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Abstract

This paper considers an inefficient financial market with one bond and one stock
where the dynamics of the stock price process modeled by jump-Diffusion process.
We assume in the market there are two investors i.e. the investor with incomplete
information who is only able to see the stock price process and the investor with
full information about the market scenario. The aim of the investors is to maximize
the expected utility from terminal wealth. We solve the maximum expected power
utility problem by means of dynamic programming techniques by conditioning on
the information flow and stated the Hamilton-Jacobi-Bellman equation as
Integro-partial differential equation.

Keywords: Dynamic programming, Optimal portfolio, Jump model, Information
flow, Power utilities

1. INTRODUCTION

We consider an inefficient financial market with one bond and one stock where the
dynamics of the stock price process modeled by jump-Levy process. We assume there
are two investors in the market i.e the investor with partial information who is only
able to observe the stock price process and the investor with full information about the
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market scenario. In this paper we will treat these two aspects in one model. Most papers
on problems with partial observation deal with the case of an unobserved (stochastic)
appreciation rate process (µt). [1, 2] for example treats the case where the appreciation
rate follows a linear Gaussian model. The most recent papers by [3] and [4] consider a
Hidden Markov Model for (µt).

We solved the maximum expected power utility problem by means of dynamic
programming techniques by conditioning on the information flow of each investors in
which the the investors with partial information has sub optimal portfolio and stated the
Hamilton-Jacobi-Bellman equation as Integro-partial differential equation.

2. Itô-Levy Diffusion

To study a portfolio of assets in a continuous time setting we need to describe the
dynamics of the given assets by using the theory of stochastic differential equations.The
risk asset will be modeled using a jump-diffusion process. Our theorems will be stated
in the the one dimensional Itô-Levy Diffusion. The multidimensional versions of the
theorems we use in this section can be found in an introductory stochastic calculus books
such as [5].

Theorem 2.1. Consider the Itô-Levy process stochastic differential equation on [s, T] of
the form

dXt = µ(t, w)dt+ σ(t, w)dB(t) +
∫
R
γ(t, w, z)Ñ(dt, dz) Xs = x (1)

where µ : [s, T ]×R→ R, σ : [s, T ]×R→ R and γ : [s, T ]×R×R→ R satisfy the
following Lipschitz and at most linear growth conditions

• There exists constant C1 > 0 such that for all x, y ∈ R

|µ(t, x)− µ(t, y)|2 + |σ(t, x)− σ(t, y)|2

+
∫
R
|γ(t, x, z)− γ(t, y, z)|2ν(dz) ≤ C1|x− y|2

• There exists constant C2 > 0 such that for all x ∈ R

|µ(t, x)|2 + |σ(t, x)|2 +
∫
R
|γ(t, x, z)|2ν(dz) ≤ C2(1 + |x|2)
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Then there exists a unique cadlag adapted solution Xt such that

Es,x

[∫ T

s
|Xt|2

]
<∞

Through out this paper we will be working with the so called Geometric Levy process
which satisfies the conditions for the existence and uniqueness for solution of the
corresponding stochastic differential equation. The general form of a Geometric Levy
process in differential form is given by the stochastic differential equation (SDE):

dXt = µXtdt+ σXtdB(t) +Xt−

∫
R
γ(t, z)Ñ(dt, dz); Xs = x. (2)

whose unique solution can be obtained by applying the Itô-Levy theorem to ln(Xt).

Theorem 2.2. Let Xt ∈ R is an Itô-Levy process of the form given by equation (25) for
some R ∈ [0,∞].
Let f ∈ C1,2

0 ([0,∞), R) and define F (t) = f(t,Xt), then Ft is an Itô-Levy process and

dF (t) = df

dt
(t,Xt)dt+ df

dx
(t,Xt) {µdt+ σdB(t)}+ 1

2
d2f

dx2 (t,Xt)dt

+
∫
|z|<R

{
f(t+Xt− + γ(t, z, w))− f(t,Xt−)− d2f

dx2 (t,Xt)γ(t, z, w)
}
ν(dz)dt

+
∫
R
{f(t,Xt + γ(t,Xt− , z))− f(t,Xt−)} Ñ(dt, dz)

we may write down the solution of the Geometric Levy process given by Equation (25)

Xt = x exp
{

(µ− 1
2σ

2)t+ σWt +
∫ t

0

∫
|z|<R

{ln(1 + γ(s, z))− γ(s, z)} ν(dz)ds

+
∫ t

0

∫
R

ln(1 + γ(s, z))Ñ(ds, dz)
}

we must have the restriction that 1 + γ(s, z) > 0 so that the logarithmic term is well
defined.

