A New Subclass of Bi-Univalent Functions Associated with Balancing Polynomial

Avaya Naik
Department of Mathematics, Fakir Mohan University, Balasore, Odisha-756019, India.
E-mail: avayanaik@gmail.com

Abstract

In this paper new subclass of bi-univalent function is introduced by using balancing polynomial. Then,coefficient estimate are determined for the $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for Taylor- Maclaurin coefficient of function belonging to the new class.Finally Fekete-Szegö inequalities estimate for the functions in subclasses defined.

Keywords Balancing polynomial; bi-univalent; subordination; function;analytic function; Taylor-Maclaurin coefficient, Fekete-Szegö functional.
Mathemetics Subject Classification [MSC:]: 30C45;30C50.

1. INTRODUCTION

The notion of Balancing numbers $\left(B_{n}\right), n \geq 0$ introduced by, [1]. These number have been thoroughly examined during the past 20 years. Most new studies regarding the subject include the article [2], [3],[4], [5], [6],[7][8]. Generalization of Balancing number is accessible in a number of ways [9],[10],[11], [12], [13]

Definition 1.1. [11] Assume that $x \in C$ and $n \geq 2$, Balancing polynomial are defined with the subsequent recurrence relation

$$
\begin{equation*}
\mathcal{B}_{n}(x)=6 x \mathcal{B}_{n-1}(x)-\mathcal{B}_{n-2}(x) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{B}_{0}(x)=0 \tag{1.2}\\
& \mathcal{B}_{1}(x)=1
\end{align*}
$$

Using the recurrence relation provided by(1.1) It can be attained simply that

$$
\begin{array}{r}
\mathcal{B}_{2}(x)=6 x \\
\mathcal{B}_{3}(x)=36 x^{2}-1 \tag{1.3}
\end{array}
$$

Lemma 1.2. [12] The balancing polynomial's ordinary generating function is given by

$$
\begin{equation*}
\mathcal{B}(x, z)=\sum_{n=0}^{\infty} \mathcal{B}_{n} z^{n},=\frac{z}{1-6 x z+z^{2}} \tag{1.4}
\end{equation*}
$$

Let us denote by \mathcal{A} the class of functions indicated by the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.5}
\end{equation*}
$$

which are analytic in the open unit disc $\mathcal{D}=\{z: z \in$ Cand $|z|<1\}$ normalized by $f(0)=0$ and $f^{\prime}(0)=1$. Further,denoted by S the class of analytic normalized and univalent in function in D.

The Koebe-one quarter theorem,[14], ensure that the image of D under every univalent function $f \in A$ contain a disc of radius $\frac{1}{4}$. Thus every univalent function f has a f^{-1} satisfying the $f^{-1}(f(z))=z, z \in D$ and $f^{-1}(f(w))=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$.

The inverse function f^{-1} is given by

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.6}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in D. Let \sum denote the class of bi-univalent functions defined in D. Some examples of functions in the class \sum are

$$
\frac{z}{z-1}, \frac{1}{2} \log \frac{1+z}{1-z},-\log (1-z)
$$

Koebe function is a member of of S but not in the class \sum

The \sum was first studied by [15] and showed that $\left|a_{2}\right| \leq 1.51$. Later,[16], conjecture that $\left|a_{2}\right| \leq \sqrt{2}$. After that, [17], showed that $\max \left|a_{2}\right|=\frac{4}{3}$

For two analytic function f_{1} and f_{2} such that $f_{1}(0)=f_{2}(0)$, we say that f_{1} is subordinate to f_{2} in U and write $f_{1}(z) \prec f_{1}(z), z \in U$, if there exist a Schwartz function $v(z)$ with $v(0)=0$ and $|v(z)| \leq|z|, z \in U$ such that $f_{1}(z)=f_{2}(v(z)), z \in U$. Furthermore, if the function f_{2} is univalent in U, then we have the following equivalence

$$
f_{1}(z) \prec f_{2}(z) \Leftrightarrow f_{1}(0)=f_{2} \text { and } f_{1}(U) \subset f_{2}(U)
$$

