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Abstract: 

 

The differential equation plays an important role in the mathematical 

modeling of many physical phenomena that exists in the field of science and 

engineering. In the present paper, the numerical solution of nonlinear initial 

and boundary value problems is obtained by using Chebyshev Wavelet 

Collocation Method (CWCM) and Haar Wavelet Collocation Method 

(HWCM). The nonlinear equation is linearised using the quasilinearization 

technique and then the wavelet collocation methods are applied to linearised 

differential equations to convert it into a system of algebraic equations which 

can be handled easily. The solution is obtained at the specified points using 

Lagrange's interpolation technique. The results obtained by wavelet 

collocation methods are compared with the exact solutions. The tables and 

graphs show the efficiency of the wavelet collocation methods and we 

analyze that the method is accurate for a smaller number of collocation 

points. Thus, the comparative study highlights the advantages of wavelet 

collocation methods. 

 

Keywords: Wavelets, Chebyshev wavelet, Haar wavelet, Quasilinearization, 

Collocation points. 

 

 

1 INTRODUCTION 

Many physical problems that arise in the field of science and engineering are 

modelled either by singular or nonlinear ordinary differential equations. Therefore, 

numerical methods are often required to find the solution to such problems [1]. 

During the 1990s, an effort has been made to solve these differential equations using 
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wavelet methods [2]. In the field of mathematical research, wavelet analysis is a new 

technique that has gained the interest of most researchers and investigators [1]. 

Applications of these wavelets can be found in the field of signal processing and 

image processing like denoising, compression, audio and image enhancement and its 

effects, detection of discontinuities and edges, optimal control, etc. 

Recently, methods based on the orthogonal functions and polynomials series, 

including wavelets, are being used to approximate the solution to various problems. 

The advantage of these wavelets is that it consists of combined properties of 

polynomials and compact support which help in being good at modelling localized 

features and hence in solving various differential and integral equations [3]. Another 

advantage of the method is that it converts the problem of differential equations to a 

system of algebraic equations and helps in obtaining the solution to the problems. 

Also, it doesn't require the approximation of the nonlinear term, unlike other 

numerical methods [3, 4]. 

Ersoy [3] obtained the numerical solutions of Bratu and Duffing equations by using 

Laguerre wavelets and these solutions are compared with the Datardar-Jafari method 

and Taylor matrix method. Balaji [6] solved Duffing equation using Legendre 

wavelets. They obtained the numerical solutions in the presence of both integral and 

non-integral forcing terms by considering the operational matrix method with the 

Gaussian quadrature formula that helps in converting Duffing equation to a system of 

algebraic equations which can be solved easily. The elliptic partial differential 

equations along with the Dirichlet boundary conditions are solved numerically by 

Aziz et al. [7] using Haar wavelets. They have considered the Hadamard product and 

Kronecker delta product in addition to the commonly used product of matrices. They 

have applied Broyden's method in order to solve nonlinear test problems and observed 

that rate of convergence is better as the number of collocation points is increased. 

Beylkin et al. [8] in their work computed numerical solutions of heat and Burger's 

equation using the algorithm such as adaptive application of operation to functions 

and the adaptive point-wise product of functions. Chen et al. [9] determined the 

numerical solution of the nonlinear fractional differential equation using Legendre 

wavelets and the obtained results are compared with the finite difference solution and 

exact solutions which shows good agreement of the results. 

Yang et al. [10] obtained a numerical solution of the nonlinear ordinary differential 

equation using the wavelet Homotopy Analysis Method (wHAM) and the results are 

compared with the normal Homotopy Analysis Method (HAM). They observed that 

the wHAM has a faster rate of convergence and cpu time is less than that of HAM. 

Sumana et al. [11] obtained numerical solutions of one-dimensional and two-

dimensional second-kind Fredholm integral equations using the Haar wavelet 

collocation method and the results are compared with the exact solutions. They 

observed that the method has better accuracy even for a small number of grid points. 

The fractional differential equations are solved using the Haar wavelet collocation 

method by Shiralashetti et al. [12] for different levels of resolutions. They found that 

the results of the comparison, are in good agreement with the exact solutions. The 

nonhomogeneous and the non-planar Burgers equations are solved for numerical 

solutions using Haar wavelets by Sumana et al. [13, 14]. They observed that the 
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approximate solutions are in good agreement with the exact solutions and Finite 

difference solutions. Cubic spline interpolation and Lagrange's interpolation are 

respectively used in order to obtain the solution at specified points. 