Definition 2.1. Let (Ft)t≥0 be a filtration, a function τ : Ω→ [0,∞) is called a stopping
time with respect to (Ft)t≥0 if ω : τ(ω) ≤ t ∈ Ft.
A stopping time is a random variable for which the set of all paths(events) ω ∈ Ωwith
τ(ω) ≤ t can be decided given the filtration Ft.

once we have defined this random time we may state the strong Markov property.
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Theorem 2.3. (Strong Markov property for Itô jump diffusion) Let (Xt)t≥0 be an Ito
jump diffusion,τ a stopping time and f : Rn → R be a Borel measurable function, then
for ω ∈ Ω, h ≥ 0

Ex[f(Xτ+h)|Fτ ](ω) = EXτ (ω)[f(Xh)]

The generator of Itô-Levy diffusion.

Definition 2.2. Let Xt Itô-Levy diffusion of the form

dXt = αXtdt+ σXtdW (t) +Xt−

∫
R
γ(t, z)Ñ(dt, dz); Xs = x,

if f ∈ C1,2
0 ([0,∞), R) then the generator A of Xt for all x ∈ R and s ∈ [0,∞) and is

given by

Af(s, x) = lim
t→s

Es,x[f(t,Xt)]− f(s, x)
t− s

To perform the analysis in the jump case using jump-diffusion theory we need to be
able to use an equivalent version of the Hamilton Jacobi Bellman theorem. In order to
write down the Hamilton Jacobi Bellman equation for the case with jumps we need to
compute the infinitesimal generator of an Itô-Levy process, more specifically we need
the generator of an Itô-Levy diffusion. The infinitesimal generator for a Levy process
with jumps is found by using the Itô-Levy theorem with the fact that Ñ is a martingale,
provided in the following theorem.

Theorem 2.4. Let Xt Itô-Levy diffusion of the form

dXt = αXtdt+ σXtdW (t) +Xt−

∫
R
γ(t, z)Ñ(dt, dz); Xs = x,

if f ∈ C1,2
0 ([0,∞), R) then Af(s, x) exist for all x ∈ R and s ∈ [0,∞) and is given by

Af(s, x) = df

dt
(s, x) + α(s, x) df

dx
(s, x) + 1

2σ
2(s, x)d

2f

dx2 (s, x)+∫
R

[
f(s, x+ γ(s, x, z))− f(s, x)− df

dx
γ(s, x, z)

]
ν(dz)

(3)
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We have now the Hamilton Jacobi Bellman equation theorem for the case with jumps.

dV (t,Xt) = dV

dt
(t,Xt)dt+ dV

dx
(t,Xt) {αdt+ σdW (t)}+ 1

2
d2V

dx2 (t,Xt)dt

+
∫
|z|<R

{
V (t,Xt− + γ(t, z, w))− V (t,Xt−)− d2V

dx2 (t,Xt)γ(t, z, w)
}
ν(dz)dt

+
∫
R
{V (t,Xt + γ(t,Xt− , z))− V (t,Xt−)} Ñ(dt, dz)
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Theorem 2.5. Let f ∈ C2(G) ∈ C ∩ (Ḡ), suppose the following conditions hold

• Auf(y) + gu(y) ≤ 0 for all y ∈ G, u ∈ U

• f−(Yτ )τ≤τG is uniformly integrable for all u ∈ A[0, τG] and y ∈ G.

