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ABSTRACT 

Over the last three decades, fractional differential equations have become 

increasingly important. Later, in applied mathematics, fractional differential 

equations’ theory became a popular subject. In various fields, such as control, 

electrochemistry, polymer rheology, physics, chemistry, electromagnetic, 

viscoelasticity, porous media, and other domains, many mathematical models 

can be built using it. The research work on the monographs is referred to the 

theory and application of fractional differential equations. Furthermore, when 

studying fractional differential equations, the stochastic perturbation is 

inescapable, and it is critical to take the stochastic effect. In recent years, it has 

become clear that stochastic integrodifferential systems can better simulate 

real phenomena by developing computational approaches. Recently, for 

solving different issues, researchers have considered the spline approach as an 

ideal numerical method. Consequently, in this research, the Fractional 

Stochastic Integro-Differential (FSI-D) equations are numerically solved by 

proposing a Linear Cardinal B-spline (LCB-S) function. Naturally, all physical 

systems which evolve with respect to time are suffered from small abrupt 

changes in the form of impulses.Consequently, the fractional stochastic 

differential equation suffered by non-instantaneous impulses is carried by 

Riemann-Liouville Derivative (RLD),which is driven by fractional Brownian 

motion (fBm) and poison jumps. Following these ideas, the research work 

motivates to present fractional SDEs with time delay. Accordingly, the 
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Chelyshkov wavelet along with the Galerkin approach has been implemented 

to solve Stochastic Fractional Delay Differential Equations (SFDDEs).In order 

to achieve approximate controllability solutions for the uniqueness and 

existence of solutions is the fundamental prerequisite in the study of the 

relevant conditions, the fractional and stochastic calculus governed for solving 

nonlinear dynamic systems due to the lack of generic approaches. 

Consequently, with nonlocal conditions of the order 21   for Riemann-

Liouville fractional stochastic evolution equations’ approximate controllability 

is considered in this work. The Lebesgue dominated convergence theorem is 

used to obtain approximate controllability results. In this article, the test 

problems are conducted using Matlab software. The new method’s efficiency 

and potential are provided by the numerical experiments. In the end, 

descriptive examples are included to establish the validity and effectiveness of 

the presented approach. The proposed method is more accurate and efficient, 

which is portrayed by the obtained numerical results. 

Keywords: Fractional Stochastic Integro-Differential Equation, Linear 

Cardinal B-spline, Brownian motion, poison jumps, Riemann-Liouville, 

Fractional Delay Differential Equation. 

 

1. INTRODUCTION 

Derivatives and fractional integrals have a wide range of applications in the domains 

of nonlinear seismic oscillation, fluid-dynamic traffic, control theory, continuum and 

statistical mechanics, and signal processing [1]. Accordingly, to estimate the solutions 

of fractional differential and integral equations, many scholars have been interested in 

using numerical approaches [2]. Many challenges in recent years have used random 

functional or stochastic equations. Stochastic integral equations, for example, appear 

in the theory of automatic systems resulting in delay-differential equations, in the 

study of biological population development, in the stochastic formulation of issues in 

reactor dynamics, and many other problems in engineering, biology, and physics [3]. 

In many circumstances, accurate solutions to stochastic functional equations are 

impossible to find. Consequently, it’s critical to use numerical approaches to 

determine their approximate solutions [4]. 

 

Stochastic Differential Equations 

Stochastic Differential Equations (SDEs) are crucial applications in many 

development fields of engineering and science [5].SIEs have received more attention 

in recent years as a result of increased needs in finance and engineering, biological, as 

well as chemical, and physical sciences. However, solving the SIEs analytically is 

challenging, hence to overcome this obstacle, numerical solutions are required [6]. 

The Taylor expansion approach and the spectral collocation method are important. 

Bernstein polynomials, Chebychev wavelets, Bernoulli polynomials, and block pulse 

functions are some of the orthogonal and polynomials basic functions that have been 
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utilised to approximate the solution for SIEs [7]. Furthermore, the numerical solution 

of SFIDE is discussed by a few studies in the literature. In order to solve SFIDE, 

based on shifted Legendre polynomials, Taheri [9] proposed a spectral collocation 

approach. Based on Bernstein's polynomials, Mirzaee [8] devised an effective 

approach for solving SFIDE. Furthermore, to solve SFIDE, based on radial basis 

functions, present a meshless discrete collocation approach. Because of their low cost, 

ease of implementation, and minimal computing effort, spline basis functions draw 

attention to these functions [9]. Recently, various spline basis functions have been 

developed by authors to solve differential equations, including modified cubic B 

splines and cubic trigonometric B-splines. For instance, this method has been applied 

for the approximate solution of the Fredholm and Volterra integral equation, a system 

of fractional differential equations, differential equations, integro-differential 

equations,etc. [10] 

 

Impulse Fractional Differential Equations 

Social macrosystems and biological are prone to impulsive disturbances, when these 

processes involve hereditary phenomena, some modelling is done using impulsive 

fractional differential equations [11].Impulsive fractional differential equations 

(IFDEs) are an effective mathematical tool to model in both the socialand physical 

sciences. Especially in the domain of IFDEs with fixed moments, there has been a lot 

of progress in impulsive theory. Although, all physical systems which evolve over 

time are suffered from small abrupt changes in the form of impulses [12]. These 

impulses can be specified into two cases: (i) Instantaneous Impulsive Differential 

Equations (IIDEs). (ii) Non-instantaneous Impulsive Differential Equations (NIIDEs). 

