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Abstract

This work investigates Hyers-Ulam stability, and Hyers-Ulam-Rassias stability
results for a coupled system of a nonlinear delay Volterra integro-differential
equation NDVIDE of the formz′i(t) = Hi

(
t, zi(t), zi(βi(t)),

∫ t
0 gi(t, s, zi(s), zi(βi(s)))ds

)
, ∀ t ∈ Ĵ ,

zi(t) = υi(t), for t ∈ [−ϱ, 0], i = 1, 2.

Our approach is based on Pachpatte’s inequality and Picard’s operator. Besides,
we extend and develop some well-known results, then give an illustrative example
for our main results.
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1. INTRODUCTION

Hyers-Ulam (HU) and Hyers-Ulam-Rassias (HUR) stabilities have received immense
consideration in recent times. To some extent, this is due to their likely application
in model situations where we cannot assume to get the exact solution of the problem
simply. We can suppose to get an approximate solution, which must be constant at
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a specific point. This has been done for an enormous number of diverse types of
equations. Among those, we identify differential equations, functional equations and
integral equations, see [1]. The main Ulam stability problem of functional equations
has been developed into various kinds of equations. It has been noted that the Ulam
stability theory is found to be useful in the study of differential equations, integral
equations, difference equations, fractional differential equations, and other similar
problems. Ulam-type stability problem was formulated by Ulam in 1941 [10], then
later developed and improved by many researchers, see [4, 12]. When should the
solutions of an equation that differ somewhat from the given one be close to the given
equation’s solution. A considerable number of research papers dealing with the UH
and UHR stabilities of various kinds of differential and integral equations can be found
in the literature. One can refer to for basic results and recent developments on Ulam
stabilities of differential and integral equations in [2, 12, 13, 14, 15, 16, 17]. Besides,
several research papers have been carried out on Ulam-Hyers stability for NDVIDEs
and Volterra integral equations recently [18, 19]. In [20], UH and UHR stabilities have
been investigated for the class of the following NVIDE

z′(t) = h

(
t, z(t),

∫ t

t0

g(t, s, z(s), z(ς(s)))ds

)
,

z(t0) = e, e ∈ (−∞,∞).

In [21], Pachpatte’s inequality and Picard operator have been applied to study existence
and uniqueness and Ulam type stabilities for the NDVIDE, i.e.,z′(t) = H

(
t, z(t), z(ς(t)),

∫ t

0
g(t, s, z(s), z(ς(s)))ds

)
, t ∈ [0, b],

z(t) = θ(t), for t ∈ [−r, 0].

(1)

Motivated by above works, we consider the following NDVIDE

z′i(t) = Hi

(
t, zi(t), zi(βi(t)),

∫ t

0

gi(t, s, zi(s), zi(βi(s)))ds

)
, ∀ t ∈ Ĵ , (2)

zi(t) = υi(t), for t ∈ [−ϱ, 0], i = 1, 2, (3)

where J = [t0, T ], υi ∈ C([−ϱ, 0],R), Hi : [t0, T ] × R × R × R → R, gi :

[t0, T ] × [t0, T ] × R × R → R and βi : [t0, T ] → [−ϱ, 0] are continuous functions
with βi(t) ≤ t, for all i = 1, 2.

Observe that the single problem (1) has been studied by Kucche and Shikhare [21],
using Pickard’s method. Here we will study a coupled system of NDVIDE (2) with a
finite delay. Our approach is smooth and depends on Pachpatte’s inequality and Picard’s
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operator. Moreover, our analysis costs the minimum conditions sufficient to discuss the
stability analysis in the sense of UH and UHR.

The structure of this article is as follows: In section 2, we mention some concepts and
principles. Section 3 discusses UH and UHR stabilities for NDVIDE (2). An example
to illustrative the obtained results is given in section 4. At the end, the last section deals
with the conclusion.

