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Abstract

The numerical solution of hyperbolic partial differential equations (PDEs) is
used in many applications in applied mathematics and engineering. These
equations are frequently utilized in many different domains of science and
mathematical engineering, such as structure vibration, electrical signal
transmission and propagation, and random walk theory. This study will show
the formulation of a novel accelerated version of the explicit decoupled group
iterative approach for solving a three-dimensional second order hyperbolic
telegraph equation. The proposed method stability quality is then investigated
using certain new fundamental theorems. To confirm the findings, numerical
experiments will be carried out.
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1. Introduction

In recent years, various numerical methods such as finite difference, finite element and
collocation methods have been developed for solving one-, two- and three dimensional
telegraph equations [1-8]. Improved techniques using explicit group methods derived
from the standard and skewed (rotated) finite difference operators have been developed
in solving such equations [9-12]. The group methods depend on rotated finite difference
operator were shown to require less execution time requirements than the common
point iterative methods based on the centered difference approximations [13-18]. In
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addition, several preconditioned strategies reported in the literature have been used for
improving the convergence rate of explicit group methods derived from the standard
and rotated finite difference operators in the solution of partial differential equations
(PDEs) [19-23]. Therefore, in this study, the formulation of new group iterative
methods based on the rotated seven-point formulas is presented in solving the following
three dimensional telegraph equation,
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in the region Q={(x,y,z,1):0<x,y,z<1, t>0}, where a(x,y,z¢)>0 and

B(x,v,z,t)>0. The initial and boundary conditions as follow,

ou
u(x’y7z’0):ﬁ(x’y’z); E(x’y’z’o):f‘z(x’y’z)

u(0,y,z,0) = f;(¥,2,0; u(l,y,z,0) = f,(y,2,1); (2)
u(x,0,z,t) = fi(x,z,t);  u(x,1,z,t) = fo(x,z,t);

u(x,y,0,t) = f,(x,y,t);  u(x,y,1,t) = fo(x,»,1).

Mohanty [8], proposed a three-level implicit unconditionally stable scheme of second
order accuracy. The most important feature of this scheme is that the system may be
solved by an operator splitting technique using a tri-diagonal solver. The description of
unconditionally stable explicit decoupled group relaxation methods derived from the
rotated five-point difference approximation in solving equation (1) will be given in this
work.

The main aim of this paper is to formulate a new accelerated explicit decoupled group
iterative method in solving initial and boundary problems (1) and (2). The paper is
organized in seven sections: Section 2 describes the formulation of rotated finite
difference approximation in solving the 3D second order hyperbolic equation. In
Section 3, A brief description of the derivation of Eight-Point EDG method will be
given. In Section 4, the proposed accelerated version group iterative approximation
method will be introduced. Section 5 presented the stability of the studied group
methods. In Section 6, the numerical results are presented in order to show the
efficiency of the proposed method. Finally, the conclusion is given in Section 7.

2. Formulation of Rotated Finite Difference Approximation

In order to discritized equation (1) by using finite difference approximations, we
suppose that the domain € is discretized uniformly in the directions of x, y and z with
amesh size 4= Ax= Ay = Az =1\nWhere n s an arbitrary positive integer. The grid points

are given by (x,,y,,z,,t,) = (ih, jh,lh,mk) , where m =1,2,3,... and > 0, x > oare the
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space and time steps, respectively. Let ¢ be the exact solution of the equation (1)
and 1", the approximation solution at the grid point. The centreds seven-point formula

about the grid point can be written as follows [24]:
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where x=iAx, y=jAy, z=IAz, t=mAt; (i, j,l =0,1,2,...n—1;m=0,1,2,..). The
above equation (3) is called standard point formula and after simplification it can be
written as

p
(1+3r+a+b/2)ui,j,l,m+l _E[uiﬂ,j,l,mﬂ FU W g YU o T e T ] = (r/z)[”i+1,j,z,m
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BN}
where
AL
r 27, a :aAt, b :ﬂzAtz

By rotating the x-y and z axis clockwise 45°, with respect to the standard mesh, we

obtained the following rotated seven-point finite difference approximation for equation
(1) as

W 1 —2u, i Tt 2 Uijimn =W jym 1 [”, Lj+Ldmel —2u, et T o + Wit jstim —2u, g Tl j—l,/,m]
2 - 2 2
At 2 At 4 Ax Ax
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4 A A
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Furthermore, by rotating the x-, y-axis clockwise 45°and rotating the z-axis clockwise
315"with respect to the standard mesh [24], the following scheme obtained