IIDEs: i.e., in the system, impulse occurs for a short period which is negligible 

compared with the overall period is instantaneous impulse [13]. The second type 

NIIDEs i.e., an impulsive disturbance which starts at a time and remains active for a 

finite period is non-instantaneous impulsive [14]. The statement of the impulsive 

condition and the lower limit of the RL fractional derivative is presented in different 

ways. Many researchers express the existence results by the familiar definitions of 

fractional derivatives defined by Caputo and RL sense [15].  

Correspondingly, the research work introduced a stochastic fractional integro-

differential equation using non-instantaneous impulsive with Riemann-Liouville (RL) 

derivative function. The remainder of the article is organized as follows. Section 2 

explains the literature review of the proposed work, section 3 states the problem 

definition and motivation. Section 4 defines the proposed methodology and section 5 

implements the test problems with results and discussion. Finally, section 5 ends with 

the conclusion. 

 

2. LITERATURE SURVEY 

The Rosenblatt process is researched to drive the non-instantaneous impulsive 

conformable fractional stochastic delay integro-differential system introduced by 
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Hamdy M. Ahmed et al [16]. For the problem under consideration, sufficient 

requirements for null controllability and approximation controllability are stated. 

Finally, an example is given to explain the results achieved. The Rosenblatt process 

governs the optimal mild solutions of the time-fractional stochastic Navier-Stokes 

equation regulated by established by K. Anukiruthika et al [17]. A stochastic term is 

added to the fundamental deterministic nonlinear time-fractional partial differential 

system. Fixed point theorem, stochastic analysis, fractional calculus of condensing 

maps, and the establishment of an adequate measure of non-compactness are used to 

explore solvability. In addition, recognized an optimal mild solution. 

Rajesh Dhayal et al [18] study fractional stochastic differential equations (FSDE) 

with non-instantaneous impulses and Poisson jumps driven by the Rosenblatt process. 

The existence of solutions for the suggested stochastic system is determined using 

fractional calculus, fixed-point theorem, stochastic analysis, and the sectorial 

operator. Also, discuss the suggested control system’s controllability. The key 

conclusions are well supported by an example. The Rosenblatt process drove the null 

controllability and approximate controllability for fractional neutral stochastic partial 

differential equations with delay were studied by Hamdy M. Ahmed et al [19]. The 

Rosenblatt process has driven the Hilfer fractional neutral stochastic partial 

differential equations to discuss the requirements required for null and approximate 

controllability. Finally, to verify the obtained results, two examples are provided. 

The fractional Brownian motion (fBm) driven by the presence of mild solutions of 

non-instantaneous impulsive Hilfer fractional stochastic differential equations 

(NIHFSDEs) was investigated by S. Saravanakumar et al [20]. With the use of 

fractional calculus, semigroup theory, stochastic theory, and fixed point theorem, 

sufficient conditions for a class of NIHFSDEs of order 10   and type 10   

driven by fBmare derived. The existence of the solution is demonstrated using the 

Monch fixed point theorem (FPT). In order to support the theoretical result, a 

numerical example is also provided. 

Xinjie Dai et al [21] consider the initial value problem of general nonlinear stochastic 

fractional integro-differential equations with weakly singular kernels. The effort is 

devoted to establishing some fine estimates to include all the cases of Abel-type 

singular kernels. Firstly, the continuous dependence, existence, and uniqueness of the 

initial value of the true solution under the local Lipschitz condition and linear growth 

condition are derived in detail. Secondly, the Euler-Maruyama method is introduced 

for solving numerically the equation, and then its strong convergence is proven under 

the same conditions as the well-posedness. Additionally, obtain the accurate 

convergence rate of this method under the linear growth condition and global 

Lipschitz condition. Finally, several numerical tests are reported for verification of the 

theoretical findings. 

Lingyun He et al [22] proposed a step-by-step collocation method for solving a 

fractional-order system of nonlinear stochastic differential equations with a constant 

delay based on shifted Legendre polynomials. The fractional derivative is in the 

Caputo sense, and the problem is considered with appropriate initial conditions. In 
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each phase, the problem is turned into a non-delay fractional-order system of 

nonlinear stochastic differential equations, and then the system is solved using a 

shifted Legendre collocation scheme. In each step, obtain a nonlinear system of 

equations by collocating the acquired residual at the shifted Legendre points. The 

proposed method’s rate of convergence and convergence analysis are explored. 

Finally, to demonstrate the technique’s accuracy in the presence of various noise 

measures, three test examples are supplied. 

To numerically solve the fractional stochastic integro-differential (FSI-D) equations, 

anoperational matrix of the linear cardinal B-spline (LCB-S) functions are developed 

by Somayeh Abdi-Mazraeh et al [23]. The integer integral operational matrix, 

fractional Riemann-Liouville integral operational matrix, and the stochastic integral 

operational matrix are some of the LCB-S functions. By applying a suitable method, 

the FSI-D equation is converted into a linear system of algebraic equations that can be 

solved quickly is the scheme’s major feature. An upper bound of error is determined 

and also the proposed method’s error estimate and convergence analysis are 

examined. To demonstrate the new method’s potential and efficiency, numerical 

experiments are offered. 

Averaging concepts for neutral stochastic partial functional differential equations 

(NSPFDEs) with delayed impulses were investigated by Jiankang Liu et al [24]. 