Singh et al. [15] have used the Haar wavelet collocation method to obtain the 

numerical solutions of the Lane-Emden equation in an integral form. They have done 

a comparison of the obtained numerical solution with the solutions found in the 

literature and the exact solutions. The convergence analysis of the method is also 

presented. Sumana et al. [16] solved two-dimensional Laplace and Poison equations 

using 3-scale Haar wavelets, and they observed that the error is very negligible, which 

leads to the better convergence of the method. The error analysis of the 3-scale Haar 

wavelet method proves that the solution improves with the increase in the levels of 

resolution of the wavelet. Jong et al. [17] determined the numerical solution of 

fractional differential equations using Haar wavelets and convergence of the method 

has been discussed. It is seen that the approximate solutions coincide with the exact 

solutions. 

Even though the Haar wavelets have better convergence, due to their non-smooth 

character, the accuracy is less. Thus, to overcome this drawback, we consider the 

Chebyshev wavelets which have a smooth character so that we get high accuracy in 

the approximate solution [18]. Sripathy et al. [1] have obtained an approximation 

solution for linear and nonlinear differential equations by using an operational matrix 

of a derivative of shifted second-kind Chebyshev wavelets. They observed a good 

agreement with the exact solution with less computational time. Oruc et al. [2] used 

the Chebyshev wavelet method in order to obtain the numerical solution of one-

dimensional coupled Burger's equation and the solutions are compared with the exact 

solution and the solutions found in the literature by the Finite element method, Haar 

wavelet method and Spectral methods. 

Shiralashetti et al. [18] have obtained the approximate solution of linear and nonlinear 

ordinary differential equations by the Chebyshev wavelet collocation method and 

observed that Chebyshev wavelets are better than Haar wavelets. Adibi et al. [19] 

obtained the numerical solution of Fredholm integral equations of the first kind using 

Chebyshev wavelets and results were tabulated which coincides with the exact 

solutions. Hosseini et al. [20] applied spectral methods and the Chebyshev wavelet 

Galerkin method to solve ordinary differential equations in which at least one of the 

solutions is not analytic and noticed that Chebyshev wavelet Galerkin method 

produces more accurate results when compared to the spectral methods. 

Celik [21, 22] used Chebyshev wavelets to determine the solution of the Bessel 

differential equation of order zero and the Lane-Emden equation and class of linear 

and nonlinear nonlocal boundary value problems of second and fourth order. They 

noted that the accuracy of the method increases as the number of grid points 

increases. Heydari et al. [23] obtained the solution of partial differential equations 

using the Chebyshev wavelet collocation method with a smaller number of grid points 

which gave the accurate solutions. Hossein et al. [24] achieved a good agreement of 

numerical solution with the exact solutions by solving the nonlinear system of 

integrodifferential equation using Chebyshev wavelets. Youssri et al. [25] have 

discussed the algorithm based on spectral second-kind Chebyshev wavelets in solving 
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linear, nonlinear, singular, and Bratu-type equations. They have noticed the efficiency 

and the accuracy of the method for a smaller number of collocation points. In this 

paper, Haar and Chebyshev wavelets are applied to get the solution of linear and 

nonlinear differential equations, and their solutions are compared with the exact 

solutions. 

The flow of this paper is as follows. In section 2, we describe the Chebyshev 

wavelet's definition and its properties. Section 3 is devoted to the Haar wavelets 

definition. The quasilinear technique has been explained in section 4. The method of 

solution through numerical examples is discussed, and numerical solutions are 

represented graphically in section 5. Then the final conclusion has made in section 6. 