• Ey[|f(Yτ )| +
∫ τG

0 (|Auf(Yt)| + |σ(Yt)∂f∂y (Yt)|2 +
∫
R |f(Yt + γ(Yt, ut, z)) −

f(Yt)|2ν(dz))dt] <∞

• YτG ∈ ∂S a.s. on χτS<∞ and limt→τS− f(Yt) = h(YτS)χτS <∞ a.s for all
u ∈ A[0, τG] then f(y) ≥ Ju(y) for all Markov controls u ∈ A and y ∈ G.
Moreover if for all y ∈ G we find a Markov control u = u0(y) such that

gu0(y)(y) +Au0(y)f(y) = 0

then u∗t = u0(yt) is optimal and f(y) = F (y) = Ju
∗(y).

2.3 Verification Theorem for Levy Process with Jumps

we use the Hamilton Jacobi Bellman equation indirectly to solve the optimal control
problem, the solution will come from an equivalent verification theorem for Levy jump
processes.

Theorem 2.6. Let u ∈ A[s, τG]and(s, x) ∈ G and suppose the following conditions are
satisfied for all s ∈ [0, τG] and x ∈ R

• f ∈ C1,2([0, τG) × R) is continuous on [0, τG] × R and satisfies the quadratic
growth condition |f(s, x)| ≤ Cf (1 + |x|2)

• f satisfies the Hamilton Jacobi Bellman equation
supu∈A[s,τG][fu(s, x) +Auf(s, x)] = 0s ∈ [0, τG)f(τG, x) = g(τG, x)

• fu is continuous with |fu(s, x)| ≤ Cf (1 + |x|2 + ||u||2) for some constant Cf > 0.

• |σu(s, x)|2 ≤ Cσ(1 + |x|2 + ||u||2) for some constant Cσ > 0.

•
∫
R |γ(s, x, z)|2ν(dz) ≤ Cγ(1 + |x|2 + ||u||2), then f(s, x) ≥ F (s, x) for all

(s, x) ∈ G. Moreover if u0(s, x) is the max of u → fu(s, x) + Auf(s, x) and
u∗ = u0(s,Xs) is admissible then f(s, x) = F (s, x) for all (s, x) ∈ Gand u∗ is
and optimal strategy i.e. F (s, x) = Ju

∗(s, x).
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3. Presenting the problem

Proposition 3.1. We solve a finite horizon T < ∞ stochastic control problem of a
rational and small investor endowed with a positive initial capital W (0) = x > 0 and
described by a generic utility function U(.), here a power utility function, whose goal
is to maximize her expected utility from terminal wealth, i.e.: EP [U(.)(T )] by investing
continuously in a risky, S, and in a risk-free asset, B. The optimal value of the problem,
denoted by, VIt(t, x), is valid only if, for each t ∈ [0, T ] and ω ∈ Ω, there exists an
optimal portfolio process, η(t, ω) = η∗It(t, ω), which belongs to the set of admissible
portfolios, AIt , s.t.:

VIt(t, x) = supη∈AItE
P [1
θ

(W η(t)(T ))θ] = EP [1
θ

(W η(t)∗(T ))θ] (4)

where the value function of the problem is assumed to be:

VIt(t, x) <∞ ∀x ∈ [0,∞) (5)

Given proposition (2.1) the solution of the problem is strongly related to the admissibility
of the portfolio with respect to the information set, It. To better underline its importance,
the same portfolio problem will be analyzed under two different information sets:

1. when the information set is complete (i.e It = Ft) in this case the investor is
able to set up an asset pricing model that fully capture all past, present and future
relevant pricing information, hence also and above all her forward looking beliefs
with respect to the future outcome.

2. when some relevant information is missing, hence cannot be reflected in the
final asset price (i.e It = Ht ⊂ Ft) and the investor pertains to a more realistic
suboptimal case.