Derive an average principle for a class of NSPFDEs with delayed impulses using 

inequality techniques, the semigroup approach, and some technical transformations. 

By decreasing complexity effectively, the acquired results enable one can concentrate 

on the averaged autonomous system without impulses in place of the original system. 

Finally, an example is developed to exemplify the theoretical findings. 

An accurate and computationally efficient technique is provided by B.P.Moghaddam 

et al [25] for the approximation solution of a large class of fractional stochastic 

differential equations driven by Brownian motion with constant delay. For 

approximating the fractional-order integral, a piecewise integro quadratic spline 

interpolation technique is used. Statistical indicators of exact solutions are used to 

assess the computational scheme’s performance. The convergence of the computation 

is also examined. When compared to the M-scheme, three families of stochastic 

excitation models demonstrate the novel approach’s accuracy. 

 

3. RESEARCH PROBLEM DEFINITION AND MOTIVATION 

Deterministic integral equations have long been researched because they are essential 

for modelling engineering and scientific phenomena. These phenomena are frequently 

dependent on a noise source, such as Gaussian white noise, which is typically 

overlooked due to inadequate computing capabilities. By increasing computational 

power, some random factors are inserted into deterministic systems or phenomena and 

are created stochastic or random processes. Many scholars are interested in studying 

the behaviour of stochastic equations. This trend can be attributed to several 

applications in biology, physics, engineering, and economics. Many physical 

phenomena that appear randomly can be modelled mathematically by stochastic 
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processes such as stochastic differential equations, stochastic integro-differential 

equations, stochastic integro-differential equations, and stochastic integral equations 

of fractional order. 

For mathematical modelling, fractional stochastic differential equations (FSDEs) have 

become increasingly applied. In order to solve crucial real-world situations where 

randomness cannot be ignored SDEs are successfully employed. Drew The attention 

of not only mathematicians, but also engineers, economists, and medics are attracted 

by the characteristics and elegant formulation. The research work encourages to 

propose the fractional SDEs with time delay based on these notions. In numerous 

scientific domains, there are several practical applications of systems of differential 

equations with delay. Some systems in nature are related to time delay, which means 

that the system’s future conditions are dependent on its past. Due to the lack of 

sophisticated computer devices, these systems are frequently reliant on “noise” 

perturbations that were previously neglected.Deterministic delay differential systems 

were used to model these phenomena in the future. 

 

4. PROPOSED RESEARCH METHODOLOGY 

A Stochastic Fractional Integro-Differential Equation (SFIDE) is a generalisation of 

the fractional Fokker-Plank equation, which explains the random walk of a particle 

and has a non-integer order of derivative. For handling different issues, researchers 

have recently regarded the spline collocation method as an ideal numerical solution. 

This research work studies the numerical solution for solving fractional integral 

equations using non-instantaneous impulsive Mittag-Leffler type function with the 

Riemann-Liouville fractional stochastic delay differential equations driven by 

fractional Brownian motion and poison jumps. Figure 1 illustrates the flow diagram of 

the research work. 

 

 

Figure 1: Flow Diagram of the Proposed Work 
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The article proposed a class of fractional stochastic differential equations using Spline 

functions. Researchers have recently regarded the spline collocation method as an 

ideal numerical solution for solving many problems. Subsequently, the research work 

proposed a Linear Cardinal B-spline (LCB-S) function to numerically solve FSI-D 

equations. Fractional stochastic differential equation suffered by non-instantaneous 

impulses with Riemann-Liouville Derivative (RLD) driven by fractional Brownian 

motion (fBm) and poison jumps. To obtain their fractional integration operational 

matrix and delay operational matrix in the Riemann-Liouville sense, the Chelyshkov 

wavelet basis and attributes are used. Sufficient conditions for approximate 

controllability for the considered problem are also established. For Riemann-Liouville 

fractional stochastic evolution equations with nonlocal circumstances of the order

21  , consider the approximate controllability. 

 

a. Solving Fractional Stochastic Integro Differential Equation 

In order to numerically solve the FSI-D equations, the research work introduces LCB-

S functions. The LCB-S functions have interpolation features, which is worth noting. 

Accordingly, for other fundamental functions, there is a significant benefit of the 

LCB-S functions, and for integration, the coefficients of each known function may be 

simply determined without the need. Furthermore, these functions have cardinality 

features, which reduces the cost of calculation.  

In this article, the FSI-D problem is solved using a new approach based on the LCB-S 

basis functions. 

               sdBsYsdssYsUYDC ,,
0 0

210 
 


                 (1) 

 Wherein, the Caputo fractional derivative of order 10   is determined as 


DC

0 . Also,  B  is the Brownian motion process, subsequently, stochastic processes 

like            1,01,0,,1,0 22  CsCtU i   for 2,1i  are defined on the probability 

space  PF,, . There  Y  is an unknown function that must be determined in 

equation (1). 