 

 

2 CHEBYSHEV WAVELETS 

The family of Chebyshev wavelets [22, 26] are defined on the interval [0, 1) as, 

𝐶𝑖(𝑥) = 𝐶𝑛𝑚(𝑥) = {
𝛼𝑚2

𝑘
2

√𝜋
 𝑇𝑚(2

𝑘𝑥 − 2𝑛 + 1),
𝑛−1

2𝑘−1
 ≤ 𝑥 ≤  

𝑛

2𝑘−1

0, otherwise

 }…………… (1) 

where 

𝛼𝑚 = { √2,𝑚 = 0
 2, otherwise

} 

with 𝑖 = 𝑛 + 2𝑘−1𝑚, 𝑘 is any positive integer, 𝑛 = 1, 2,⋯ , 2𝑘−1, 𝑚 =
0, 1, 2,⋯ ,𝑀 − 1,𝑀 is the maximum degree of Chebyshev wavelets of first kind and 

𝑥 is the normalized time. 𝑇𝑚(𝑥) are Chebyshev polynomials of degree 𝑚 which are 

orthogonal with respect to the weight function 𝜔(𝑥) =  
1

√1−𝑥2
 on [−1, 1]. The 

Chebyshev polynomials satisfy the following recurrence formula, 

𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, 𝑇𝑚+1  = 2𝑥𝑇𝑚(𝑥) − 𝑇𝑚−1(𝑥), ∀ 𝑚 = 1, 2, 3,⋯. 
The wavelet collocation points are defined as, 

𝑥𝑗 =
𝑗 − 0.5

𝑁
, ∀ 𝑗 = 1, 2,⋯ ,𝑁, 

where 𝑁 = 2𝑘−1 𝑀. 
In order to solve the differential equations of second order, we require the following 

integrals. 

𝑃𝑖(𝑥)  = ∫𝐶𝑖(𝑥)𝑑𝑥,

𝑥

0

 and 𝑄𝑖(𝑥)  = ∫𝑃𝑖(𝑥)𝑑𝑥

𝑥

0

. 

 

2.1 Function Approximation 

A function 𝑓(𝑥) ∈ 𝐿2([0, 1)) is represented as an infinite sum of Chebyshev wavelets 

in the form [4], 

𝑓(𝑥) = ∑∑ 𝑎𝑛𝑚𝐶𝑛𝑚(𝑥),

∞

𝑚=0

∞

𝑛=1

 ……………(2) 
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where 

𝑎𝑛𝑚 = ∫𝑓(𝑥)𝐶𝑛𝑚(𝑥)𝜔𝑛(𝑥)𝑑𝑥.

1

0

……………(3) 

Now, if we approximate the function 𝑓(𝑥) as piecewise constant in each subinterval, 

then we obtain 

𝑓(𝑥) = ∑ ∑ 𝑎𝑛𝑚𝐶𝑛𝑚(𝑥),

𝑀−1

𝑚=0

2𝑘−1

𝑛=1

……………(4) 

where the Chebyshev wavelet coefficients 𝑎𝑛𝑚 are to be determined. 

 

 

3 HAAR WAVELETS 

The Haar wavelet family for 𝑥 ∈ [0, 1] is defined as follows [5], 

ℎ𝑖  (𝑥) = {
 1, for 𝑥 ∈ [𝜉1, 𝜉2)

−1, for 𝑥 ∈ [𝜉2, 𝜉3)

 0, elsewhere 

} ……………(5) 

where 

𝜉1 =
𝑘

𝑚
, 𝜉2 =

𝑘 + 0.5

𝑚
, 𝜉3 =

𝑘 + 1

𝑚
 ……………(6) 

In the above definition 𝑚 = 2𝑑 , 𝑑 = 0, 1,⋯ , 𝐽 indicates the level of the wavelet, 𝑘 =
0, 1,⋯ ,𝑚 − 1 is the translation parameter, 𝐽 is the maximum level of resolution and 

the index 𝑖 in equation (5) is calculated by the formula 𝑖 = 𝑚 + 𝑘 + 1. In the case of 

minimum values 𝑚 = 1 and 𝑘 = 0, we have 𝑖 = 2. The maximum value of 𝑖 is 𝑖 =
2𝑀 = 2𝐽+1. For 𝑖 = 1, ℎ1(𝑥) is assumed to be the scaling function which is defined 

as follows. 

ℎ1(𝑥) =  {
1, for 𝑥 ∈ [0, 1)
0, elsewhere 

} ……………(7) 

In order to solve differential equations of any order, we need the following integrals. 