2. PRELIMINARIES

Here we will go to call back some principal definitions and conditions to discuss the
Ulam type stabilities for NDVIDEs (2)
For every ϵ > 0 and a nonnegative increasing continuous function Φ ∈ C([−ϱ, T ],R+).
We consider the following inequalities:

|D′
i(t)− Gi(t)| ≤ ϵ, i = 1, 2, t ∈ Ĵ , (4)

|D′
i(t)− Gi(t)| ≤ Φ(t), i = 1, 2, t ∈ Ĵ , (5)

|D′
i(t)− Gi(t)| ≤ ϵΦ(t), i = 1, 2, t ∈ Ĵ , (6)

where

Gi(t) = Hi

(
t,Di(t),Di(βi(t)),

∫ t

0

gi(t, s,Di(s),Di(βi(s)))ds

)
, i = 1, 2.

Definition 2.1. Equation (2) is called UH stable if there is a constant K > 0 such that
for every ϵ > 0 and for every solution Di ∈ C

′
([−ϱ, T ],R) of (4) there is a solution

zi ∈ C
′
([−ϱ, T ],R), i = 1, 2 of (2) satisfying

|Di(t)− zi(t)| ≤ Kϵ, for t ∈ [−ϱ, T ].

Definition 2.2. Equation (2) is called generalized UH stable if there is θHi
∈

C(R+,R+), θHi
(0) = 0 such that for every solution Di ∈ C

′
([−ϱ, T ],R) of (4) there

is a solution zi ∈ C
′
([−ϱ, T ],R), i = 1, 2 of (2) satisfying

|Di(t)− zi(t)| ≤ θHi
ϵ, for t ∈ [−ϱ, T ], i = 1, 2.

Definition 2.3. Equation (2) is called the UHR stable concerning continuous function
Φ ∈ C(Ĵ ,R+) if there is a constant KΦ > 0 such that for every ϵ > 0 and for every
solution Di ∈ C

′
([−ϱ, T ],R) of (6) there is a solution zi ∈ C

′
([−ϱ, T ],R), i = 1, 2 of

(2) satisfying

|Di(t)− zi(t)| ≤ KΦϵΦ(t), for t ∈ [−ϱ, T ], i = 1, 2,
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Definition 2.4. Equation (2) is called the generalized UHR stable concerning
continuous function Φ ∈ C(J,R+) if there is a constant KΦ > 0 such that for
every ϵ > 0 and for every solution Di ∈ C

′
([−ϱ, T ],R) of (5) there is a solution

zi ∈ C
′
([−ϱ, T ],R), i = 1, 2 of (2) satisfying

|Di(t)− zi(t)| ≤ KΦΦ(t), for t ∈ [−ϱ,R], i = 1, 2,

Remark 2.1. Note that a function Di ∈ C
′
(Ĵ ,R) is a solution of the estimate (4) if

there is a pDi
∈ C(Ĵ ,R) (which depends on Di) such that

(1) |pDi
(t)| ≤ ϵ, t ∈ Ĵ ,

(2) D′
i(t) = Hi

(
t,Di(t),Di(βi(t)),

∫ t

0
gi(t, s,Di(s),Di(βi(s)))ds

)
+ pDi

(t), i =

1, 2, t ∈ Ĵ .

Similar arguments hold for the inequalities (5) and (6).

Remark 2.2. If Di ∈ C
′
(Ĵ ,R) fulfills the estimate (4), then Di is a solution of the

following integral inequality:∣∣∣∣Di(t)−Di(0)−
∫ t

0

Hi

(
s,Di(s),Di(βi(s)),

∫ s

0

gi(s, σ,Di(σ),Di(βi(σ)))dσ

)
ds

∣∣∣∣
(7)

≤ ϵt, i = 1, 2, t ∈ Ĵ .

Indeed, if Di ∈ C
′
(Ĵ ,R) fulfills the estimate (4), by Remark 2.1, we would have

D′
i(t) = Hi

(
t,Di(t),Di(βi(t)),

∫ t

0
gi(t, s,Di(s),Di(βi(s)))ds

)
+ pDi(t), i = 1, 2, t ∈ Ĵ .