 Let      1,01 XN   denote the first-order CB-S function, where the interval 

 1,0 ,   1,0X  is a characteristic function. In addition, the CB-S order function is r  

defined as 

             



 

1

0
11111 dssNdssNNNNN rsrrr     (2) 

recursively, and     rNr ,0sup  . The LCB-S function of 2nd order is expressed 

explicitly as 

     
 
 















elsewhere

N

,0

2,1,2

1,0,

2 
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     (3) 
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Let    qNN r

qr   22, , r , Zq . It is simple to demonstrate that 

         ZqrqqN rr

qr   ,,22,2sup ,   

Define        1,022,2: qqqS rr

r
, Zr . It is possible to derive that

  12max  r

rS and   1min rS , Zr . Because it is necessary that the assistance 

of  qrN , be limited to  1,0 , 

           rqr

r

qq SqZrXN  ,,0,1,    (4) 

Consequently, it is possible to write 
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Suppose             Tr 
12001 ,,,,,
     (6) 

 Where, Zr is a fixed number. The LCB-S functions approximated a function 

   1,02LU  : 

          T

q

qq VuU

r






12

1

    (7) 

 Where,  TruuuV
120 ,,,1


  ,   12   qUu r

q , 12,,1  rq  . Let qe  be 

the  thq 2  column of the order 12 r  unit matrix, therefore it’s simple to see that 

    
qq e ,  12   qr

q , 12,,1  rq     (8) 

Also, a function       1,01,0, 2 Ls may be approximated by LCB-S functions as 

            Ssus
T

p

q p

qpq

r r









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1
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1

,,   (9) 

Where,  is the    1212  rr  coefficient matrix with the following entries qp,  

        12,,1,,12,12,   rrr

pq pqpqU             (10) 
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Suppose 
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The differentiation of   in (6) is calculated as 

         D ,  1 PED              (12) 

For the LB-S functions on  1,0 , D  recalls     1212  rr  operational derivative 

matrix. 

i. Operational matrix of the Stochastic Integral 

The Operational matrix of the stochastic integral of equation is given by 

         sdBsI qq

s





0

           (13) 

Two instances were examined to calculate the above integral, which is detailed 

in the next part. 

Case 1: 1q  

In this case, if  r2,0 then Eq. (13) is calculated as 

            




00

1 221 ssdBtBsdBsI rrs           (14) 

 Using integration by parts, the given integral can be solved. Accordingly, it 

can be written 

           




  


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0

1 2 dssBBBI rs          (15) 

Simpson’s rule can be used to approximate the integral in equation (15). 

Consequently, it can be determined that 
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
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
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2
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When Simpson’s rule is applied to the above integral, one can deduce that 

        rrs BBI   2
3

1
2

3

4
1 1           (17) 

Case 2: 12  rq  

In this case, if  qr 2,0 then it can be derived   0
12



 r

sI . If  1,21 r then  
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     sdBsI
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If 1 then 

        


1

21
12212

r
sdBsI rrrs   
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Using Eqs. (14)–(19), one can write 
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Applying Eqs. (6)–(7) on (20), it can be achieved as 

         s

s II     (21) 

Wherein  
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It can be shown that 
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ii. Numerical Solution of FSI-D equation 

A numerical technique for solving the FSI-D equation is described in this section. 

Therefore equation (5) is written as follows 

               10,,,
0

2
0

1

1

0
 

 vsdBsYsdssYsUYI v


          (24) 

Now, using LCB-S functions, approximated the functions  Y ,  U ,  s,1   and 

 s,2   in the following way: 

        yyY TT    

        uuU TT    

             TTT sss 111 ,  

              TTT sss 221 ,            (25) 
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Wherein vector u  and matrices 
21, from equation (10) can be 

obtained.Furthermore, y  is an unknown vector that must be discovered. Equation 

(26) can be written as follows using equation (24) and the operational matrices 

described in the preceding section. 
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           s

TTTTT yyu ~~
21                  (26) 

Also, using the problem’s initial condition (1.1), one can write 

       00 Ty     (27) 

 Collocating Eq. (26) at the point   r

j j  21 , 12,,0  rj  and using Eq. 

(8) it can be obtained as  

   js

TT

jj

TT

jj

T

jv

T eyeeyeeueDIy 
~~

211              (28) 

Furthermore, it can be deduced from equation (27) 

     01 eyT               (29) 

 A linear system of equations is now obtained from equation (28) and equation 

(29), which is calculated to get the unknown function  Y  in equation (25).  

 

b. Non-Instantaneous Impulses Stochastic Differential Equations  

Fractional stochastic differential equation suffered by non-instantaneous impulses 

with Riemann-Liouville Derivative (RLD) has been investigated. Consistently, 

utilized the fractional derivatives according to the Modified Riemann-Liouville (RL) 

derivative for constructing some results related to Mittag-Leffler functions driven by 

fractional Brownian motion (fBm) and poison jumps. The form of a non-

instantaneous impulsive differential equation 
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            (30) 

Banach’s fixed point theorem gives a unique   WstCX lll ,, so that  XtDX l , if 

and only if  tXX l . Consequently, Equation (30) is equivalent to 

        KlstttXtw lll ,,2,1,,,                (31) 

 Which does not depend on  w . Consequently, the model recommends that 

the conditions be considered, and the non-instantaneous impulsive conditions (30) 
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must be modified.  

         KlstttwtDtw llll ,,2,1,,,,  
            (32) 

then,       llll twtDtw , , Kl ,,2,1  . The symbols      



ll twtw 0lim and 

     



ll twtw 0lim represent the right and left limits of  tw at point 
ltt  , 

respectively. 