Ui j1mit —2u, it TWi 1o +2u Wi jimet ~ Ui jima _1 1 [”, 1 lm 2”, et T g mn + Ui jitim 2“, g T, jfl,/,m]
2 2 2
At 2At 4 Ax Ax
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2 2
4 Ay Ay
1 [u/ L, j l+1m+1 2“[ L Jl m+1 + u:+1 SJul=1m+1 + u[—l,/,lﬂ m 2”/ Jjid.m + u1+] JJl-Lm ]
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Az Az
2
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After simplification of Egs. (5) and (6), and assuming that 4 =Ax= Ay = Az, the

following rotated formulas obtained

r
(1+3r/2+a+b /2)”i,j,1,m+| _Z[ui—]tj-*-lj,m-*-] FU g YU Tt T8 me +ui—],j.1—l,m+l]+
r (7
:Z[ui—],/'+],l,m +u1+],f—l‘1,m +ui—l,/'—]4,/,m +ui+]¢j+]¢1,m +ui+]4’/’,]+],m +ui—1,;\/—1,m]+(2_3r/2_b /Z)Ui‘/',l,m
2
+(a_1)u[,j,1,m +A[ F . 1
ij,0mt+—
2
r
(1+3r/2+a+b /2)ui,j,l,m+l __[”i-l,jm.mu Tl o T8 mn YU e met TU +”f+1,,/,1-1,m+1]
r 8
= Z[uifl,jﬂ,l,m +ui+l,/¥1,l,m +ui71,1’71,1,m +ui+l,j+1,l,m +ui*1,i,l+l,m +ui+l,/’,lflﬁm ]+(2_3r/2_b /z)ui./',[,m ( )
2
+(a_1)ui,j,l,m—l +Ar F _
t./,l,m-%-E

The rotated seven-point difference scheme can be constructed by dividing the grid
points into two types of points on the x-, y-and z-space of the solution domain. Eq.(7)is
used to compute the points at odd y-direction j =1, 3, 5, ..., while Eq.(8)is used to
compute the points at even y-direction j =2, 4, 6, ... (as shown in Fig.1). Iterations can
be generated involving one type of points only and when convergence is achieved; the
solution at the remaining points will be evaluated directly using Eq.(3). Similarly, the

process stopped when the desired time level is reached.

Fig. 1 Solution domain with rotated points

3. FORMULATION OF EIGHT-POINT EDG METHOD

The EDG method is derived based on the rotated seven-point formulas. By applying
the Eqgs.(7) and (8) to any group of eight points (cube) on a discretised solution domain
Q with Eq.(7)is applied to the points in odd y-direction and Eq.(8)is applied to the points

in even y-direction, will result in an (8 x8)system of equation as following
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El —£2 _52 0 0 0 0 0 Ui jime rhsi,j,l

—( 2 1 0 _Ez 0 0 0 0 ui+1,j+1,l m+1 I"hSl. +1,j+1,1

_Ez 61 _ﬂz 0 0 0 0 ui+l,j,l+1,m+1 rhSH—l,j N
0 _62 _Ez fl 0 0 0 0 ui,j+l,l+1,m+1 _ rhsi,j+l,l+1 (9)
0 0 0 0 b =, —L, 0 U jastm+ rhs; ;1
0 0 0 0o ¢, ¢ =Ly || Uyt gsms VhSi+1,_j 1,041
0 0 0 0 -, L Uit g m+ rhSi+1,j N
0 0 0 0 0 _62 _gz 61 Z’lz',j-¢—1,l,m+1 rhSi,j+1,l

where

0, =143r/24a+b/2; (,=r/4;
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rhSiJrl,j,/ = fZ(MiJrZ,j—l,l,mH +ui,j—1,[,m+1 +ui+2,j+1,/,m+1 +ui+2,j,l—1,m+l +ui,j+l,l,m +ui+2,j—l,/,m)
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+€2(ui—1,j,l,m U am T e em +ui—l,j+1,l—l,m)+(2_3r/2_b /2)ui,j+1,l,m
2
t@=Du; o FAUF,
This system may then be decoupled into two (4 x4) systems of equations
Ui i1m+ 49, 49, 4, {4, rhsi,j,l
Uit 1l ml _ 4 94, 4, 45 4, rhSi+1,j+1,l (10)
Ui i+1m+1 4. 493 4, 4 rhSi+1,j,l+1
Ui il i+1m+l 4 4, 4, 4, rhSi,j+1,l+1
and
Ui i 1em+ 9, 49, 49, 4; rhSi,j,Hl
ui+1,j+l,l+l,m+l _A qz ql Q3 qz rhSi+l,j+l,l+l
- (11)
Ui jima 9, 493 49, 4, rhsi+17j,l
Ui ivima q9; 49, 4, 4, rhsi,j+l,l
where