This yields that∣∣∣∣Di(t)−Di(0)−
∫ t

0

Hi

(
s,Di(s),Di(βi(s)),

∫ s

0

gi(s, σ,Di(σ),Di(βi(σ)))dσ

)
ds

∣∣∣∣
≤

∫ t

0

|pDi
(t)| ≤ ϵt, i = 1, 2.

Similar estimates can also be obtained for the inequalities (5) and (6). We use the
following inequality to obtain our main results.

Theorem 2.1. (Pachpatte’s inequality (see [22], p. 39)). Let v(t), h(t) and p(t) be
nonnegative continuous functions defined on R+, for which the inequality

v(t) ≤ m(t) +

∫ t

0

h(s)

[
v(s) +

∫ s

0

p(σ)v(σ)dσ

]
ds, for t ∈ R+,
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holds, where m(t) is nonnegative and continuous increasing function defined on R+.

Then

v(t) ≤ m(t)

[
1 +

∫ t

0

h(s)exp

(∫ s

0

h(σ) + p(σ)dσ

)
ds

]
, for t ∈ R+.

Now we give the definition of the Picard operator and state the abstract Gronwall lemma
(see Rus [23]), which are used in our subsequent analysis.

Definition 2.5. (Picard operator [23]). Let (Y , d) be a metric space. An operator
B : Y × Y is called the Picard operator if there is y∗ ∈ Y such that:
(1) HB = {y∗}, wher HB{y ∈ Y : B(y) = y} is the fixed point set of B,
(2) the sequence (Bn(x0))n∈N converges to y∗ for each y0 ∈ Y .

Lemma 2.1. (Gronwall lemma [23]). Let (Y , d,≤) be an ordered metric space and let
B : Y×Y be an nondecreasing Picard operator (HB = y∗A). Then for y ∈ Y , y ≤ B(y)

implies y ≤ y∗B, while y ≥ B(y) implies y ≥ y∗B.

3. ULAM STABILITY FOR NVIDE ON Ĵ = [T0, T ]

First, we list the following assumptions for our convenience.
(A1) (1) The functions β : [t0, T ] → [−ϱ, 0], is a continuous with βi(t) ≤ t, forall i =

1, 2,

(2) There exists real number LHi
, Lgi > 0 such that

|Hi(t,κ1,κ2,κ3)−Hi(t, κ̂1, κ̂2, κ̂3)| ≤ LHi
(|κ1−κ̂1|+ |κ2−κ̂2|+ |κ3−κ̂3|),

|gi(t, s,κ1,κ2)− gi(t, s, κ̂1, κ̂2)| ≤ Lgi(|κ1 − κ̂1|+ |κ2 − κ̂2|)

for each (t, s) ∈ Ĵ × J and κj, κ̂j,∈ R (i = 1, 2 and j = 1, 2, 3).

(A2) Let Φ ∈ ([−ϱ, T ],R+) is nonnegative, increasing and continuous and there is
a constant η > 0 such that ∫ t

0

Φ(s)ds ≤ ηΦ(t), for t ∈ Ĵ .

Theorem 3.1. Let Hi and gi in (2) satisfy the hypothesis (A1) and suppose that (A2)
holds. If TLHi

[2 + LgiT ] < 1, i = 1, 2, then the following assertions hold.

(1) Equation (3) with initial value (2) has a unique solution zi ∈ C([−ϱ, T ],R) ∩
C

′
(Ĵ ,R),
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(2) Equation (2) is UHR stable concerning the function Φ.

Proof. (1) Observe first that in view of assumption (A1)(1), the equation (3) with initial
value (2) is equivalent to the following integral equations:

zi(t) = υi(0) +

∫ t

0

Hi

(
t, zi(t), zi(βi(t)),

∫ s

0

gi(s, σ, zi(σ), zi(βi(σ)))dσ

)
ds, ∀ t ∈ Ĵ ,

zi(t) = υi(t), t ∈ [−ϱ, 0], i = 1, 2.