 Consider the following fractional stochastic differential equation with fBm 

and Poisson jumps driving non-instantaneous impulses. 
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 Where   ZZADA :  is the infinitesimal generator of a  -

resolventfamily   0 ttS , 
n

t

cD is the Caputo fractional derivative of order 

 1,21 , and the state  z  takes values in a separable Hilbert space 

  TtpptptZ MM 111000,   TJ ,01  .   0:  ttBB HH
 is a 

Q-fBm with the Hurst parameter 121  H  that reflects non-instantaneous impulses 

during the intervals  jj pt , , Mj ,,2,1,0   and the limit     



jsj tztZ 0lim  

represents the left limit of  tz  at jtt  . The Z  valued random variable that is 

unaffected by HB  and the starting state 0z  is 0F quantifiable. 

 

i. Modified Riemann-Liouville (RL) Derivative 

The modified Riemann Liouville derivative of order   is defined by the expression 
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The one-parameter Mittag-Leffler function is denoted by  xE  and defined by 
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           (35) 
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This function plays a crucial role in classical calculus for 1 it becomes the 

exponential function, that is  xEex

1 . 

    
 



 


0 1k

k
x

k

x
e             (36) 

The other important function which is a generalization of series is represented by: 
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 The functions (35) and (37) play important role in fractional calculus, also 

note that when 1 in (37), then (35) is obtained which mean that  

       xExE  1,              (38) 

ii. Fractional Brownian Motion and Poisson Jumps 

Let  ZFL T ,2
be the Banach space of all 

TF measurable, square-integrable random 

variables with values in the Hilbert space Z . Let   qDttqq  , be a stationary tF -

Poisson point process with a characteristic measure  .Let  ddtN ,1
be the Poisson 

counting measure associated with q , that is,      


tsDs U
q

sqIUtN
,1 , with the 

measurable set   0XBU  ,which denotes the Borel -field of  0X .Let 

      ddtddtNddtN  ,, be the compensated Poisson measure that is 

independent of fBm. The fBm
HW with 121  H admits the following integral 

representation 

         
t

H

H pdWptKtW
0

,               (39) 

Where the kernel  ptKH ,  is defined as follows and the Wiener process is defined as 

W  

      ptfordppPptK
t

p

HHH

HH  
  212321,             (40) 

 Assume,   0, ptKH
if pt  . Notice that 
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K
, Where,      21

21,2212  HHHHPH 

and  , is a Beta function. For   TL ,02 , that the integral of the function   

with respect to fBm
HW  is defined by 

            
T T
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H pWpKpdWp
0 0

*             (41) 

 Where,       




T
H

H dtpt
t

K
tpK

0
, . Let kkk eQe   with finite trace 
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  





1k kQTr   define anoperator  XXLQ , , where  ,2,1: kek  is a 

complete orthonormal basis in X  and  ,2,1:0  kk  are real numbers. With 

covariance Q ,  tBH
 be X valued is determined as follows. 

       





1k

H

kkkH tWetB             (42) 

Where,  ,2,1kW H

k are real independent fBm. 

Lemma 1:(Krasnoselskii’s fixed point theorem) Let N̂  be a bounded closed and 

convex subset of N , and let N  be a Banach space, and let 
21, FF be maps of N̂  into 

such that    NxFxF ˆ
21   for every pair Nyx ˆ,  . The equation  xFxF x 21  has a 

solution on N̂  if 
1F  is a contraction and 

2F  is entirely continuous. 

iii. Existence and Uniqueness of the Solution 

Prove the existence of system solutions in this section (33). The following 

assumptions are required to prove our primary findings. There are two positive 

constants fM  and hM , and the functions HCJhf v :,  are continuous, that the 

function must satisfy. 

       2222
1,,,,

vv CfCf xMxtfEyxMytfxtfE   

and  

       2222
1,,,,

vv ChCh xMxthEyxMytfxthE   

for every JtCyx v  ,,  

Theorem 1: Assume that the assumptions 0 ,the system (33) has a mild solution 

on  T,0 , provided that 
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Proof: For any 0 , define the operator  : 
TT  by 
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In space 
TB , this demonstrates that the operator   has a fixed position, which is the 

mild solution of (33). Let       Ttttztx  ,̂ , where  t̂ is defined by 
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Then   TBt ̂ , and it is clear that  x satisfies (21) if and only if z satisfies 00 z and 
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Set  vTT CzBzB  0, 0

0
, and for any 

0
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Thus,  0,0

TBTB  is a Banachspace.prove that 
1  is a contraction on 

rB . Let Jt and 
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Where,
   
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
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M
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MMlL gfh hence 

1 is a 

contraction.Consequently, Lemma 1, has a fixed point, which is a mild solution of 

(33). 

 

c. Fractional Delay Differential Equations 

In order to obtain their fractional integration operational matrix and delay operational 

matrix in the Riemann-Liouville sense, the Chelyshkov wavelet basis and attributes 

are used. To solve Stochastic Fractional Delay Differential Equations (SFDDEs), 

these operational matrices were used in conjunction with the Galerkin technique. 

Consequently, some nonlinear and linear SFDDEs are used to verify the efficiency 

and accuracy of the proposed Chelyshkov wavelet technique. 

To build the Chelyshkov wavelet base is the major goal of this current section. The 

Chelyshkov polynomials are defined explicitly by 

    𝜌𝑛,𝑀(𝑡)=∑ 𝑎𝑗,𝑛𝑡𝑛+𝑗𝑀−𝑛
𝑗=0

              (43) 

𝑛 = 0,1, ⋯ , 𝑀in which  

   𝑎𝑗,𝑛 = (−1)𝑗 (
𝑀 − 𝑛

𝑗
) (

𝑀 + 𝑛 + 𝑗 + 1
𝑀 − 𝑛

)            (44) 

 With respect to the weight function 𝑤(𝑡) = 1, these polynomials are 

orthogonal over the interval [0,1]. 