In a recent study, using Balancing polynomials [18], the authors defined the class $\mathcal{B}_{\Sigma}(\alpha ; \mathcal{B}(x, z))$ and examined the initial coefficients of the function belonging to the class $\mathcal{B}_{\sum}(\alpha ; \mathcal{B}(x, z))$ as follows:

Definition 1.3. [18] A function f is named to be in the class $\mathcal{B}_{\sum}(\alpha ; \mathcal{B}(x, z))$ if the following subordinations

$$
\begin{aligned}
& 1+\frac{z^{2-\alpha} f^{\prime \prime}(z)}{\left(z f^{\prime}(z)\right)^{1-\alpha}} \prec \frac{\mathcal{B}(x, z)}{z}=\frac{z}{1-6 x z+z^{2}}=K(x, z) \\
& 1+\frac{w^{2-\alpha} g^{\prime \prime}(z)}{\left(w g^{\prime}(w)\right)^{1-\alpha}} \prec \frac{\mathcal{B}(x, w)}{w}=\frac{w}{1-6 x w+w^{2}}=K(x, w)
\end{aligned}
$$

$z, w \in D, 0 \leq \alpha \leq 1$ and $g(w)=f^{-1}(z)$ is defined by recurrence the relation (1.1)
Theorem 1.4. [18] If $f \in \mathcal{B}_{\sum}(\alpha ; \mathcal{B}(x, z))$ and $x \in \mathbb{C} \backslash\left\{\mp \frac{1}{\sqrt[3]{2|1-2 \alpha|}}\right\}$ then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{3|x| \sqrt{6|x|}}{\sqrt{1-18 x^{2}(2 \alpha-1)}}, \tag{1.7}\\
\left|a_{3}\right| \leq|x|(9|x|+1) \tag{1.8}
\end{gather*}
$$

The following theorem gives the Fekete-Szeg \ddot{o} type inequality for the function in $\mathcal{B}_{\sum}(\alpha ; \mathcal{B}(x, z))$

Theorem 1.5. [18] If $f \in \mathcal{B}_{\sum}(\alpha ; \mathcal{B}(x, z))$ and $x \in \mathbb{C} \backslash\left\{\mp \frac{1}{\sqrt[3]{2|1-2 \alpha|}}\right\}$, then

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq \begin{cases}|x|, & \text { for }|1-\delta| \leq \frac{\left|1+18 x^{2}(2 \alpha-1)\right|}{54 x^{2}} \tag{1.9}\\ \frac{54|x| 3| | 1-\delta \mid}{\left|1+18 x^{2}(2 \alpha-1)\right|}, & \text { for }|1-\delta| \geq \frac{\left|1+18 x^{2}(2 \alpha-1)\right|}{54 x^{2}}\end{cases}
$$

Over the past few decades, they have been useful in number theory, combinatorics, numerical analysis, and other fields, theory and applications of Fibonacci, Lucas, Chebyshev, LucasLehmer, LucasBalancing polynomials, Gregory numbers, telephone numbers has become increasingly important in contemporary science. Now a days, these kinds of polynomials have been looked into by numerous authors in,[19],[20], [21], [22], [23], [24], [25], [26],[27],[28],[29]

2. COEFFICIENT BOUND OF THE CLASS $\mathcal{N}_{\sum}^{\lambda}(\mathcal{B}(x, z))$ AND THE FEKETESZEGö INEQUALITIES

Consider in the next section analytic bi-univalent function class $\mathcal{N}_{\sum}^{\lambda}(\mathcal{B}(x, z))$ deals with the Lucas balancing polynomials to obtain the estimates of the coefficients $\left|a_{2}\right|,\left|a_{3}\right|$ and Fekete-Szegö functional problem [30]

