzy hyperconnected space (X,T). Then by proposition 3.1, λ is a fuzzy B* set in (X,T). Since (X,T) is a fuzzy hyper-connected space, by theorem 2.3, $1 - \lambda$ is a fuzzy nowhere dense set in (X,T) and thus λ is a fuzzy B* set such that int cl $(1 - \lambda) = 0$, in (X,T).

Proposition 3.5 : If λ is a non-zero fuzzy pre -open set with fuzzy Baire property in a fuzzy topological space (X,T), then λ is a fuzzy B* set in (X,T).

Proof : Let λ be a non-zero fuzzy pre-open set in (X,T). Then $\lambda \leq \text{int cl} (\lambda)$, in (X,T). Then, int cl (λ) $\neq 0$, in (X,T). Thus, λ is a fuzzy somewhere dense set with fuzzy Baire property in (X,T) and hence λ is a fuzzy B* set in (X,T).

Proposition 3.6 : If λ is a non-zero fuzzy β -open set with fuzzy Baire property in a fuzzy topological space (X,T), then λ is a fuzzy B* set in (X,T).

Proof : Let λ be a non zero fuzzy β -open set with fuzzy Baire property in (X,T). Since λ is a fuzzy β –open set in (X,T), $\lambda \leq cl$ int $cl(\lambda)$, in (X,T). Then, int $cl(\lambda) \neq 0$, in (X,T) [otherwise, int $cl(\lambda) = 0$, will implies that $\lambda \leq cl(0)$ and in turn it will be that $\lambda = 0$, a contradiction]. Thus, λ is a fuzzy somewhere dense set with the fuzzy Baire property and hence λ is a fuzzy B* set in (X,T).

Proposition 3.7: If λ is a non-zero fuzzy β -open set with cl (λ) having the fuzzy Baire property in a fuzzy topological space (X,T), then cl (λ) is a fuzzy B* set in (X,T).

Proof: Let λ be a non zero fuzzy β -open set in (X,T). Then, as in the proof of proposition 3.6, int cl (λ) \neq 0 in (X,T) and int cl(λ) \leq int cl [cl (λ)] implies that int cl [cl (λ)] \neq 0 and thus cl (λ) is a fuzzy somewhere dense set in (X,T). By hypothesis cl (λ) is a fuzzy set with fuzzy Baire property in (X,T). Thus, the fuzzy somewhere dense set cl (λ) with the fuzzy Baire property, is a fuzzy B* set in (X,T).

Proposition 3.8 : If λ is a fuzzy residual set with fuzzy Baire property in a fuzzy P -space (X,T), then λ is a fuzzy B* set in (X,T).

Proof : Let λ be a fuzzy residual set with fuzzy Baire property in (X,T). Since (X,T) is a fuzzy P-space, by theorem 2.5, the fuzzy residual set λ is a fuzzy somewhere dense set in (X,T). Hence λ is a fuzzy B* set in (X,T).

1034

Proposition 3.9: If λ is a fuzzy residual set with fuzzy Baire property in a fuzzy topological space (X,T) in which fuzzy first category sets are not fuzzy dense sets, then λ is a fuzzy B* set in (X,T).

Proof: Let λ be a fuzzy residual set with fuzzy Baire property in (X,T). By hypothesis the fuzzy first category sets are not fuzzy dense sets in (X,T). Then, by theorem 2.6, λ is a fuzzy somewhere dense set in (X,T). Hence the fuzzy residual set λ is a fuzzy somewhere dense set with fuzzy Baire property and thus λ is a fuzzy B* set in (X,T).

Proposition 3.10: If $\lambda \le \mu$ and λ is a fuzzy somewhere dense set and μ is a fuzzy set with fuzzy Baire property in a fuzzy topological space (X,T), then μ is a fuzzy B* set in (X,T).

Proof: Suppose that $\lambda \leq \mu$ in (X,T). Then, int cl (λ) \leq int cl(μ) in (X,T). Since λ is a fuzzy somewhere dense set in (X,T) int cl(λ) \neq 0 in (X,T) and then int cl(μ) \neq 0 Thus μ is a fuzzy somewhere dense set with fuzzy Baire property in (X,T). Hence μ is a fuzzy B* set in (X,T).