    ∫ 𝜌𝑛,𝑀(𝑡)𝜌𝑚,𝑀(𝑡)

1

0
𝑑𝑡 =

𝛿𝑚𝑛

𝑚+𝑛+1
            (45) 

 Where, 𝛿𝑚𝑛 is Kronecker delta. Furthermore, using Rodrigues’ formula, these 

polynomials can be deduced as: 

  𝜌
𝑛,𝑀(𝑡)=

1

(𝑀−𝑛)!

1

𝑡𝑀−𝑛
𝑑𝑀−𝑛

𝑑𝑡𝑀−𝑛(𝑡𝑀+𝑛+1(1−𝑡)𝑀−𝑛),                 𝑛=0,⋯,𝑀  
          (46) 

 The functions are 𝜌𝑛,𝑀(𝑡),   𝑛=0,1,⋯,𝑀polynomials of degree 𝑀 for a fixed 

integer number 𝑀 based on the Chelyshkov polynomials definition. In the [0,1] 

interval, this could be the essential distinction between Chelyshkov polynomials and 

other common orthogonal polynomials, such as shifted Legendre polynomials. 

Chelyshkov polynomials can express any integrable function 𝑓(𝑡)on the interval 
[0, 1)as:  

    𝑓(𝑡)~ ∑ 𝑐𝑖𝜌𝑖,𝑀(𝑡) = 𝐶𝑇𝜙(𝑡)𝑀
𝑖=0           (47) 

 

      Where, 𝐵 and 𝜙(𝑥) are (𝑀 + 1) vectors are given by  

𝐶 = [𝑐0, 𝑐1, ⋯ , 𝑐𝑀],       𝜙(𝑡) = [𝜌0,𝑀(𝑡), 𝜌1,𝑀(𝑡), ⋯ , 𝜌𝑀,𝑀(𝑡)]  and 𝑐𝑖 = (2𝑖 +

1) ∫ 𝜌𝑖,𝑀(𝑡)𝑓(𝑡)
1

0
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i. Construction of Chelyshkov Wavelets 

Wavelets can be derived from the translation and dilation of a mother wavelet 

function  , accordingly, it is a collection of functions. The model has a family of 

continuous wavelets functions since the translation and dilation parameters change 

over time. On the interval [0, 1], Chelyshkov wavelets  xnm are described by 

    
 












Otherwise

n
ntMmm

t k

k
k

nm

0

2
2,122 2

            (48) 

 Where, 𝑛 = 0,1, ⋯ , 2𝑘 − 1  and 𝑚 = 0,1, ⋯ , 𝑀 and 𝜌𝑚,𝑀(𝑡)are the 

Chelyshkov polynomials of degree 𝑚 defined in (48). On the interval [0,1], the set of 

Chelyshkov wavelets 𝜓𝑛𝑚(𝑡), 𝑛 = 0,1, ⋯ 2𝑘 − 1, 𝑚 = 0,1, ⋯ , 𝑀 is an orthonormal 

set. The set of Chelyshkov wavelets 𝜓𝑛𝑚(𝑡), 𝑛 = 0,1, 𝑚 = 0,1,3  can be calculated 

for 𝑀 = 3and 𝑘 = 1. 

𝜓00(𝑡) = {
4√2(−70𝑡3 + 60𝑡2 − 15𝑡 + 1),    0 ≤ 𝑡 <

1

2

0                                                            
1

2
≤ 𝑡 < 1

 

 

𝜓01(𝑡) = {
4√2(42𝑡3 + 30𝑡2 + 5𝑡),            0 ≤ 𝑡 <

1

2

0                                                        
1

2
≤ 𝑡 < 1

 

𝜓02(𝑡) = {
8√10(−7𝑡2 + 3𝑡2),            0 ≤ 𝑡 <

1

2

0                                               
1

2
≤ 𝑡 < 1

 

𝜓03(𝑡) = {
8√14𝑡3,            0 ≤ 𝑡 <

1

2

0                                               
1

2
≤ 𝑡 < 1

 

𝜓10(𝑡) = {
0                                                                  0 ≤ 𝑡 <

1

2

√2(−280𝑡3) + 660𝑡2 − 510𝑡 + 129  
1

2
≤ 𝑡 < 1

 

𝜓11(𝑡) = {
0                                                          0 ≤ 𝑡 <

1

2

√6168𝑡3 − 372𝑡2 + 266𝑡 − 61,
1

2
≤ 𝑡 < 1
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𝜓12(𝑡) = {
0                                                           0 ≤ 𝑡 <

1

2

√10(−56𝑡3 + 108𝑡2 − 66𝑡 + 13),
1

2
≤ 𝑡 < 1

 

   𝜓12(𝑡) = {
0                                       0 ≤ 𝑡 <

1

2

√14(2𝑡 − 1)3 1

2
≤ 𝑡 < 1

    

 The wavelet 𝜓𝑛𝑚(𝑡) is clearly a polynomial of degree 𝑀 across the interval 

[
𝑛

2𝑘 ,
𝑛+1

2𝑘 ) based on the Chelyshkov wavelet’s definition. Furthermore, using 

Chelyshkov wavelets, every square-integrable function 𝑓(𝑡) over [0, 1)can be 

represented as: 