Definition 2.1. Let $\lambda \in[0,1]$ and $x \in\left(\frac{1}{2}, 1\right]$. A function $f \in \sum$ given by(1.5) is said to be in the class $\mathcal{N}_{\Sigma}^{\lambda}(\mathcal{B}(x, z))$ if the following subordination are satisfied

$$
\begin{equation*}
\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(1-\lambda)\left(\frac{z f^{\prime}(z)}{f(z)}\right) \prec \mathcal{B}(x, z)=\frac{z}{1-6 x z+z^{2}}=K(x, z) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)+(1-\lambda)\left(\frac{w g^{\prime}(w)}{g(w)}\right) \prec \mathcal{B}(x, w)=\frac{w}{1-6 x w+w^{2}}=K(x, w) \tag{2.2}
\end{equation*}
$$

where the function $g(w)=f^{-1}(w)$ is defined by(1.6).
Example 2.2. A bi-univalent function $f \in \sum$ is said to be in the class $\mathcal{N}_{\sum}^{0}(\mathcal{B}(x, z))=$ $\mathcal{S}_{\Sigma}^{*}(x, z)$, if the following subordination conditions holds:

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec \mathcal{B}(x, z) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)}{g(w)} \prec \mathcal{B}(x, w) \tag{2.4}
\end{equation*}
$$

where the function $g=f^{-1}$ is defined by (1.6).
Example 2.3. A bi-univalent function $f \in \sum$ is said to be in the class $\mathcal{N}_{\sum}^{1}(\mathcal{B}(x, z))=$ $\mathcal{K}_{\Sigma}(x, z)$, if the following subordination conditions holds:

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \mathcal{B}(x, z) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)} \prec \mathcal{B}(x, w) \tag{2.6}
\end{equation*}
$$

where the function $g=f^{-1}$ is defined by (1.6).
Let Ω be the class of all analytic function $w \in \mathbb{D}$ which satisfy that $w(0)=0$ and $|w(z)|<1$ for all $z \in \mathbb{D}$. We start by going over the following lemma, which is crucial to proving the main outcome. Subsequently, we will present the coefficient estimates for the class $\mathcal{N}_{\Sigma}^{\lambda}(\mathcal{B}(x, z))$ given in definition (2.1)

Lemma 2.4. [14] Let $w \in \Omega$ with $w(z)=\sum_{n=1}^{\infty} w_{n} z^{n}, z \in \mathbb{D}$. Then

$$
\left|w_{1}\right| \leq 1,\left|w_{n}\right| \leq 1-|w|^{2} \text { for } n \in \mathbb{N} \backslash\{1\} .
$$

Theorem 2.5. If $f \in N_{\sum}^{\lambda}(B(x, z))$ and $x \in \mathbb{C} \backslash\left\{\mp \frac{1}{\sqrt[3]{(1+\lambda)|1-(1+\lambda)|}}\right\}$, then

$$
\begin{align*}
\left|a_{2}\right| & \leq \frac{6|x| \sqrt{6 x}}{\sqrt{(1+\lambda)\left((1+\lambda)-36 \lambda x^{2}\right)}} \tag{2.7}\\
\left|a_{3}\right| & \leq|x|\left(\frac{36|x|}{(1+\lambda)^{2}}+\frac{3}{(1+2 \lambda)}\right) \tag{2.8}
\end{align*}
$$

Proof. Let $f \in N_{\sum}^{\lambda}(B(x, z))$, then from the definition (1.3), the subordination(2.1) and (2.2)satisfy.Thus ther exist an analytic function κ in D with $\kappa(0)=0,|\kappa(z)|<1$,

$$
\begin{equation*}
\left|\kappa_{i}\right|<1 \tag{2.9}
\end{equation*}
$$

such that

$$
\begin{equation*}
\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(1-\lambda)\left(\frac{z f^{\prime}(z)}{f(z)}\right)=K(x, \kappa(z)) \tag{2.10}
\end{equation*}
$$