Let the Banach space Y = C([−ϱ, T ],R) with Chebyshev norm ∥.∥, and define the
operator BHi

: Y → Y by

BHi
(zi)(t) = υi(0) +

∫ t

0

Hi

(
t, zi(t), zi(βi(t)),

∫ s

0

gi(s, σ, zi(σ), zi(βi(σ)))dσ

)
ds, ∀ t ∈ Ĵ ,

BHi
(zi)(t) = υi(t), t ∈ [−ϱ, 0], i = 1, 2.

We can now show that BHi
has a fixed point using the contraction principle. Observe

that

|BHi
(zi)(t)−BHi

(Di)(t)| = 0, zi,Di ∈ C([−ϱ, T ],R), t ∈ [−ϱ, T ], i = 1, 2. (8)

Next, for any t ∈ Ĵ , we can write

|BHi
(zi)(t)−BHi

(Di)(t)|

≤
∫ t

0

LHi

{
|zi(s)−Di(s)|+ |zi(βi(s))−Di((βi(s))|

+

∫ s

0

[
Lgi

{
|zi(σ)−Di(σ)|+ |zi(βi(σ))−Di((βi(σ))

]
dσ

}
ds

≤
∫ t

0

LHi

{
max

0≤τ1≤σ
|zi(τ1)−Di(τ1)|+ max

0≤τ1≤σ
|zi(βi(τ1))−Di((βi(τ1))|

+

∫ s

0

[
max

0≤τ2≤σ
Lgi

{
|zi(τ2)−Di(τ2)|+ max

0≤τ2≤σ
|zi(βi(τ2))−Di((βi(τ2))

]
dσ

}
ds

≤
∫ t

0

LHi

{
max

−ϱ≤τ1≤T
|zi(τ1)−Di(τ1)|+ max

−ϱ≤σ1≤T
|zi(σ1)−Di(σ1)|

+

∫ s

0

[
max

−ϱ≤τ2≤T
Lgi

{
|zi(τ2)−Di(τ2)|+ max

0≤σ2≤T
|zi(σ2)−Di(σ2)|

]
dσ

}
ds

≤
∫ t

0

2LHi

{
∥zi −Di∥C + 2

∫ s

0

Lgi∥zi −Di∥Cdσ
}
ds (9)

≤ TLHi
(2 + LgiT )∥zi −Di∥C .
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From (8) and (9), it follows that

∥BHi(zi)(t)−BHi(Di)(t)∥C ≤ T LHi(2+LgiT )∥zi−Di∥C , zi,Di ∈ C([−ϱ, T ],R), i = 1, 2.

Since T LHi
(2 + LgiT ) < 1, i = 1, 2. On the complete space Y , the operator BHi

is a
contraction. Also the operator BHi

has a fixed point z∗i : [−ϱ, T ] → R, i = 1, 2, which
provides a solution of the problem (2), (3), by Banach contraction principle

(2) Let Di ∈ C([−ϱ, T ],R) ∩ C
′
(Ĵ ,R), be a solution of the estimate (6). Denote

by zi ∈ C([−ϱ, T ],R) ∩ C
′
(Ĵ ,R), the unique solution of the problem:

z′i(t) = Hi

(
t, zi(t), zi(βi(t)),

∫ t

0

Hi(t, s, zi(s), zi(βi(s)))ds

)
, ∀ t ∈ Ĵ ,

zi(t) = Di(t), for t ∈ [−ϱ, 0], i = 1, 2.