𝑝𝑖(𝑥) =  ∫ℎ𝑖(𝑥)𝑑𝑥

𝑥

0

= {
𝑥 − 𝜉1, for 𝑥 ∈ [ 𝜉1, 𝜉2)
𝜉3 − 𝑥, for 𝑥 ∈ [ 𝜉2, 𝜉3)

 0, elsewhere 
}……………(8) 

𝑞𝑖(𝑥) = ∫𝑝𝑖(𝑥)𝑑𝑥

𝑥

0

 =

{
 
 
 

 
 
 

 

(𝑥 − 𝜉1)
2

2
, for 𝑥 ∈ [ 𝜉1, 𝜉2)

1

4𝑚2
− 
(𝜉3  −  𝑥)

2

2
, for 𝑥 ∈ [ 𝜉2, 𝜉3)

1

4𝑚2
, for 𝑥 ∈ [ 𝜉3, 1]

0, elsewhere }
 
 
 

 
 
 

……………(9) 

 

3.1 Function Approximation 

A square integrable function 𝑓(𝑥) on (0, 1) can be expressed as infinite sum of Haar 

wavelets as [5], 
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𝑓(𝑥) =∑𝑎(𝑖)ℎ𝑖(𝑥),

∞

𝑖=1

 …………… (10) 

where 

𝑎(𝑖) = ∫𝑓(𝑥)ℎ𝑖(𝑥)𝑑𝑥.

1

0

……………(11) 

If 𝑓(𝑥) is approximated as piecewise constant during each subinterval, then equation 

(10) will be terminated at finite terms, i.e. 

𝑓(𝑥) =∑𝑎(𝑖)ℎ𝑖(𝑥),

2𝑀

𝑖=1

……………(12) 

where the wavelet coefficients 𝑎(𝑖), 𝑖 = 1, 2,⋯ , 2𝑀 are to be determined. 

 

 

4 QUASILINEARIZATION TECHNIQUE 

In order to solve single or systems of nonlinear ordinary and partial differential 

equations, Bellman and Kalaba [27] introduced the quasilinearization approach as a 

generalization of the Newton-Raphson method. This technique has quadratic rate of 

convergence. 

Let the second order nonlinear differential equation be of the form, 

𝑦′′ = 𝑓(𝑦(𝑥), 𝑥), ……………(13) 
with the boundary conditions, 

𝑦(𝑎) = 𝐴, 𝑦(𝑏) = 𝐵, 𝑎 ≤  𝑥 ≤  𝑏, ……………(14) 
where 𝑓 is a function of 𝑦(𝑥). 
Choose initial approximations of the functions 𝑦(𝑥), say 𝑦0(𝑥) = 𝐴, for 𝑎 ≤  𝑥 ≤  𝑏. 

Now expanding the function 𝑓 about 𝑦0(𝑥) using Taylor's series and by ignoring 

second and higher order terms, we get 

𝑓(𝑦(𝑥), 𝑥) = 𝑓(𝑦0(𝑥), 𝑥) + (𝑦(𝑥) − 𝑦0(𝑥))𝑓𝑦0(𝑦0(𝑥), 𝑥), …………… (15) 

Substituting equation (15) in equation (13), we obtain 

𝑦′′(𝑥) = 𝑓(𝑦0(𝑥), 𝑥) + (𝑦(𝑥) − 𝑦0(𝑥))𝑓𝑦0(𝑦0(𝑥), 𝑥). ……………(16) 

Equation (16) is solved for 𝑦(𝑥) and call the solution as 𝑦1(𝑥). Again, expanding 

equation (13) about 𝑦1(𝑥), we get 

𝑦′′(𝑥) = 𝑓(𝑦1(𝑥), 𝑥) + (𝑦(𝑥) − 𝑦1(𝑥))𝑓𝑦1(𝑦1(𝑥), 𝑥). …………… (17) 

Again solving (17) for 𝑦(𝑥) and call the solution as 𝑦2(𝑥). When the problem 

converges, the process is continued till we get the desired accuracy. We obtain the 

recurrence relation as, 

𝑦𝑡+1
′′ (𝑥) = 𝑓(𝑦𝑡(𝑥), 𝑥) + (𝑦𝑡+1(𝑥) − 𝑦𝑡(𝑥))𝑓𝑦𝑡(𝑦𝑡

′(𝑥), 𝑦𝑡(𝑥), 𝑥)

+ (𝑦𝑡+1
′ (𝑥) − 𝑦𝑡

′(𝑥))𝑓𝑦𝑡′(𝑦𝑡
′(𝑥), 𝑦𝑡(𝑥), 𝑥), ……………(18) 

with the boundary conditions, 

𝑦𝑡+1(𝑎) = 𝐴, 𝑦𝑡+1(𝑏) = 𝐵,……………(19) 
where 𝑡 = 0, 1, 2,⋯. is the iteration parameter. 