Misleading unexisting arbitrages may be the simple consequence of an investor not being
fully aware to relay to the former or the latter group.
To answer the above problem we model a simple economy made of two assets and we
study the impact of a smaller information set onto a rational investor that, endowed with
a positive initial capital, wants to maximize her final welfare choosing among the set of
admissible portfolios:

V (x) = sup
η=ηt∈AIt

EP [U(Xηt(T ))], t ∈ [0, T ] (6)

Under this framework, the conditionality of the expectation in (5) is represented by the
set of feasible portfolios AIt where A represents the set of admissible portfolios and its
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subscript It restricts this set to the information available at time t is defined as,

AIt(x) =
{
η = ηt ∈ [0, T ] : η admissible ,W (0)η = 0, EP [U(Xηt(T ))−] <∞

}
We will compute the same optimization problem conditional to the complete and a
suboptimal information set. Both random variables are then It-adapted stochastic
processes. The resolution of the optimization problem is linked to the arbitrary choice of
a regular utility function U(.) : (0,∞] → [−∞,∞). For simplicity we start with a
power utility function:

U(x) = 1
θ
xθ x > 0 (7)

The resolution of the asset pricing problem (5) leads to the optimal expected power utility
of the investor terminal wealth XµT (T ). The entire optimization is performed under the
physical measure, P , and conditional to the filtration set of the investor, It. This justifies
our partial information approach. For the problem it assumed a continuous time frame
0 ≤ t ≤ T ≤ ∞ such that, for each time t ≥ 0:

It = Ht ⊂ Ft ⊂ F (8)

It follows that, depending on the filtration in use, the degree of adeptness (measurability)
of the stochastic process may change thus impacting in various form on the final outcomes
of the optimization. As an assumption: both filtration’s lie in filtered probability spaces:

(Ω, (Ht)0≤t≤T , P,H) ⊂ (Ω, (Ft)0≤t≤T , P, F ) (9)

and satisfy the usual hypotheses. The goal of the presented framework is to model the
economy of a single investor with a suboptimal information set, where the stochastic
processes that affect the optimal portfolio choice are Ht and not Ft-adapted, thus
reflecting the poorer decisional power of the investor due to the lack of forward looking
information.

4. The portfolio optimization problem

Probably as a direct consequence of the much larger theoretical literature relative to the
enlargement of filtration with respect to the one relative to the shrinkage of filtration,
the same degree of richness is reflected on their different applications, i.e.portfolio
optimization. Equation (3) reflects the familiar stochastic control problems linked to
the insider information [6]. Following [7] our starting point is a Levy-Itô market model
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composed by two assets: one risky and one risk-free. Given this simple economy, the
investor implements her portfolio through a dynamic trading of the two assets. The
choice of modeling the stochastic part of the risky investment by means of a Brownian
motion (Itô process) and a pure jump process (Levy process) instead of just using the
classical diffusion-Itô model is justified by the higher descriptive power of the former.
For modelling details we refer to [8] and and [9].
The two assets that compose our economy are:
A risk-free asset is represented by a risk-free bond B0, whose unit price B0(t) at time t
is:

dB0(t) = r(t)B0(t)dt t ∈ [0, T ] B0(0) = 1 (10)

where r ≥ 0 is a constant. The risky asset S(t) evolves according to a Geometric Levy
A risky asset, represented by a stock S driven by a one dimensional Brownian motion
and a pure jump process (Levy-Itô process), whose unit price S(t) at time t is:

dS(t) = S(t−)
[
µ(t)dt+ σ(t)dB(t) +

∫
R
γ(t, z)Ñ(dt, dz)

]
S(0) > 0 t ∈ [0, T ]

(11)

By the Itô formula the solution of (10) is:

S(t) = S(0) exp{
∫ t

0

{
µ(s)− 1

2σ
2(s)−

∫
R

(γ(s, z)− ln(1 + γ(s, z)))νIt(dz)
}
ds

+
∫ t

0
σ(s)dB(s) +

∫ t

0

∫
R
ln(1 + γ(s, z))Ñ(dt, dz)}; t ∈ [0, T ]

(12)

Assumptions
For each t ∈ [0, T ], ω ∈ Ω and z ∈ R − {0} we assume that the parameters of
the continuous part of the process µ(t, ω), σ(t, ω) and W (t, ω) satisfy the following
assumptions:

1 It-progressively measurable, hence time dependent and non-anticipating

2 bounded on [0, T ]× Ω

3 parameters µ(t) = µ(t, ω) and σ(t) = σ(t, ω) represent respectively the investors’
expected returns form S(t) and the volatility of S(t) and

4 W (t) = W (t, ω) is an It-adapted one dimension Brownian Motion
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5 Ñ(dt, dz) = N(dt, dz)− νIt(dz)dt is the It-compensated Poisson random measure
of α(t) = α(t, ω) : [0, T ]× Ω→ R where:

α(t) =
∫ t

0

∫
R
zÑ(dt, dz) (13)

6 to prevent the process to be ≤ 0, we set: z > −1. This means we may only assume
jump sizes that are larger than −1.

7 EP [α2(t)] <∞ for all t ≥ 0

Now, suppose that η(t) = η(t, ω) : [0, T ]×Ω→ R,ω ∈ Ω is an It-measurable stochastic
process representing the fraction of wealth W (t) invested the investor in the risky asset
and (1 − η(t)) is invested in the risk-free asset, then the evolution of the total wealth
process, W (t) = W η(t)(t), of the investor by assuming we have a self financing trading
strategy is:

dW (t) = (1− η(t))W (t)r(t)dt+ η(t)W (t−)
{
µ(t)dt+ σ(t)dB(t) +

∫
R
zÑ(dt, dz)

}
W (0) = x > 0 (Initial capital) or, collecting terms:

(14)

dW (t) = W (t−) {r(t) + (µ(t)− r(t))η(t)} dt+ σ(t)η(t)dB(t)

+ η(t)
∫
R
zÑ(dt, dz)t ∈ [0, T ]W (0) = x > 0 (Initial capital)

(15)

A key element for the analysis of the paper is how to define an admissible portfolio under
the different filtration’s in use.

Definition 4.1. Given a small and rational investor, a porfolio process η(t) is assumed
to be It-admissible for each t ∈ [0, T ] if:

i is It-adapted for each t, where 0 < t < T <∞

ii EP
∫ T

0 [|µ(t)− r(t)||η(t)|+ σ2(t)η2(t) + η2(t)
∫
R α

2(t)νIt(dz)dt] <∞

iii α(t) ≥ −1 a.s. for dt× νItdz for a.a. t and z

Given this framework we analyze the stochastic control problem of a small investor whose
goal is to maximize EP (Uη(t)(T )) over a finite horizon in continuous time t ∈ [0, T ] and
over the class of all possible time (t) admissible portfolios AIt(t).
While is at least since Merton (1969)[10] and Samuelson (1969) [11] that the stochastic
control problem for (Ft) t > 0 = F -adapted portfolios is a well-known problem in
literature (a good review of the subject is, among the others, Cvitanic and Karatzas (1992)
[12]), the one for an Itô-Lévy market model with a suboptimal information set is not.
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5. Optimal Portfolio Under full information(Theoretical
case(It = Ft))

In this chapter we solve the portfolio optimization problem for an investor with power
utility function under the theoretical case: when the filtration set is the complete one by
using dynamic programming method.

5.0.1 Hamilton-Jacobi-Bellman equation

The stochastic control approach is based on showing that under certain conditions the
value function equation (3) satisfies the Hamilton-Jacobi-Bellman (HJB) equation by
using the following Levy-itô formula.

dV (t,Wt) =
{
dV

dt
(t,Wt) + [ηt(µt − rt) + rt]Wt

dV

dw
(t,Wt) + 1

2W
2
t η

2
t σ

2
t

d2V

dw2 (t,Wt)
}
dt

+ ηtWtσ
dV

dw
dB(t) +

∫
R
{V (t,Wt− + ηtWt−γ(t, z,Wt))− V (t,Wt−)

− ηtWt−
dV

dw
(t,Wt)γ(t, z,Wt−)}ν(dz)dt

+
∫
R
{V (t,Wt + ηtγ(t,Wt− , z))− V (t,Wt−)} Ñ(dt, dz)