  𝑓(𝑡) ≃ 𝑓𝑀,𝑘(𝑡) = ∑ ∑ 𝑐𝑛𝑚𝜓𝑛𝑚(𝑥) = 𝐶𝑇𝜓(𝑡)𝑀
𝑚=0

2𝑘−1
𝑛=0             (49) 

Where,𝐶 and 𝜓(𝑡) are 𝑚̂ = 2𝑘(𝑀 + 1)vectors are given as 

𝐶 = [𝑐00, ⋯ 𝑐0(𝑀−1), ⋯ , 𝑐(2𝑘−1)0,⋯,𝑐(2𝑘−1)(𝑀−1)]
𝑇

 

              T
MM xxxx kk 12012000 ,,,,,,


    

and  

          
1

0
, dttfttftc nmnmnm                (50) 

The expansion (49) may be rewritten as: 

        



m

i

T

iikM xCxcxf



1

,   

 Where,  mcccC ˆ21 ,,,  ,         xxxx m̂21 ,,,    and nmi cc  ,  

   xx nmi   , 

  11  mMni . 

 

d. Approximate Controllability Problem of Riemann-Liouville 

On the other hand, in mathematical control theory, the concept of dynamical system 

controllability is a fundamental concept, that is important in many fields of 

engineering and science. With nonlocal conditions of order 21  , consider the 

approximate controllability of Riemann-Liouville fractional stochastic evolution 

equations in this research paper. Under the assumption that the associated linear 

system is approximately controllable, the approximate controllability of this nonlinear 

Riemann-Liouville fractional nonlocal stochastic systems of order 21   is 

investigated.  
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The following were investigated in this article: Fractional evolution equation of 

Riemann-Liouville 

             
   
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t

t

r





 

   (51) 

 Where, 21  , 


t

r D  is Riemann-Liouville’s fractional derivatives of order 

 ;  x  takes values in a separable real Hilbert space H with the inner product  ,  

and norm  ; and Hxx 10 , . Here, A  is a sectorial operator of the type   ,,,M  

defined from the domain   HAD  into H . Let K  be another separable Hilbert 

space. This work estimated the solution operator of Riemann-Liouville’s fractional 

evolution equation with nonlocal conditions of the order 21  .  

Theorem 2: Assume that the assumptions    41 HH  ,    2,1 AA hold, and 

   tTtQ  ,
~

are compact, then the system (1) is approximately controllable on J . 

Proof: Let  x be a fixpoint of Ψ in 
rB .  x is a mild solution of the system (51). 

By the stochastic Fubini theorem, the system gets 
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Rearranging the equation as  
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 By the assumption on ,f , the model gets the sequences 
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t

xsthxtf
0

,,,, and   xt,  are uniformly bounded on J . Therefore, there 

are subsequence’s still denoted by  


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





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
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t
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0

,,,, and  xt, that weakly 
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converge to say 
 ,f in  HHHJL ,2  and   HKLHJL ,, 0

2

2   respectively. From 

the above equation, the model has 
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 For all  bt ,0 , the operator   0
1


b

sI strongly as 
 0 and

  1
1


b

sI . Therefore, by the Lebesgue dominated convergence theorem and 

compactness of    tTtQ  ,
~

, it follows that    


0
2

2 C
bxbx as 

 0 . This 

proves the approximate controllability of the system. 

 

4. EXPERIMENTATION AND RESULT DISCUSSION 

Initially, two numerical examples are shown in this part to demonstrate the efficiency 

of the suggested strategy. In a specific scenario, it’s worth nothing that example 1 and 

2 have the exact solution; as a result, the emphasis is on this example to demonstrate 

the method’s efficiency and potential. Consequently, for the primary problem, the 

perturbation results and numerical simulations are presented. 

Table 1: System Configuration 

   MATLAB  Version R2020a 

   Operating System  Windows 10 Home 

   Memory Capacity  6GB DDR3 

   Processor  Intel Core i3 @ 3.5GHz 

The computations have been executed on a personal computer using MATLAB 

R2020a software on an Intel Core i3-9700 PC with 6GB of RAM. Table 1 illustrates 

the simulation machine configuration of Matlab which implements an appropriate 

numerical integration procedure of stochastic differential problems.The maximum 

absolute error values are obtained as follows in the present work: 

    
 

    N
t

YYe 
 1,0
maxmax  
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 The numerical solution and the exact answer are represented by  NY and 

 Y , respectively. Also, as for the proposed approach, this form N  specifies the 

number of interpolation points utilised to estimate the solution function. 

Table 2: Representation of Absolute Error for Example 1 

Proposed Method Absolute Error 

N 


e  CPU Times 

5 5.8406e − 2 000.65 

9 1.4517e − 2 000.76 

17 2.7413e − 3 001.85 

33 7.0342e − 4 009.65 

65 1.4240e − 4 106.72 

 

Table 2 illustrates the estimation of the absolute error of the proposed methodology. 

The results reveal that the proposed approach takes less time to run than the other 

methods. Consequently, to solve the fractional stochastic integro-differential equation 

in a realistic and efficient manner, the numerical results in this table show that the 

proposed approach can be utilised. 