Similarly, the same procedure can be applied for higher order nonlinear differential 

equations to obtain the recurrence relation of the form, 
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𝑦𝑡+1
𝑛 (𝑥) = 𝑓(𝑦𝑡(𝑥), 𝑦𝑡

′(𝑥), . . . , 𝑦𝑡
𝑛−1(𝑥), 𝑥)

+ ∑ (𝑦𝑡+1
𝑗 (𝑥)

𝑛−1

𝑗=0

− 𝑦𝑡
𝑗(𝑥))𝑓𝑦𝑡

𝑗 (𝑦𝑡(𝑥), 𝑦𝑡
′(𝑥), … , 𝑦𝑡

𝑛−1(𝑥), 𝑥). …………(20) 

where 𝑛 is the order of the differential equation [28, 29]. 

 

 

5 METHOD OF SOLUTION 

In this section, an example for nonlinear initial and boundary value problems of 

second order are solved by using Chebyshev and Haar wavelets. 

 

Example 1: 

Consider the nonlinear ordinary differential equation with initial conditions, 

𝑦′′  − 2𝑦′ − 𝑦2 = −𝑒4𝑥 , ……………(21) 
𝑦(0) = 1, 𝑦′(0) = 2.……………(22) 

The exact solution is 𝑦(𝑥) = 𝑒2𝑥. 

 

Chebyshev Wavelet Collocation Method 

The Chebyshev wavelet solution is given by, 

𝑦′′(𝑥) =∑𝑎𝑖𝐶𝑖(𝑥),

𝑁

𝑖=1

 ……………(23) 

where 𝑎𝑖
′𝑠, 𝑖 = 1, 2, … , 𝑁 are Chebyshev wavelet coefficients to be determined. 

Integrating equation (23) twice with respect to 𝑥 from 0 to 𝑥 and using equation (22), 

we obtain 

𝑦′(𝑥) = 2 +∑𝑎𝑖𝑃𝑖(𝑥),

𝑁

𝑖=1

 ……………(24) 

𝑦(𝑥) = 1 + 2𝑥 +∑𝑎𝑖𝑄𝑖(𝑥).

𝑁

𝑖=1

 ……………(25) 

Using quasilinearization, equation (21) leads to 

𝑦𝑟+1
′′ − 2𝑦𝑟+1

′ − 2𝑦𝑟𝑦𝑟+1 = −𝑦𝑟
2 − 𝑒4𝑥 . ……………(26) 

Substituting equations (23) and (25) in equation (26), we get 

∑𝑎𝑖(𝐶𝑖(𝑥)

𝑁

𝑖=1

− 2𝑃𝑖(𝑥) − 2𝑦𝑟𝑄𝑖(𝑥)) = −𝑒
4𝑥 − 𝑦𝑟

2 + 4𝑥𝑦𝑟 + 2𝑦𝑟 + 4.……………(27) 

Taking the collocation points 𝑥 = 𝑥𝑗 in equations (27) and (25), we get 

∑𝑎𝑖(𝐶𝑖(𝑥𝑗)

𝑁

𝑖=1

− 2𝑃𝑖(𝑥𝑗) − 2𝑦𝑟𝑄𝑖(𝑥𝑗))

= −𝑒4𝑥𝑗 − 𝑦𝑟
2 + 4𝑥𝑗𝑦𝑟 + 2𝑦𝑟 + 4.……………(28) 
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𝑦(𝑥𝑗) = 1 + 2𝑥𝑗 +∑𝑎𝑖𝑄𝑖(𝑥𝑗).

𝑁

𝑖=1

 ……………(29) 

The wavelet coefficients 𝑎𝑖, 𝑖 = 1, 2,⋯ ,𝑁 are obtained by solving the 𝑁 system of 

equations in equation (28). These coefficients are then substituted in equation (29) to 

obtain the Chebyshev wavelet solution at the collocation points 𝑥𝑗 , 𝑗 = 1, 2,⋯ ,𝑁. 

 

Haar Wavelet Collocation Method 

The Haar wavelet solution is given by, 

𝑦′′(𝑥) =∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

, ……………(30) 

where 𝑎𝑖
′𝑠, 𝑖 = 1, 2,⋯ , 2𝑀 are Haar wavelet coefficients to be determined. 