Also there exist an analytic function Φ in D with $\Phi(0)=0,|\Phi(z)|<1$

$$
\begin{equation*}
\left|\Phi_{i}\right|<1 \tag{2.11}
\end{equation*}
$$

such that

$$
\begin{equation*}
\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)+(1-\lambda)\left(\frac{w g^{\prime}(w)}{g(w)}\right)=K(x, \Phi(w)) \tag{2.12}
\end{equation*}
$$

where $i \in N$ and the analytic function κ and Φ have the form

$$
\begin{array}{r}
\kappa(z)=\kappa_{1} z+\kappa_{2} z^{3}+\kappa_{3} z^{3}+\cdots \\
\Phi(z)=\Phi_{1} z+\Phi_{2} z^{2}+\Phi_{3} z^{3}+\cdots
\end{array}
$$

Hence from the functions $K(x, \kappa(z))$ and $K(x, \Phi(w))$ are of the form

$$
\begin{align*}
K(x, \kappa(z))= & \mathcal{B}_{1}(x)+\mathcal{B}_{2}(x) \kappa_{1} z+\left[\mathcal{B}_{2}(x) \kappa_{2}+\mathcal{B}_{3}(x) \kappa_{1}^{2}\right] z^{2}+ \tag{2.13}\\
& {\left[\mathcal{B}_{2}(x) \kappa_{3}+2 \mathcal{B}_{3}(x) \kappa_{1} \kappa_{2}+2 \mathcal{B}_{3}(x) \kappa_{1}^{3}\right] z^{3}+\cdots }
\end{align*}
$$

and

$$
\begin{align*}
K(x, \kappa(w))= & \mathcal{B}_{1}(x)+\mathcal{B}_{2}(x) \Phi_{1} w+\left[\mathcal{B}_{2}(x) \Phi_{2}+\mathcal{B}_{3}(x) \Phi_{1}^{2}\right] w^{2}+ \tag{2.14}\\
& {\left[\mathcal{B}_{2}(x) \Phi_{3}+2 \mathcal{B}_{3}(x) \Phi_{1} \Phi_{2}+2 \mathcal{B}_{3}(x) \Phi_{1}^{3}\right] w^{3}+\cdots }
\end{align*}
$$

so comparing the corresponding coefficients in (2.10) by (2.13) and (2.12) by (2.14) we obtained that

$$
\begin{gather*}
2 a_{2}=\mathcal{B}_{2}(x) \kappa_{1} \tag{2.15}\\
-(1+\lambda) 2 a_{2}=\mathcal{B}_{2}(x) \Phi_{1} \tag{2.16}\\
2(1+2 \lambda) a_{3}-(1+3 \lambda) a_{2}^{2}=\mathcal{B}_{2}(x) \kappa_{2}+\mathcal{B}_{2}(x) \kappa_{1}^{2}, \tag{2.17}\\
(3+5 \lambda) a_{2}^{2}-2(1+2 \lambda) a_{3}=\mathcal{B}_{2}(x) \Phi_{2}+\mathcal{B}_{2}(x) \Phi_{1}^{2} \tag{2.18}
\end{gather*}
$$

From (2.15) and (2.16)

$$
\begin{equation*}
\kappa_{1}=-\Phi_{1} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2(1+\lambda)^{2} a_{2}^{2}}{\mathcal{B}_{2}^{2}(x)}=\left(\kappa_{1}^{2}+\Phi_{1}^{2}\right) \tag{2.20}
\end{equation*}
$$

also from the summation of the equation (2.17) and (2.18)we easily obtained

$$
\begin{equation*}
(2+2 \lambda) a_{2}^{2}=\mathcal{B}_{2}(x)\left(\kappa_{1}+\Phi_{2}\right)+\mathcal{B}_{3}(x)\left(\kappa_{1}^{2}+\Phi_{1}^{2}\right) \tag{2.21}
\end{equation*}
$$

By using (2.20)in (2.21) we have

$$
\begin{equation*}
a_{2}^{2}=\frac{\mathcal{B}_{2}^{3}(x)\left(\kappa_{2}+\Phi_{2}\right)}{\mathcal{B}_{2}^{2}(x)-(1-\lambda) \mathcal{B}_{3}(x)} \tag{2.22}
\end{equation*}
$$

considering the relation (1.2) and (1.3) and using them in (2.22), we get

$$
\begin{equation*}
a_{2}^{2}=\frac{108 x^{3}\left(\kappa_{2}+\Phi_{2}\right)}{(1+\lambda)\left((1+\lambda)-36 \lambda x^{2}\right)} \tag{2.23}
\end{equation*}
$$