A =10 -400); q=0-200; q,=0(7(,:q,=2(,0

Similar to the rotated seven-point formula, the EDG scheme is constructed by dividing
the grid points in solution domain into two types of points. The evaluation of Eq. (10)
and Eq. (11) can be performed independently based on the types of points involved
respectively. This means that the iterative evaluation of points from each group requires
contribution of points only from the same group. Thus, iterations can be carried out on
either one of the two types of points, which is only half of the total nodal points.
Therefore, the method corresponds to the generation of iterations on one type of points
until a certain convergence criteria are met. After the convergence is achieved, the
solutions at the remaining of the total nodal points are evaluated directly once using the
centred seven-point difference formula of Eq. (3). The process is repeated until the
desired time level is achieved [24].

4. THE PROPOSED ACCELERATED EDG METHOD

The convergence rates of the EDG iterative method depend on the spectral properties
of the coefficient matrices [11]. Usually the system (9) resulted from EDG method is
large and sparse. By using the following preconditioner matrix
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¢, 0 0 O O O 0 0
O ¢, 0 —¢, 0 O 0 0
O o ¢, O 0 o0 0 0
O 0 0 O o0 O o ¢
P (12)
o 0 0 0 O O —¢, O
O 0 0 O O O o —¢,
O 0 0O 0 ¢, O 0 0
0O 0 0 O 0 —¢, O 0

where (, and (,defined as equation (9), we will obtain new preconditioned system as

the following:

=00, -0, 0 0 0 0 0 TR g,
00, 0 0 —((, O 0 0 0 || %irjorsmn g,
(0, 0 ¢ 0L, 0 0 0 0 || Ui jsitmn &
0 0 0 0 0 00, 06, || U | | & (13
0 0 0 o 0 =00, | U g,
0 0 0 0 o 20l || Y i || &
0 0 0 0 (0, -2 =2 0 Uy jtm &
0 0 0 0 oL, 0 o A~ &g

where

E, ri hs,

&, r€1h(si+1,j+1,1 _Si,j+l,l+1)

&; ’”Elhsm,j,l

& | rlihs; o,

Es - _r€2h5i+1,_/1

& _FKZhSi,jH,I

&, Mzhsi,/‘,m

Es _r€2hsi+1,j+l,l+1

The process of obtaining the new preconditioned system depend on the structure of the
coefficient matrix of the target system involves multiplying this preconditioner matrix
P by the original system of the mentioned iterative methods to produce coefficients
matrix with a spectral radius less than the spectral radius of the coefficients matrix of
the original system. The resulted preconditioned Eight-Point EDG has the same
solution of original Eight-Point EDG system (9), but that has more favorable spectral
properties. The stability of the proposed preconditioned method will be discussed in
the following section 5 and the superiority of the proposed preconditioned method in
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terms of number of iterations and execution time will be introduced in section 6 through
numerical experiments.

5. STABILITY

The stability of a finite difference scheme must be ensured so that the errors incurred
at each time level do not grow as the computation proceed [25].

Theorem 5.1 The explicit decouped group schemes (10) and (11) are unconditionally
stable when |u| <Iwhich satisfy conditions (p+q+r)>0; (p —r)>0:(p —q +r) >0,

where the conditions are obtained from stability polynomial.
Proof.

From equation (9), the resulting system can be written as

Au, ,=Bu, +Cu,  +b, (14)
where
R, R, : R, : 0
R, R, R, : R, :
R, R, R, R,
R, R, R,
R, R, R, R,
R. R, R, R, R,
4 . .
R, R, R, R, R,
R, R, R, R,
RS Rl RZ
RS R3 RI R2
RS R3 Rl RZ
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T,
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T,
T,
T,
0 T,
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k, 0 0 O 0 0 0 0 0 0 0O
0 0 0 O k, 0 0 0 0 0 0O
H,= s Hy = ; Hy= ,
0 0 0 O 0 0 0 0 0 0 0O
0 0 0 k, 0 k£, 0 0 k, 0 0 O
0 0 0 O 0 k&, 0 O k, 0 0 O
0 0 0 O 0O 0 0 O 0 £, 0 O
H6 = ; H7 = ’ M1 =
0 k, 00 0 0 0 &k, 0 0 k, O
0 0 0 O 0O 0 0 O 0O 0 0 k,
z sl
L =At’= ””*” k,=143r/24a+b/2; k,=r/4k,=2-3r/2-b/2; k,=a—1.
1+1] 1+1
1 J LI+
Equation (14) can be written as
Aoy ey ooy B =18 T I o ey Tt 0
2 2 2 2 T2 T2 2 2 2
The system can also be rewritten as
u,,=A"'Bu, +A4'Cu, ,+A7'b, (15)