Integrating equation (30) twice with respect to 𝑥 from 0 to 𝑥 and using equation (22), 

we obtain 

𝑦′(𝑥) = 2 +∑𝑎𝑖𝑝𝑖(𝑥)

2𝑀

𝑖=1

, ……………(31) 

𝑦(𝑥) = 1 + 2𝑥 +∑𝑎𝑖𝑞𝑖(𝑥)

2𝑀

𝑖=1

. ……………(32) 

Now, quasilinearizing equation (21), we have 

𝑦𝑟+1
′′ − 2𝑦𝑟+1

′ − 2𝑦𝑟𝑦𝑟+1 = −𝑦𝑟
2 − 𝑒4𝑥 . ……………(33) 

Substituting equations (30) and (32) in equation (33), we get 

∑𝑎𝑖(ℎ𝑖(𝑥)

2𝑀

𝑖=1

− 2𝑝𝑖(𝑥) − 2𝑦𝑟𝑞𝑖(𝑥)) = −𝑒4𝑥 − 𝑦𝑟
2 + 4𝑥𝑦𝑟 + 2𝑦𝑟 + 4.……………(34) 

Taking the collocation points 𝑥 = 𝑥𝑗 in equations (34) and (32), we get 

∑𝑎𝑖(ℎ𝑖(𝑥𝑗)

2𝑀

𝑖=1

− 2𝑝𝑖(𝑥𝑗) − 2𝑦𝑟𝑞𝑖(𝑥𝑗))

= −𝑒4𝑥𝑗 − 𝑦𝑟
2 + 4𝑥𝑗𝑦𝑟 + 2𝑦𝑟 + 4.……………(35) 

𝑦(𝑥𝑗) = 1 + 2𝑥𝑗 +∑𝑎𝑖𝑞𝑖(𝑥𝑗).

2𝑀

𝑖=1

 ……………(36) 

The 2𝑀 system of equations in equation (35) are solved in order to determine the 

wavelet coefficients 𝑎𝑖, 𝑖 = 1, 2,⋯ , 2𝑀. Then the Haar wavelet solutions at the 

collocation points 𝑥𝑗 , 𝑗 = 1, 2,⋯ , 2𝑀 are obtained by using the wavelet coefficients 

values in (36). The comparison of the results obtained by both the methods with exact 

solutions are shown in Table 1. Figure 1 depicts the numerical solutions of these 

methods. 

 

ERROR ESTIMATE: 
We define the error estimate as 
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𝜇 =  
1

𝑁
∥ 𝑦(𝑥) − 𝑦𝑒𝑥(𝑥) ∥, ……………(37) 

where 𝑦𝑒𝑥(𝑥) is the exact solution. 

Tables 2, 3 and 4 shows the absolute, relative and wavelet error estimates 

respectively. 

 

Example 2: 

Consider the nonlinear ordinary differential equation with initial and boundary 

conditions, 

𝑦′′ = −(1 + 𝑎2𝑦′2 ), ……………(38) 
𝑦(0) = 0, 𝑦(1) = 0.……………(39) 

The exact solution is 𝑦(𝑥) =

𝑙𝑛(
cos(𝑎(𝑥−

1
2
))

 cos (
𝑎
2)

)

𝑎2
. 

 

Chebyshev Wavelet Collocation Method 

Consider the Chebyshev wavelet solution of the form, 

𝑦′′(𝑥) =∑𝑎𝑖𝐶𝑖(𝑥),

𝑁

𝑖=1

 ……………(40) 

where 𝑎𝑖
′𝑠, 𝑖 = 1, 2,⋯ ,𝑁 are Chebyshev wavelet coefficients to be determined. 

Integrating equation (40) twice with respect to 𝑥 from 0 to 𝑥 and using equation (39), 

we obtain 

𝑦′(𝑥) = 𝑦′(0) +∑𝑎𝑖𝑃𝑖(𝑥),

𝑁

𝑖=1

 ……………(41) 

𝑦(𝑥) = 𝑥𝑦′(0) +∑𝑎𝑖𝑄𝑖(𝑥).

𝑁

𝑖=1

 ……………(42) 

Taking 𝑥 = 1 in equation (42) and using equation (39), we get 

𝑦′(0) = −∑𝑎𝑖𝑄𝑖(1).