Using (2.9) and (2.11) together with the triangle's inequality in in the (2.23) it follows

$$
\begin{equation*}
\left|a_{2}\right|=\frac{6|x| \sqrt{6 x}}{\sqrt{(1+\lambda)\left((1+\lambda)-36 \lambda x^{2}\right)}} \tag{2.24}
\end{equation*}
$$

Also if we subtract from (2.17) from (2.18), considering (2.19), we have

$$
(4+8 \lambda) a_{3}-(8 \lambda+4) a_{2}^{2}=\mathcal{B}_{x}\left(\kappa_{2}-\Phi_{2}\right)
$$

then

$$
\begin{equation*}
a_{3}=\frac{\mathcal{B}_{2}(x)\left(\kappa_{2}-\Phi_{2}\right)}{(4+8 \lambda)}+a_{2}^{2} \tag{2.25}
\end{equation*}
$$

This equation combine with (2.20)leads to

$$
\begin{equation*}
a_{3}=\frac{B_{2}^{2}(x)\left(\kappa_{1}^{2}+\Phi_{1}^{2}\right)}{2(1+\lambda)^{2}}+\frac{B_{2}(x)\left(\kappa_{2}+\Phi_{2}\right)}{(4+8 \lambda)} \tag{2.26}
\end{equation*}
$$

Utilizing the triangle inequality (2.9),(2.11) and (2.22)from (2.26) it follows

$$
\begin{equation*}
\left|a_{3}\right| \leq|x|\left(\frac{36|x|}{(1+\lambda)^{2}}+\frac{3}{(2 \lambda+1)}\right) \tag{2.27}
\end{equation*}
$$

for the special choice of the parameter λ we obtain the following:

Corollary 2.6. If $\in \mathcal{N}_{\Sigma}^{\lambda}(\mathcal{B}(x, z))$, then our results coincides with the results Theorem 1 in .

Corollary 2.7. If $f \in \mathcal{N}_{\sum}^{\lambda}(\mathcal{B}(x, z))$, and $\lambda=1, x \in \mathbb{C} \backslash\left\{\mp \frac{\sqrt{2}}{6}\right\}$ then we obtain.

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{3|x| \sqrt{6|x|}}{\sqrt{1-18 x^{2}}} \\
& \left|a_{3}\right| \leq|x|(9|x|+1)
\end{aligned}
$$

Theorem 2.8. If $f \in N_{\sum}^{\lambda}(B(x, z))$ and $x \in \mathbb{C} \backslash\left\{\mp \frac{1}{\sqrt[3]{(1+\lambda)|1-(1+\lambda)|}}\right\}$, then

$$
\left|a_{3}-\varphi a_{2}^{2}\right| \leq \begin{cases}|x| & \text { for }|1-\varphi| \leq \frac{\left|(1+\lambda)\left((1+\lambda)-36 \lambda x^{2}\right)\right|}{216 x^{3}} \tag{2.28}\\ \frac{216\left|x^{3}\right| 11-\varphi \mid}{\left|(1+\lambda)\left((1+\lambda)-36 \lambda x^{2}\right)\right|} & \text { for }|1-\varphi| \geq \frac{\left|(1+\lambda)\left((1+\lambda)-36 \lambda x^{2}\right)\right|}{216 x^{3}}\end{cases}
$$