Then assumption (A1)(i) allows to write the following (equivalent to the above problem)
integral equation:

zi(t) = Di(0) +

∫ t

0

Hi

(
t, zi(t), zi(βi(t)),

∫ s

0

gi(s, σ, zi(σ), zi(βi(σ)))dσ

)
ds, (10)

∀ t ∈ Ĵ ,

zi(t) = Di(t), t ∈ [−ϱ, 0], i = 1, 2. (11)

If Di ∈ C([−ϱ, T ],R) ∩ C
′
(Ĵ ,R), fulfills the estimate (6), then using assumption(A2)

and Remarks 2.1 and (3), we obtain∣∣∣∣Di(t)−Di(0)−
∫ t

0

Hi

(
s,Di(s),Di(βi(s)),

∫ s

0

gi(s, σ,Di(σ),Di(βi(σ)))dσ

)
ds

∣∣∣∣
≤

∫ t

0

|pDi
(t)| ≤

∫ t

0

ϵΦ(s)ds ≤ ϵηΦ(t), t ∈ Ĵ , i = 1, 2. (12)

Observe that |Di(t) − zi(t)| = 0 for t ∈ [−ϱ, 0]. Next, using assumption (A2)(2), the
equation(11) and the estimate in (12), for any t ∈ Ĵ , we can write

|Di(t)−zi(t)| =
∣∣∣∣Di(t)−Di(0)−

∫ t

0
Hi

(
s, zi(s), zi(βi(s)),

∫ s

0
gi(s, σ, zi(σ), zi(βi(σ)))dσ

)
ds

∣∣∣∣
≤

∣∣∣∣Di(t)−Di(0)−
∫ t

0
Hi

(
s,Di(s),Di(βi(s)),

∫ s

0
gi(s, σ,Di(σ),Di(βi(σ)))dσ

)
ds

∣∣∣∣
+

∫ t

0

∣∣∣∣Hi

(
s,Di(s),Di(βi(s)),

∫ s

t0

gi(s, σ,Di(σ),Di(βi(σ)))dσ

)
ds

−
∫ t

0

∣∣∣∣Hi

(
s, zi(s), zi(βi(s)),

∫ s

0
gi(s, σ, zi(σ), zi(βi(σ)))dσ

)
ds

∣∣∣∣
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≤ ϵηΦ(t) +

∫ t

0
LHi

{
|Di(s)− zi(s)|+ |Di(βi(s))− zi(βi(s))|

+

∫ s

0
Lgi

[
|Di(σ)− zi(σ)|+ |Di(βi(σ))− zi(βi(σ))|

]
dσ

}
ds, i = 1, 2. (13)

According to (13), let the operator B : C([−ϱ, T ],R+) → C([−ϱ, T ],R+) defined by

B(vi)(t) = Di(t), t ∈ [−ϱ, 0], i = 1, 2,

B(vi)(t) = ϵηΦ(t)+LHi

∫ t

0

{
vi(s)−wi(βi(s))+Lgi

∫ s

0

vi(σ))−wi(βi(σ))

}
, ∀ t ∈ Ĵ .

Next, we show that B is a Picard operator (see Definition 2.5). To this end, observe
first that for any vi, wi ∈ C([−ϱ, T ],R+) we have |B(vi)(t) − B(wi)(t)| = 0, t ∈
[−ϱ, 0], i = 1, 2.

Using hypothesis (A1)(ii), for all t ∈ [−ϱ, 0], i = 1, 2, we can write

|B(vi)(t)−B(wi)(t)|

≤ LHi

∫ t

0

{
|vi(s)− wi(s)|+ |vi(βi(s))− wi(βi(s))|

+ Lgi

∫ s

0

[
|vi(σ)− wi(σ)|+ |vi(βi(σ))− wi(βi(σ))|

]
dσ

}
ds

≤
∫ t

0

LHi

{
max

0≤τ1≤σ
|vi(τ1)−wi(τ1)|+ max

0≤τ1≤σ
|vi(βi(τ1))−wi((βi(τ1))|

+

∫ s

0

[
max

0≤τ2≤σ
Lgi

{
|vi(τ2)− wi(τ2)|+ max

0≤τ2≤σ
|vi(βi(τ2))− wi((βi(τ2))

]
dσ

}
ds

≤
∫ t

0

LHi

{
max

−ϱ≤τ1≤T
|vi(τ1)− wi(τ1)|+ max

−ϱ≤σ1≤T
|vi(σ1)− wi(σ1)|

+

∫ s

0

[
max

−ϱ≤τ2≤T
Lgi

{
|vi(τ2)− wi(τ2)|+ max

0≤σ2≤T
|vi((σ2)− wi((σ2)

]
dσ

}
ds

≤
∫ t

0

LHi

{
2∥vi−wi∥C+2

∫ s

0

Lgi∥vi−wi∥Cdσ
}
ds ≤ T LHi

(2+LgiT )∥vi−wi∥C .