Ifwelet v, =(@,,u, ) ,thenequation (15) can be written in the following

partitioned matrix form

—1 -1 -1
U | _[A7B ATCH(u, + 475, =>v,.,=Pv, +d,
u, I/ 0 u, 0

where d,, is a column vector of known values. We can observe that this technique has

reduced a three-level difference equation to a two-level difference equation. The
matrices A, B and C have the same system of linearly independent eigenvectors. The
eigenvalues u of P are given by

acb,—pn a'c
1 -

where a,,b, and c, are the eigenvalues of A4, B and C respectively. The matrices 4, B

=0, k=12,..(n-1)

and C from Eq. (14) can be written as

A=GI+(G,+G)E+GI+(G,+G)E+G,I+(G. +G,)E+(G, +G,)E+(G! +G])E+LF,
B=H,I+(H,+H)E+HJI+(H,+H)E+HI+(H. +H)E+(H,+H\)E+(H. +H)E+LF,
C=(a-1)1 (16)
where E is the matrix with unity values along each diagonal just above and below the

main diagonal and zeroes elsewhere, F'is a column vector of known values. From (16),
we can write the eigenvalues of the matrices 4, B and C as the following:
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a, =1+a+b/2+r(1+(5/2)sin’(in/2m)),

b, =2-b/2—r(1+(5/2)sin’(in/2m)), (17)
¢, =a—1

Using Eq. (17), we will get

1+a+b/2+r(1+(5/2)sin’(in/ 2m))u’* +(b/2=2+r(1+(5/2)sin’(in/ 2m))u+(1-a) =0,
pu’+qu+r=0

Under the transformation p=(1+z)/(1-z), we may write the stability polynomial P(p)

as
14z 1+z 1+z
P(W=PC— =P +a () +r =@ =q+1)2"+2p—r)z +(p+q+7)=0

Again, the necessary and sufficient conditions for |u|<1are that (p+g+r)>0;(p-r)>0

and (p-q+r)>0 . From the first condition, (p+¢+r)>0 , we can see,
1+a+b/2+r(1+(5/2)sin’ (i n/2m)) +(b /2 -2+ r(1+(5/2)sin’*( 1/ 2m)) +(1—a) > 0,

= b+r(2+5sin’(in/2m)>0

This condition is satisfied for B(x,y,z,r)>0and all variables angle n. The second
condition (p-r)>0 gives

1+a+b/2+r(1+(5/2)sin*(i n/2m))—(1—a) >0 =2a+b /2 +r(1+(5/2)sin>(i n/2m)) > 0.

This condition is satisfied for o(x,y,z,r)>0andp(x,y,z,r)>0and all variables angle n
. The third condition (p—g+r)>0 gives

1+a+b/2+r(1+(5/2)sin’(in/2m))—(b /2 -2 +r(1+(5/2)sin*(i n/2m))+(1-a) >0 =>4 > 0.
which is always true for all variables. Therefore, the explicit decoupled group iterative
scheme (10) and (11) are unconditionally stable for0<r <w, that is for all choices of
hk>0.0

Remark 5.2 Since the proposed Preconditioned Eight-Point EDG (PEP EDG) scheme
(13) has the same solution as the original EP EDG scheme (9) and the coefficient matrix
has the smaller spectral radius less than that of the coefficient matrix of the original
method. Therefore, by using the same manner of theorem 5.1, we can easily prove that
the Preconditioned Eight-Point EDG iterative scheme (13) is also unconditionally
stable for(0 <r <, that is for all choices of 4,k >0.

6. NUMERICAL RESULTS

In this section, two illustrative examples will introduce to confirm and justify our
results. Several numerical experiments will be carried out on several mesh sizes of 26,
42, 84, 168, 248 and 318, with the values of relaxation factor (Gauss Seidel relaxation
scheme) for the various mesh sizes set equal to 1.0. In this experimental work, the
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convergence criteria used throughout the experiments was the /., norm with the error
tolerance set equal to ¢=10"". The computer processing unit was Intel(R) Core(TM) i7-

7500U CPU with a memory of 8 Gb. The RMS errors are tabulated at 7=2 for a fixed A
=k/h =3.2. Preconditioned method was deemed efficient through investigations which
revealed their superiority in the context of execution time (measured in seconds),
number of iterations (k) and RMS error.