Proof. If $f \in N_{\sum}^{\lambda}(B(x, z))$ has the form (1.5) from the equations (2.22) and (2.25) we get

$$
\begin{array}{r}
a_{3}-\varphi a_{2}^{2}=a_{2}^{2} \frac{\mathcal{B}_{2}(x)\left(\kappa_{2}-\Phi_{2}\right)}{(8 \lambda+4)}-\varphi a_{2}^{2} \tag{2.29}\\
=(1-\varphi) a_{2}^{2}+\frac{\mathcal{B}_{2}(x)\left(\kappa_{2}-\Phi_{2}\right)}{(8 \lambda+4)} \\
=\mathcal{B}_{2}(x)\left\{\left[\hbar(\varphi)+\frac{1}{(8 \lambda+4)}\right] \kappa_{2}+\left[\hbar(\varphi)+\frac{1}{(8 \lambda+4)}\right] \Phi_{2}\right\}
\end{array}
$$

where $\hbar(\varphi)=\frac{(1-\varphi) \mathcal{B}_{2}^{2}(x)}{2(1+\lambda)\left[\mathcal{B}_{2}^{2}(x)-(1+\lambda) \mathcal{B}_{3}(x)\right]}$. Using the inequalities (2.9), (2.11) and applying lemma (2.4) we obtained the desired results.

Corollary 2.9. If $\in \mathcal{N}_{\sum}^{\lambda}(\mathcal{B}(x, z))$, then our results coincides with the results Theorem 1 in.

Corollary 2.10. If $f \in \mathcal{N}_{\sum}^{\lambda}(\mathcal{B}(x, z))$, and $\lambda=1, x \in \mathbb{C} \backslash\left\{\mp \frac{\sqrt{2}}{6}\right\}$ then we obtain.

$$
\left|a_{3}-\varphi a_{2}^{2}\right| \leq \begin{cases}|x|, & \text { for }|1-(\varphi)| \leq \frac{\left|1+18 x^{2}\right|}{54 x^{2}} \\ \frac{216\left|x^{3}\right||1-\varphi|}{\left|(1+\lambda)\left((1+\lambda)-36 \lambda x^{2}\right)\right|} & \text { for }|1-(\varphi)| \geq \frac{\left|1+18 x^{2}\right|}{54 x^{2}}\end{cases}
$$

3. CONCLUSION

In this research, we introduced a new subclass of bi-univalent functions defined in the open unit disc using balancing polynomials. Then we investigated $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the initial two functions' Taylor-Maclaurin coefficients that belong to the new class and Fekete-Szegö type inequality for defined subclass.