Therefore,

∥B(vi)−B(wi)∥C ≤ T LHi
(2 + LgiT )∥vi − wi∥C , vi, wi ∈ C([−ϱ, T ],R), i = 1, 2.

Since T LHi
(2 + LgiT ) < 1, B is a contraction on C([−ϱ, T ],R+) by Banach

contraction principle, we conclude that B is a Picard operator and HB = {v∗i } Then,
for t ∈ Ĵ , i = 1, 2, we have.

v∗i (t) = ϵηΦ(t) + LHi

∫ t

0

{
v∗i (s)− v∗i (βi(s)) + Lgi

∫ s

0

[
v∗i (σ)− v∗i (βi(σ))

]
dσ

}
ds.
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Note that v∗i is increasing and (v∗i )
′ ≥ 0 on Ĵ . Therefore v∗i (βi(t)) ≤ v∗i (t) for

βi(t) ≤ t,

t ∈ Ĵ , i = 1, 2, and hence

v∗i (t) ≤ ϵηΦ(t) +

∫ t

0

2LHi

(
u∗
i (s) +

∫ s

0

2Lgi

[
v∗i (σ)

]
dσ

)
ds.

Next, using Pachpatte’s inequality given in Theorem 2.1, we obtain

v∗i ≤ ϵηΦ(t)

[
1 +

∫ t

0

2LHi
exp

(∫ s

0

[2LHi
+ Lgi ]dσ

)
ds

]
≤ ϵηΦ(t)

{
1 + 2LHi

(
exp(2LHi

+ Lgi)T − 1

2LHi
+ Lgi

)
ds

}
(14)

Taking KΦ = η

{
1 + 2LHi

(
exp(2LHi

+Lgi )T −1

2LHi
+Lgi

)
ds

}
from inequality (14), we get

v∗i (t) ≤ KΦϵΦ(t), t ∈ [−ϱ, T ]

For vi(t) = |Di(t)− zi(t)| the inequality (13) gives that vi(t) ≤ B(vi)(t). So, we have
proved that B : C([−ϱ, T ],R+) → C([−ϱ, T ],R+) is an increasing Picard operator
such that for vi ∈ C([−ϱ, T ],R+), vi(t) ∈ Bvi(t) and HB = {v∗i }.
Hence, using the abstract Gronwall lemma (Lemma 2.1), we obtain vi(t) ≤ v∗i (t), t ∈
[−ϱ, T ], implying that

|Di(t)− zi(t)| ≤ KΦϵΦ(t), ∀ t ∈ [−ϱ, T ], i = 1, 2. (15)

Thus, equation (2) is UHR stable concerning the function Φ. Theorem 3.1 is proved.

Corollary 3.1. Let the functions Hi and gi in (2) satisfy (A1) and assume that (A2)
holds. If T LHi

(2+LgiT ) < 1, i = 1, 2, then the problem (2), (3) has a unique solution
and the equation (2) is generalized UHR stable concerning the function Φ.

Proof. In the proof of Theorem 3.1, if we take ϵ = 1, then, we get (cf. (15)):

|Di(t)− zi(t)| ≤ KΦΦ(t), ∀ t ∈ [−ϱ, T ], i = 1, 2,

showing that the equation (2) is generalized UHR stable with concerning to the function
Φ. Using arguments similar to those applied in the proof of Theorem 3.1, one can prove
UH stability of equation (2). Observing that for Φ = 1, for all t ∈ [−ϱ, T ], the
assumption (A2) holds, we can state the following corollary of Theorem 3.1.
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Corollary 3.2. Let the functions Hi and gi in (2) satisfy the hypothesis (A1). If
TLHi

(2 + LgiT ) < 1, i = 1, 2, then the problem (2), (3) has a unique solution and
the equation (2) is UH stable.