𝑁

𝑖=1

 ……………(43) 

Substituting equation (43) in equations (41) and (42), we get 

𝑦′(𝑥)  = ∑𝑎𝑖(𝑃𝑖(𝑥)

𝑁

𝑖=1

− 𝑄𝑖(1)),……………(44) 

𝑦(𝑥) =∑𝑎𝑖(𝑄𝑖(𝑥)

𝑁

𝑖=1

− 𝑥𝑄𝑖(1)).……………(45) 

By quasilinearization, equation (38) reduces to 

𝑦𝑟+1
′′ + 2𝑎2𝑦𝑟

′𝑦𝑟+1
′ = 𝑎2(𝑦𝑟

′)2 − 1.……………(46) 
Using equations (40) and (44), equation (46) gives 
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∑𝑎𝑖(𝐶𝑖(𝑥)

𝑁

𝑖=1

+ 2𝑎2𝑦𝑟
′𝑃𝑖(𝑥) − 2𝑎

2𝑦𝑟
′𝑄𝑖(1)) = 𝑎2(𝑦𝑟

′)2 − 1.……………(47) 

Taking 𝑥 = 𝑥𝑗  in equations (47) and (45), we get 

∑𝑎𝑖(𝐶𝑖(𝑥𝑗)

𝑁

𝑖=1

+ 2𝑎2𝑦𝑟
′𝑃𝑖(𝑥𝑗) − 2𝑎

2𝑦𝑟
′𝑄𝑖(1)) = 𝑎2(𝑦𝑟

′)2 − 1,……………(48) 

𝑦(𝑥𝑗) =∑𝑎𝑖(𝑄𝑖(𝑥𝑗) − 𝑥𝑗𝑄𝑖(1)).

𝑁

𝑖=1

 ……………(49) 

The wavelet coefficients 𝑎𝑖, 𝑖 = 1, 2,⋯ ,𝑁 are obtained by solving the 𝑁 system of 

equations in equation (48). These coefficients are then substituted in equation (49) to 

obtain the Chebyshev wavelet solution at the collocation points 𝑥𝑗 , 𝑗 = 1, 2,⋯ ,𝑁. 

 

Haar Wavelet Collocation Method 

The Haar wavelet solution is given by, 

𝑦′′(𝑥) =∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

, ……………(50) 

where 𝑎𝑖
′𝑠, 𝑖 = 1, 2,⋯ , 2𝑀 are Haar wavelet coefficients to be determined. 

Integrating equation (50) twice with respect to 𝑥 from 0 to 𝑥 and using equation (39), 

we get 

𝑦′(𝑥) = 𝑦′(0) +∑𝑎𝑖𝑝𝑖(𝑥)

2𝑀

𝑖=1

, ……………(51) 

𝑦(𝑥) = 𝑥𝑦′(0) +∑𝑎𝑖𝑞𝑖(𝑥)

2𝑀

𝑖=1

. ……………(52) 

Taking 𝑥 = 1 in equation (52) and using equation (39), we get 

𝑦′(0) =∑𝑎𝑖𝑞𝑖(1).

2𝑀

𝑖=1

 ……………(53) 

Substituting equation (53) in equations (51) and (52), we obtain 

𝑦′(𝑥) =∑𝑎𝑖(𝑝𝑖(𝑥)

2𝑀

𝑖=1

− 𝑞𝑖(1)),……………(54) 

𝑦(𝑥) =∑𝑎𝑖(𝑞𝑖(𝑥)

2𝑀

𝑖=1

− 𝑥𝑞𝑖(1)).……………(55) 

By employing quasilinearization, equation (38) becomes 

𝑦𝑟+1
′′ + 2𝑎2𝑦𝑟

′𝑦𝑟+1
′ = 𝑎2(𝑦𝑟

′)2 − 1.……………(56) 
Using equations (50) and (54) in equation (56), we get 

∑𝑎𝑖(ℎ𝑖(𝑥)

2𝑀

𝑖=1

+ 2𝑎2𝑦𝑟
′𝑝𝑖(𝑥) − 2𝑎

2𝑦𝑟
′𝑞𝑖(1)) = 𝑎2(𝑦𝑟

′)2 − 1.……………(57) 
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Taking 𝑥 = 𝑥𝑗 in equations (57) and (55), we get 

∑𝑎𝑖(ℎ𝑖(𝑥𝑗)

2𝑀

𝑖=1

+ 2𝑎2𝑦𝑟
′𝑝𝑖(𝑥𝑗) − 2𝑎

2𝑦𝑟
′𝑞𝑖(1)) = 𝑎2(𝑦𝑟

′)2 − 1.……………(58) 

𝑦(𝑥𝑗) =∑𝑎𝑖(𝑞𝑖(𝑥𝑗) − 𝑥𝑗𝑞𝑖(1)).