Showing VIt(t, x) = supη∈AItE[(τ,W η(t)(T ))|W η = x] for stopping time τ ≥ t,
substituting in for τ = t the representation V (s,Ws) above, and taking expectation in
which the term term with dBt and Ñ(dt, dz) have expectation 0 under some conditions
,and letting s→ t by mean-value theorem we get HJB equation.

sup
η∈Fs

EP{dV
dt

(t, x) + [η∈Fs(µ− r) + r]xdV
dw

(t, x) + 1
2x

2η2
∈Fsσ

2d
2V

dw2 (t, x)

+
∫
R
{V (t, x+ η∈Fsxγ(t, z))− V (t, x)− η∈Fsx

dV

dw
(t, z)γ(t, z)}νFs(dz)} = 0

(16)

The HJB approach then consists of three steps:

• Finding the maximizer η∗ in (14) as a function of t, x, and of the partial derivatives
of V .

• Plugging η∗ back into the HJB equation yields a partial differential equation for V .
The solution V can be put into η∗ and using x = W ∗

t at t one obtains candidate η∗t
for the optimal strategy.

• Finally it has to be verified that V obtained from solving the HJB equation is indeed
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the value function. Typical verification results require appropriate smoothness and
growth conditions.

Often, step (2) can only be solved numerically and thus step (3) may be difficult.Then
this approach only yields a candidate for the optimal policy. An important step towards a
solution is a reduction of the dimension. Since we consider power utility we expect that
V scales as

V (t, x) = xθ

θ
h(t), x > 0.

Under sufficient smoothness of V , partial derivatives then are

Vt = xθ

θ
ht, Vx = xθ−1h(t), Vxx = (θ − 1)xθ−2h(t)

and V (t, x+ η∈Fsxγ(t, z)) = xθ

θ
h(t)(1 + η∈Fsγ)θ

By substituting this in equation (14) and dividing xθ

θ
we get

sup
η∈Fs
{ht + [η∈Fs(µ− r) + r]h(t) + 1

2η
2
∈Fsσ

2(θ − 1)h(t)

+ h(t)
∫
R
{(1 + η∈Fsγ(t, z))θ − 1− η∈Fsγ(t, z)}νFs(dz)} = 0

(17)

So the optimal portfolio under full information η∗∈Fs satisfy

xθ

θ
h(t){(µ− r) + η∗∈Fsσ

2(θ − 1) +
∫
R
{θγ(1 + η∗∈Fsγ(t, z))θ−1 − γ(t, z)}νFs(dz)} = 0

(18)

and exists if µ− r ≤ σ2(1− θ) +
∫
R[1− θ(1 + γ)θ−1]γνFs(dz)

The Hamilton-Jacobi-Bellman equation as Integro-partial differential equation is written
as follows,

ht + {η∗∈Fs(µ− r) + r + 1
2η
∗2
∈Fsσ

2(θ − 1) +
∫
R
{(1 + η∗∈Fsγ(t, z))θ − 1

−η∗∈Fsγ(t, z)}νFs(dz)}h(t) = 0
(19)
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Hence h(t) satisfy the ODE with terminal value

h′(t) + Lh(t) = 0 , h(T ) = 1

So we have V (x, t) = xθ

θ
expL(T − t) where,

L = η∗∈Fs(µ− r) + r + 1
2η
∗2
∈Fsσ

2(θ − 1) +
∫
R
{(1 + η∗∈Fsγ(t, z))θ − 1− η∗∈Fsγ(t, z)}νFs(dz)

6. Optimal Portfolio Under partial information(real-word case (It =
Ht) ⊂ Ft)

we solve the same portfolio (3) optimization problem for an investor with power utility
function with partial observation i.e the trader at time t does not have access to all
the information Ft that can be obtained by observing the underlying Brownian motion
B(s); s ≤ t and jump process Ñ([0, t], F ); F̄ ∈ R− 0. This will be the situation if, for
example, the trader only observes the stock prices S(s); s ≤ t and not the underlying
processes. Therefore,we focus on both theoretically and conceptually, on how the missing
information of the filtration set propagates and affect onto the final profit of the investor.
Except η ∈ Ht and νHs(dz) the other parameters are affected under partial information
contents given sub optimal filtration set and we use the same procedure as the complete
one.