Proposition 3.11: If $(\lambda \lor \mu)$ is a fuzzy set with fuzzy Baire property, where λ is a fuzzy set defined on X and μ is a fuzzy somewhere dense set in (X,T), then $(\lambda \lor \mu)$ is a fuzzy B* set in (X,T).

Proof: Now int cl $(\lambda \lor \mu) = int[cl(\lambda) \lor cl(\mu)] \ge int cl(\lambda) \lor intcl(\mu) \ge intcl(\mu)$, where λ and μ are fuzzy sets defined on X. Since μ is a fuzzy somewhere dense set in (X,T), int cl(μ) $\ne 0$ in (X,T) and thus int cl $(\lambda \lor \mu) \ge 0$. This implies that $(\lambda \lor \mu)$ is a fuzzy somewhere dense set in (X,T). By hypothesis $(\lambda \lor \mu)$ is a fuzzy set with fuzzy Baire property in (X,T) and thus $(\lambda \lor \mu)$ is a fuzzy somewhere dense set with fuzzy Baire property in (X,T). Hence $(\lambda \lor \mu)$ is a fuzzy B* set in (X,T).

Proposition 3.12: If λ is a fuzzy B* set in a fuzzy topological space (X,T), then there exists a fuzzy closed set μ in (X,T) such that int $(1 - \lambda) \leq \mu$

Proof: Let λ be a fuzzy B* set in (X,T). Then λ is a fuzzy somewhere dense set with fuzzy Baire property in (X,T). Since λ is a fuzzy somewhere dense set in (X,T), int cl (λ) \neq 0 in (X,T) and then 1- int cl(λ) \neq 1 and hence cl int (1 - λ) \neq 1, in (X,T). Thus int (1 - λ) is not a fuzzy dense set in (X,T). Then there exist a fuzzy closed set μ in (X,T) such that int (1 - λ) $\leq \mu$.

Proposition 3.13: If λ is a fuzzy G_{δ} -set with fuzzy Baire property such that $cl(\lambda) = 1$ in a fuzzy GID space (X,T), then λ is a fuzzy B* set in (X,T).

Proof: Let λ be a fuzzy G_{δ} -set with fuzzy Baire property in (X,T). Now cl (λ) = 1, in (X,T) implies that λ is a fuzzy dense and fuzzy G_{δ} -set in (X,T). Since (X,T) is a fuzzy GID space, cl int(λ) = 1 in (X,T). Then, int (λ) \neq 0 and this implies that int cl (λ) \neq 0 in (X,T). Hence λ is a fuzzy somewhere dense set in (X,T) with fuzzy Baire property. Hence λ is a fuzzy B* set in (X,T).

Proposition 3.14: If λ is a fuzzy G_{δ} -set with fuzzy Baire property such that $cl(\lambda) = 1$ in a fuzzy strongly irresolvable space, then λ is a fuzzy B* set in (X,T).

Proof: Let λ be a fuzzy G_{δ} set with fuzzy Baire property in (X,T). By hypothesis $cl(\lambda) = 1$ in (X,T). Since (X,T) is a fuzzy strongly irresolvable space, for the fuzzy dense set λ in (X,T), cl int (λ) = 1 in (X,T). Then, int (λ) \neq 0, in (X,T). Since $int(\lambda) \leq int cl(\lambda)$, int $c(\lambda) \neq 0$ in (X,T) and thus λ is a fuzzy somewhere dense set in (X,T). Hence λ is a fuzzy somewhere dense set fuzzy Baire property in (X,T) and therefore λ is a fuzzy Baire property in (X,T).

Proposition 3.15 : If λ is a fuzzy simply* open set with fuzzy Baire property in a fuzzy hyperconnected space (X,T), then λ is a fuzzy dense set in (X,T).

Proof: Let λ be a fuzzy simply* open set with fuzzy Baire property in (X,T). Since (X,T) is a fuzzy hyperconnected spaces, by proposition 3.4, int cl(1 - λ) = 0, in (X,T). Then, 1 - cl int (λ) = 0, and thus clint(λ) = 1, in (X,T). But clint (λ) \leq cl(λ) implies that 1 = cl(λ) in (X,T). Hence λ is a fuzzy dense set in (X,T).