Example 6.1 Consider 7 (x,y,z,t) = (B> —20.—2).exp(¢).sinh(x ).sinh(y ).sinh(z ), With initial
condition u(x,y,z,0) =sinh(x ).sinh(y ).sinh(z ), u,(x,y,z,0)=—[sinh(x ).sinh(y ).sinh(z )]
and boundary condition

u0,y,z,t)=0, u(x,0,z,t)=0,u(x,y,0,t)=0, u(l,y,z,t)=exp(-t).sinh(l).sinh(y ).sinh(z ),
u(x,l,z ,t) =exp(—t).sinh(x ).sinh(1).sinh(z ),

u(x,y,lLt)=exp(—t).sinh(x ).sinh(y ).sinh(1).

The exact solution is u(x , y ,z ,¢) = exp(—¢ ).sinh(x ).sinh(y ).sinh(z ).

Throughout the computation, we will put the values of a=10.0, =5.0. From table 1, it
can be observed that the proposed preconditioned Eight-Point EDG require lesser
computing times than the original Eight-Point EDG method while maintaining the same
degree of accuracies. In this example the execution timings of (PEP EDG) is only about
60%—80% of the original Eight-Point EDG method. Furthermore, the proposed
preconditioned method reduced the number of iterations by about 55%—-65% as shown
in table 1.

Example 6.2 Consider f (x,y,z,t) =((B> —4)cost —2asint ))sinh(x ).sinh(y ).sinh(z ),
with initial condition, u(x,y,z,t) = cos(¢).sinh(x ).sinh(y ).sinh(z ), u(x,y,z,0) =0

and boundary condition

u(0,y,z,t)=0, u(x,0,z,¢)=0,u(x,y,0,t)=0, u(l,y,z,t)=cos(t).sinh(1).sinh(y ).sinh(z ),
u(x,1,z,t) =cos(z).sinh(x ).sinh(1).sinh(z ),

u(x,y,l,t)=cos(t).sinh(x ).sinh(y ).sinh(1).

The exact solution 1s u(x,y ,z ,¢) = cos(z).sinh(x ).sinh(y ).sinh(z ).

Throughout the computation, we will put the values of a=10.0, f=0.0. In this example
the execution timings of (PEP EDG) is only about 50%—71% of the original Eight-Point
EDG method. Furthermore, the proposed preconditioned method reduced the number
of iterations by about 45%—-56% as shown in table 2.
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Table 1. Comparison of the number of iterations, Execution time and RMS error
(Example 6.1)

N Method Elapsed Time (s) No. of iterations (k) | RMS Error
2% EP EDG 0.049 37 7.28E-4
PEP EDG 0.013 13 6.03E-4
4 EP EDG 0.561 56 5.32E-4
PEP EDG 0.207 21 3.81E-4
34 EP EDG 19.513 87 2.74E-4
PEP EDG 8.644 33 1.47E-4
168 EP EDG 697.584 116 6.63E-5
PEP EDG 320.731 47 4.52E-5
248 EP EDG 1046.663 234 8.92E-6
PEP EDG 502.922 93 5.37E-6
318 EP EDG 1286.228 294 5.04E-6
PEP EDG 584.356 115 4.61E-6

Table 2. Comparison of the number of iterations, Execution time and RMS error

(Example 6.2)
N Method Elapsed Time () No. of iterations (k) | RMS Error
26 EP EDG 0.068 45 5.43E-3
PEP EDG 0.033 21 3.22E-3
4 EP EDG 0.605 64 8.81E-3
PEP EDG 0.369 31 6.79E-3
34 EP EDG 22.784 93 9.88E-4
PEP EDG 10.426 48 7.46E-4
168 EP EDG 714.334 126 9.69E-4
PEP EDG 354.891 66 5.86E-4
248 EP EDG 1122.082 238 9.04E-5
PEP EDG 543.678 113 8.52E-5
318 EP EDG 1334.305 298 6.86E-6
PEP EDG 604.468 137 6.75E-6

7. Conclusion

In this article, we have formulated new preconditioned iterative scheme based on Eight-
Point EDG method for solving the 3D- second order hyperbolic telegraph equation. The
stability of the proposed method was analyzed and proven that its unconditional stable.
From observation of all experimental results, it can be concluded that the proposed
method may be a good alternative to solve this type of equations and many other
numerical problems.
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