sup
η∈Hs

EP̂{dV
dt

(t, x) + [η∈Fs(µ− r) + r]xdV
dw

(t, x) + 1
2x

2η2
∈Hsσ

2d
2V

dw2 (t, x)

+
∫
R
{V (t, x+ η∈Hsxγ(t, z))− V (t, x)− η∈Hsx

dV

dw
(t, z)γ(t, z)}νHs(dz)} = 0

(20)

Given the evolution of the total wealth of the investor and assuming that:

EP̂ [1
θ

(W η(t)(T ))θ] <∞

To find the optimal portfolio we use extra conditioning of the expectation with respect to
Ht:

sup
η∈Hs

EP̂ [EP{dV
dt

(t, x) + [η∈Hs(µ− r) + r]xdV
dw

(t, x) + 1
2x

2η2
∈Hsσ

2d
2V

dw2 (t, x)

+
∫
R
{V (t, x+ η∈Hsxγ(t, z))− V (t, x)− η∈Hsx

dV

dw
(t, z)γ(t, z)|Hs}νHs(dz)}] = 0

(21)
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By reduction of the dimension as equation (15) we have

sup
η∈Hs

EP̂ [EP{ht + [η∈Hs(µ− r) + r]h(t) + 1
2η

2
∈Hsσ

2(θ − 1)h(t)+

h(t)
∫
R
{(1 + η∈Hsγ(t, z))θ − 1− η∈Hsγ(t, z)|Hs}νHs(dz)}] = 0

(22)

which is given as below after conditioning,

sup
η∈Hs

EP̂ [ht + [η∈Hs(µ̂− r) + r]h(t) + 1
2η

2
∈Hsσ̂

2(θ̂ − 1)h(t)+

h(t)
∫
R
{EP [(1 + η∈Hsγ(t, z))θ − 1− η∈Hsγ(t, z)]|Hs}νHs(dz)] = 0

(23)

where µ̂ = EP̂ [µt|Hs] , θ̂ = EP̂ [θ|Hs].
So the optimal portfolio under partial information η∗∈Hs satisfy

xθ̂

θ̂
h(t){(µ̂− r) + η∗∈Hsσ̂

2(θ̂ − 1) +
∫
R
{EP [θγ(1 + η∗∈Hsγ(t, z))θ−1

−γ(t, z)]|Hs}νHs(dz)} = 0
(24)

We can write the Hamilton-Jacobi-Bellman equation as the following Integro-partial
differential equation.

ht + {η∗∈Hs(µ̂− r) + r + 1
2η
∗2
∈Hsσ̂

2(θ̂ − 1) +
∫
R
{(1 + η∗∈Fsγ(t, z))θ − 1

−η∗∈Hsγ(t, z)}νHs(dz)}h(t) = 0
(25)

Hence h(t) satisfy the ODE with terminal value

h′(t) + Lh(t) = 0 , h(T ) = 1

So we have V (x, t) = xθ

θ
expL(T − t) where,

L = η∗∈Fs(µ̂− r) + r + 1
2η
∗2
∈Hsσ̂

2(θ̂ − 1) +
∫
R
{(1 + η∗∈Hsγ(t, z))θ − 1

− η∗∈Hsγ(t, z)}νHs(dz)
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7. CONCLUSIONS

In this paper,we solved the maximum expected utility problem by means of dynamic
programming techniques by conditioning on the information flow and stated the Hamilton-
Jacobi-Bellman equation as Integro-partial differential equation for the investors who
wants to maximize the expected utility from terminal wealth where we assume there
two investors in the market i.e the investor with partial information who is only able to
observe the stock price process and the investor with full information about the market
scenario.We considered an inefficient financial market with one bond and one stock
where the dynamics of the stock price process modeled by jump-Levy process.
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