4. FUZZY B* SETS, FUZZY STRONGLY BAIRE SPACES, FUZZY BAIRE SPACES

The following propositions give conditions for fuzzy hyperconnected spaces to become fuzzy Baire spaces

Theorem 4.1 [9]: If cl (μ) = 1, for a fuzzy strongly first category set μ in a fuzzy topological space (X,T), then (X,T) is a fuzzy strongly Baire space.

Proposition 4.1: If cl $(\bigwedge_{i=1}^{\infty}(\lambda_i)) = 1$, where (λ_i) 's are fuzzy simply* open sets with fuzzy Baire property in a fuzzy hyperconnected space (X,T), then (X,T) is a fuzzy Baire space.

Proof: Suppose that $cl(\Lambda_{i=1}^{\infty}(\lambda_i)) = 1$, where $(\lambda_i)'s$ are fuzzy simply* open sets with fuzzy Baire property in (X,T). Since (X,T) is a fuzzy hyperconnected space, by proposition 3.4, $(1 - \lambda_i)'s$ are fuzzy nowhere dense sets in (X,T). Now $cl(\Lambda_{i=1}^{\infty}(\lambda_i)) = 1$,

1036

implies that $1 - cl(\Lambda_{i=1}^{\infty}(\lambda_i)) = 0$ and then $int(1 - \Lambda_{i=1}^{\infty}(\lambda_i)) = 0$. Then $int(\bigvee_{i=1}^{\infty}(1-\lambda_i)) = 0$ in (X,T). Hence, $int(\bigvee_{i=1}^{\infty}(1-\lambda_i)) = 0$, where $(1-\lambda_i)$'s are fuzzy nowhere dense sets in (X,T), implies that (X,T) is a fuzzy Baire space.

Theorem 4.2 [9] : If $1 - \lambda$ is a fuzzy nowhere dense set in a fuzzy topological space (X,T), then λ is a fuzzy strongly nowhere dense set in (X,T).

Proposition 4.2: If cl $(\bigvee_{i=1}^{\infty} (\lambda_i)) = 1$, where (λ_i) 's are fuzzy B* sets in a fuzzy hyperconnected space (X,T), then (X,T) is a fuzzy strongly Baire space.

Proof: Let (λ_i) 's (i = 1 to ∞) be fuzzy B* sets in (X,T). Since (X,T) is a fuzzy hyperconnected space, by theorem 2.4, $(1 - \lambda_i)$'s are fuzzy nowhere dense sets in (X,T). Then, by theorem 4.2, (λ_i) 's are fuzzy strongly nowhere dense sets in (X,T). Then $\bigvee_{i=1}^{\infty} (\lambda_i)$ is a fuzzy strongly first category set in (X,T). Let $\mu = \bigvee_{i=1}^{\infty} (\lambda_i)$. Then μ is a fuzzy strongly first category set in (X,T). The hypothesis cl ($\bigvee_{i=1}^{\infty} (\lambda_i)$) = 1, implies that cl (μ) = 1, in (X,T). Then by theorem 4.1, (X,T) is a fuzzy strongly Baire space.

Theorem 4.3 [9] : If int $(\mu) = 0$ for a fuzzy strongly first category set μ in a fuzzy topological space (X,T), then (X,T) is a fuzzy Baire space.

Proposition 4.3 : If int $(\bigvee_{i=1}^{\infty} (\lambda_i)) = 0$, where (λ_i) 's are fuzzy B* sets in a fuzzy hyperconnected space (X,T), then (X,T) is a fuzzy Baire space.

Proof: Let (λ_i) 's (i = 1 to ∞) be fuzzy B* sets in (X,T). Since (X,T) is a fuzzy hyperconnected space, by theorem 2.4, $(1 - \lambda_i)$'s are fuzzy nowhere dense sets in (X,T) and then, by theorem 4.2, (λ_i) 's are fuzzy strongly nowhere dense sets in (X,T). Then $\bigvee_{i=1}^{\infty} (\lambda_i)$ is a fuzzy strongly first category set in (X,T). Let $\mu = \bigvee_{i=1}^{\infty} (\lambda_i)$. Then μ is a fuzzy strongly first category set in (X,T). The hypothesis int ($\bigvee_{i=1}^{\infty} (\lambda_i)$) = 0, implies that int (μ) = 0, in (X,T). Then, by theorem 4.3, (X,T) is a fuzzy Baire space.