 

Numerical Examples 

In this part, some illustrated cases have been provided to demonstrate the efficiency 

and applicability of the proposed wavelet technique. In both nonlinear and linear 

cases, the numerical examples are considered. 

Example 1: Consider the FSI-D equation as 
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with the initial condition   00 Y . The exact stochastic solution  0Y of this equation 

is unknown. In this case 0 and 95.0v , the exact solution is   3ttY  . Here, the 

proposed cubic B-spline collocation method is used for obtaining the numerical 

solution of Eq. (60) for 0 and 95.0v with 4r . 
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Figure 2: Numerical Solution in case of ,85.0,4  vr and 1,70.0,35.0,0 for 

Example 1 

 

The exact solution (in case 0 ) is contrasted to the numerical solutions for the 

cases, 85.0v  and 1,70.0,35.0,0  in figure 2. In other words, moving away from 

0  and approaching to 1 , it significantly reduces the accuracy of these 

procedures. The proposed method is accurate throughout the interval  1,0  unlike 

these two methods. 

Table 2: Analytical solutions of Example 1 for 0 , 5r and various values of v  

i  35.0v  65.0v  95.0v  exact  0  

0 0.00000 0.00000 0.00000 0.00000 

0.5 0.000709 0.00047 0.00041 0.00102 

1 0.00812 0.00797 0.02617 0.00800 

1.5 0.02715 0.02702 0.06275 0.12500 

2 0.06369 0.06357 0.34237 0.34300 

2.5 0.34330 0.51223 0.51139 0.34300 

3 0.02715 0.0654 0.01256 0.24261 

 

The findings of this experiment for r = 5, 95.0,65.0,35.0v are presented in table 2. 

Table 2 demonstrates that the proposed method has a high level of accuracy. The 
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provided results revealed that the recommended technique can effectively solve the 

problem. 

 

  

(a) (b) 

Figure 3:Graph of Orthogonal Polynomials in the Interval [0, 1]. 

 

The figure 3 depicts the orthogonal polynomials of the graph plotted in the interval 

[0,1]. Figure 3(a) denotes the Chelyshkov polynomials, and figure 3(b) stated the 

shifted Legendre polynomials.It is obvious that the functions   MntMn ,,1,0,,   

are polynomials of degree M  for a fixed integer number M . In the interval [0, 1], 

this may be the most important distinction between Chelyshkov polynomials and 

other orthogonal polynomials, such as shifted Legendre polynomials where the thk   

polynomial has a degree k . In terms of weight   1tw , it’s worth noting that the 

Chelyshkov polynomials are orthogonal. Consequently, they are more efficient and 

trustworthy when applied to the approximate solution of functional equations.  

Example 2: Consider the nonlinear pantograph delay differential equations in this 

example. 
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Where    tty cos1  ,    ttty cos2  and    tty sin3   are the actual solutions for 

1 . For various values of kM , and  , the proposed Chelyshkov wavelet approach 
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also solves this problem. 

 

 
 

(a)  (b)  

 

(c) 

 Figure 4: Numerical results for different values of   and 18ˆ m  (Example 3) 

 

The approximation and exact solutions for 18ˆ m  various fractional orders   are 

shown in figure 4. Figure 4(a) stated the solutions for  ty1
 and figure 4(b) plotted the 

Graph with  ty2 . Similarly, for figure 4(c) the graph lines are denoted the  ty3  

value the exact solutions are derived from the test example 2. Based on these findings, 

for solving nonlinear SFDDEs, and numerical solutions converge to the precise 

solution as fractional order   approaches 1, the Chelyshkov wavelet method is 

effective. 
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6. RESEARCH CONCLUSION 

Developing computational techniques, it has become clear that Stochastic Delay 

Differential Systems (SDDEs) can better simulate real-world phenomena. 

Consequently, the article considers a fractional stochastic differential equation using 

Linear Cardinal B-spline (LCB-S) functions to numerically solve the Fractional 

Stochastic Integro-Differential (FSI-D) equations. Fractional stochastic differential 

equation suffered by non-instantaneous impulses with Riemann-Liouville Derivative 

(RLD) driven by fractional Brownian motion (fBm) and poison jumps. In order to 

obtain the fractional integration operational matrix and delay operational matrix in the 

Riemann-Liouville sense, the Chelyshkov wavelet basis and attributes are used. 

Sufficient conditions for approximate controllability for the considered problem are 

also established.Accordingly, for Riemann-Liouville fractional stochastic evolution 

equations with nonlocal circumstances of the order 21  , the approximate 

controllability is considered. 

The existence of a mild solution for a stochastic integrodifferential system with finite 

delay is described and demonstrated in this theory using fixed-point theorems of the 

Krasnosel’skii and Banach types. Some test issues are presented to demonstrate the 

important properties of the suggested algorithm, such as reliability, accuracy, and 

efficiency. These implementations were carried out in MATLAB software. The 

system of fractional-order delay differential equations is reduced into a system of 

algebraic equations are the important features of the proposed method. The results are 

formulated using stochastic analysis techniques. In the later part, investigate the 

stability results through the continuous dependence of solutions on initial 

conditions.The applicability, validity, and efficiency of the suggested method are 

confirmed by a comparison of obtained results using a given scheme in the case of 

classical stochastic differential equations. This numerical technique’s convergence 

analysis is discussed. Finally, to demonstrate the suggested method’s efficiency and 

efficacy, various instances are used. The family of stochastic differential equations 

with variable delay in the state has been considered in this research. 
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