REFERENCES

[1] A. Behera, G.K. Panda, On the square roots of triangular numbers, Fibonacci Quarterly,Vol.37, 1999, pp.98-105.
[2] R. K. Davala, G. K. Panda, On sum and ratio formulas for balancing numbers, Journal of the Ind. Math. Soc., Vol.82, No.12, 2015, pp.23-32.
[3] R. Frontczak, L. Baden Württemberg, A note on hybrid convolutions involving Balancing and Lucas Balancing numbers, Appl. Math. Sci.,Vol.12, No.25, 2018, pp.2001-2008
[4] R. Frontczak, L. Baden Württemberg, Sums of balancing and Lucas Balancing numbers with binomial coefficients, Int. J. Math. Anal., Vol.12, No.12, 2018, pp.585-594.
[5] R. Keskin, O. Karaatlı, Some new properties of balancing numbers and square triangular numbers, Journal of integer sequences, Vol.15, No.1, 2012, pp.1-13.
[6] B.K. Patel, N.Irmak, P.K. Ray, Incomplete balancing and Lucas-balancing numberMath.Rep.,Vol.20, No.70, 2018, pp.59-72.
[7] T. Komatsu, G.K. Panda, On several kinds of sums of balancing numbers, arXiv:1608.05918, (2016).
[8] P.K Ray, Balancing and Lucas-balancing sums by matrix methods, Math. Rep. (Bисиr.),Vol.17, No.2, 2015, pp.225-233.
[9] A. Berczes, K. Liptai and I. Pink, On generalized balancing sequences, The Fibonacci Quart., Vol.48, No.2, 2010, pp.121-128.
[10] K. Liptai, F. Luca, A. Pinter and L. Szalay, Generalized balancing numbers, Ind. Math.(N.S.), Vol.20, 2009, pp.87-100.
[11] P. K. Ray, Some Congruences for Balancing and Lucas Balancing Numbers and Their Applications, Integers,Vol.14, No.A8, 2014.
[12] R. Frontczak, On balancing polynomials, Appl. Math. Sci., Vol.13, No.2,2019, pp.57-66.
[13] R. K. Davala, G. K. Panda, On sum and ratio formulas for balancing numbers, Journal of the Ind. Math. Soc., Vol.82, No.12, 2015,pp.23-32.
[14] P. L. Duren, Univalent Functions,Grundlehren der Mathematischen WissenschaftenSpringer, New York, USA 259 (1983).
[15] Lewin, M.: On a coefficient problem for Biunivalent functions, Proc. Am.Math. Soc,.Vol. 18, 1967, pp.63-68.
[16] D. A. Brannan,; J. G Clunie,. Aspets of contemporary complex analysis, In proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, July, 1979, Academic Press, New York and London, 1980.
[17] Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch. Ration. Mech. Anal., Vol.32, 1969,pp.100-112.
[18] Arzu. A Initial Coefficient of Bi- Univalent function Linked with Balancing Coefficients, WEAS TRANJACTION on MATHEMATICS, Vol.22, 2023.
[19] İ. Aktaş, Inci Karaman, On Some New Subclasses of Bi-Univalent Functions Defined by Balancing Polynomials, KMU Journal of Engineering and Natural Sciences, Vol.5, No.1, 2023, pp. 2532.
[20] A. Akgül, F.M. Sakar, A new characterization of (P, Q) Lucas polynomial coefficients of the bi-univalent function class associated with q -analogue of Noor integral operator. Afrika Matematika, 2022 Sep Vol.33, No.3,pp. 87.
[21] A. Akg \ddot{u}, T.Shaba, (U, V) Lucas polynomial coefficient relations of the biunivalent function class, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 2022 Dec 12 Vol. 71 No.4, pp. 112135.
[22] A. Akgül, On a family of bi-univalent Functions related to the Fibonacci numbers. Mathematica Moravica, 2022, Vol.26, No.1, pp. 10312.
[23] A. Akgül, (P, Q) Lucas polynomial coefficient inequalities of the bi-univalent function class, Turkish Journal of Mathematics, 2019, Vol. 43, No.5, pp. 21706.
[24] A. Akg \ddot{l}, Coefficient estimates of a new biunivalent function class Introduced by Lucas Balancing polynomial, Int. J. Open Problems Compt. Math., Vol.16, No.3, 2023, pp. 3647.
[25] Ş. Altınkaya and S. Yalçın, On the (p, q) Lucas polynomial coefficient bounds of the biunivalent function class, Boletín de la Sociedad Matemática Mexicana, 2018, pp. 19.
[26] Ş. Altinkaya, S. Yalçın, Some application of the (p, q)Lucas polynomials to the biunivalent function class 3a3, Mathematical Sciences and Applications E Notes, Vol.8, No.1, 2020, pp.134-141.
[27] F. M. Sakar, S. M.Aydoğan, Initial bounds for certain subclass of certain subclass of Generalized Salagean type biunivalent functions associated with the Horadam polynomials, Journal of Quality Measurement and Analysis JQMA, Vol.15, No.1, 2019, pp.89-100.
[28] R. Öztürk R, İ. Aktaş, Coefficient estimates for two new subclasses of biunivalent functions defined by Lucas Balancing polynomials, Turkish J. Ineq., Vol.7, No.1, 2023, pp. 5564.
[29] G. Murugusundaramoorthy, K. Vijaya, T.Bulboaca, Initial coefficient bounds for biunivalent functions related to Gregory coefficients, Mathematics, Vol. 11, No. 13, 2023, pp. 2857.
[30] Fekete, M.; Szegö, G. Eine Bemerkung Über Ungerade, Schlichte Funktionen, J. Lond.Math. Soc., vol.18,No.2,1933,pp.85-89.