The following proposition gives a condition for fuzzy hyperconnected and fuzzy GID space to become a fuzzy Volterra space.

Theorem 4.4 [**14]:** If the fuzzy topological space (X,T) is a fuzzy Baire and fuzzy GID space, then (X,T) is a fuzzy Volterra space.

Proposition 4.4: If int $(\bigvee_{i=1}^{\infty}(\lambda_i)) = 0$, where (λ_i) 's are fuzzy B* sets in a fuzzy hyperconnected and fuzzy GID space (X,T), then (X,T) is a fuzzy Volterra space.

Proof: Let (λ_i) 's (i = 1 to ∞) be fuzzy B* sets in (X,T) such that int $(\bigvee_{i=1}^{\infty} (\lambda_i)) = 0$ in (X,T). Since (X,T) is a fuzzy hyperconnected space, by proposition 4.3, (X,T) is a fuzzy Baire space. Also since (X,T) is a fuzzy GID space, by theorem 4.4, (X,T) is a fuzzy Volterra space.

REFERENCES

- [1]. K.,K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14--32.
- [2]. G.Balasubramanian, *Maximal fuzzy topologies*, Kybernetika (Prague), 31 (5) (1995), 459 464.
- [3] G.Balasubramanian, On fuzzy β compact spaces and fuzzy β extremally disconnected spaces, Kybernetika (Prague), 33 (3) (1997), 271 –277.
- [4]. A.S.Bin Sahana, On fuzzy strongly semi continuity and fuzzy pre continuity, Fuzzy sets and systems, 44 (2) (1991), 302 308.
- [5]. C.L.Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. {24} (1968), 182 –190.
- [6]. K. Dinakaran, *Contributions to the study on various forms of fuzzy continuous functions*, Ph.D. Thesis, Thiruvalluvar University, Tamilnadu, India, 2018.
- [7]. D.K.Ganguly and Chandrani Mitra, Some Remarks on B* Continuous Functions, An. Stiint. Univ.AI.I. Cusa Iasi. Mat., Tamul XLVI, S.I.a, Mathematica,(2000), f.2.
- [8]. Miguel Caldas, Govindappa Navalagi and Ratnesh Saraf, On Fuzzy Weakly Semi-open Functions, Proyectiones, Universidad Catolica del Norte, Antofagasta-Chile, 21 (1) (2002), 51 –63.
- [9] R.Palani, *Contributions to the study on some aspects of fuzzy Baire spaces*, Ph.D. Thesis, Thiruvalluvar University, Tamilnadu, India, 2017.
- [10]. G.Thangaraj, *Resolvablity and irresolvablity in fuzzy topological spaces*, News Bull. Cal. Math., 31 (4-6) (2008), 11–14.
- [11]. G.Thangaraj and S. Anjalmose, On fuzzy Baire spaces, J. Fuzzy Math., 21 (3) (2013), 667 -676.
- [12]. G.Thangaraj and G.Balasubramanian, On fuzzy basically disconnected spaces, J.
 Fuzzy Math., 9 (1) (2001), 103–110.

- [13]. G.Thangaraj and G.Balasubramanian, On somewhat fuzzy continuous functions, J. Fuzzy Math., 11 (2) (2003), 725 -736.
- [14]. G.Thangaraj and S.Soundararajan, On fuzzy volterra spaces, J. Fuzzy Math., 21 (4) (2013), 895 –904.
- [15]. G.Thangaraj and S.Soundararajan, On fuzzy weakly volterra spaces, Adv. Fuzzy Math., 9 (1) (2014), 105 –111.
- [16]. G.Thangaraj and C.Anbazhagan, On fuzzy GID spaces, Ann. Fuzzy Math.Inform., 10 (4), (2015), 571 581.
- [17]. G.Thangaraj and S.Dharmasaaswathi, *On Fuzzy B*Sets*, (Communicated to Bull. Int. Math. Vir. Ins.,)
- [18]. G.Thangaraj and S.Senthil, On somewhere fuzzy continuous functions, Ann.
 Fuzzy Math. Inform., 15 (2), (2018), 101 206.
- [19]. L.A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338 353.

1040