Proof. In the proof of Theorem 3.1, if we take Φ = 1, ∀ t ∈ [−ϱ, T ] then, we get
(cf. (15)):

|Di(t)− zi(t)| ≤ Kϵ, ∀ t ∈ [−ϱ, T ], i = 1, 2,

and the result follows.

Corollary 3.3. Let Hi and gi in (2) satisfy the hypothesis (A1). If T LHi
(2 + LgiT ) <

1, i = 1, 2, then the problem (2), (3) has a unique solution and the problem (2) is
generalized UHR stable.

Proof. The result follows from Corollary 3.2, by taking Hi(ϵ) = Kϵ, i = 1, 2.

3.2. Applications. In this segment, we consider some important special cases of the
problem (2), (3)
Fix any ϱ > 0, and define βi(t) = t − ϱ, t ∈ [t0, T ], i = 1, 2. Then we obtain the
following special cases of the problem (2), (3):

z′i(t) = Hi

(
t, zi(t), zi(t− ϱ),

∫ t

0

gi(t, s, zi(s), zi(s− r)ds

)
, ∀ t ∈ Ĵ , (16)

zi(t) = υi(t), for t ∈ [−ϱ, 0], i = 1, 2. (17)

For an NVID difference equation, this is an initial value problem. Take the following
inequality into account:∣∣∣∣D′

i(t)−Hi

(
t,Di(t),Di(t−ϱ),

∫ t

0
gi(t, s,Di(s),Di(s−ϱ)ds

)∣∣∣∣ ≤ ϵΦ(t), t ∈ [−ϱ, 0], i = 1, 2,

where ϵ,Φ and υi i = 1, 2, correspond to the values given in Section 2. (Preliminaries).
For the problem (16), (17), we have the following theorem as an application of Theorem
3.1.

Theorem 3.2. Under the assumptions (A1) - (A2) and TLHi
[2 + LgiT ] < 1, i = 1, 2.

Then the problem (16), (17) has a unique solution zi ∈ C([−ϱ, T ],R) ∩ C
′
(Ĵ ,R), i =

1, 2, and the equation (16) is UHR stable with concerning to the function Φ.
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Another special case of the problem (2), (3) we obtain by taking the delay
βi(t) = t2, t ∈ [t0, T ], i = 1, 2. Then we have

z′i(t) = Hi

(
t, zi(t), zi(t

2),

∫ t

0

gi(t, s, zi(s), zi(t
2)ds

)
, ∀ t ∈ Ĵ , (18)

zi(t) = υi(t), for t ∈ [−ϱ, 0], i = 1, 2, (19)

which is an initial value problem for NVIDE. Consider the following inequality:∣∣∣∣D′
i(t)−Hi

(
t,Di(t),Di(t

2),

∫ t

0
g(t, s,Di(s),Di(s

2)ds

)∣∣∣∣ ≤ ϵΦ(t), t ∈ [−ϱ, 0], i = 1, 2,

where ϵ,Φ and υi i = 1, 2, correspond to the values given in Section 2. (Preliminaries).
For the problem (18), (19), we have the following theorem as an application of Theorem
3.1:
Theorem 3.3. Under the assumptions (A1) - (A3) and TLH[2 + LgT ] < 1. Then the
problem (18), (19) has a unique solution zi ∈ C([−ϱ, T ],R) ∩ C

′
([0, T ],R), i = 1, 2

and equation (18) is UHR stable with concerning to the function Φ.

Other Ulam type stability results for equations (16) and (18) can be obtained by using
the corresponding results from Section 3.1.

4. CONCLUSION

Using Pachpatte’s inequality and Picard’s operator method, we examined the stability
analysis in the sense of UH and UHR for NDVIDE (2).
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