2𝑀

𝑖=1

 ……………(59) 

Further, equation (58) is solved to get the wavelet coefficients 𝑎𝑖 , 𝑖 = 1, 2,⋯ , 2𝑀 

which are used to obtain the Haar wavelet solutions at the collocation points 𝑥𝑗 , 𝑗 =

1, 2,⋯ , 2𝑀 from equation (59). In this problem, since 𝑎 being an integer we have 

taken 𝑎 = 1 for computation purpose. The comparison of the results obtained by both 

the methods with exact solutions are shown in Table 5 and the behaviour of the 

solution is represented in Figure 2. The error estimates are obtained in Tables 6, 7 and 

8. 

 

 

6 RESULTS AND DISCUSSION 
We justify the use of the Haar and Chebyshev wavelet collocation method by solving 

nonlinear initial and boundary value problems. In the case of boundary value 

problems, these methods are very convenient as it takes care of the boundary 

conditions automatically. Both methods convert the differential equations into a 

system of algebraic equations which can be solved easily. Lagrange's interpolation is 

used to obtain the solution at specified points. In Tables 1 and 5, we compare the 

numerical solutions with the exact solutions for the number of collocation points 𝑁 =
512. In Figures 1 and 2, we see that the Chebyshev solutions are obtained for 𝑁 = 16 

whereas Haar solutions for 𝑁 = 128. From this, we analyze that the accuracy of the 

Haar solutions increases with an increase in the number of grid points whereas the 

accuracy of the Chebyshev solutions is high for a smaller number of grid points. 

Tables 2, 3 and 4 displays the absolute error, relative error, and wavelet error 

estimates of example 1. respectively. The error estimates of example 2. are presented 

in Tables 6, 7 and 8 at different 𝑁. We observe that the error values are much 

negligibly small in the Chebyshev wavelet solution than in the Haar wavelet solution 

which indicates that the Chebyshey wavelet solution is very close to the exact solution 

than the Haar wavelet solution. Thus, the Chebyshev wavelet method guarantees the 

necessary accuracy with a small number of grid points. Hence, Chebyshev wavelets 

are better than Haar wavelets which are simple, fast, and computationally efficient. 
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Figure 1: Comparison of HWCM, CWCM and exact solution of example 1. 

 

 
 

Figure 2: Comparison of HWCM, CWCM and exact solution of example 2. 
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Table 1: Comparison of HWCM, CWCM and exact solution of example 1. 

 

𝑥 HWCM CWCM Exact 

0.0 0.999999999757092 0.999999999764024 0.999999999764242 

0.1 1.221403069891411 1.221402758176221 1.221402758176199 

0.2 1.491825467783094 1.491824697639115 1.491824697640115 

0.3 1.822120240786024 1.822118800394171 1.822118800396144 

0.4 2.225543349809520 2.225540928486843 2.225540928489836 

0.5 2.718285695382164 2.718281828456547 2.718281828460525 

0.6 3.320122946406960 3.320116922727224 3.320116922735194 

0.7 4.055209264544810 4.055199966832925 4.055199966845915 

0.8 4.953046803523455 4.953032424320688 4.953032424342416 

0.9 6.049669945215069 6.049647464746510 6.049647464781701 

 

 

Table 2: Absolute Error in the solution of example 1. 

 

𝑁 
HWCM CWCM 

𝑙2 𝑙∞ 𝑙2 𝑙∞ 

4 4.273E-01 4.061E-01 2.272E-02 2.104E-02 

8 1.397E-01 1.151E-01 1.278E-03 1.049E-03 

16 4.867E-02 3.203E-02 8.552E-05 5.753E-05 

32 1.714E-02 8.538E-03 6.940E-06 3.574E-06 

64 6.058E-03 2.209E-03 5.997E-07 2.272E-07 

128 2.141E-03 5.624E-04 5.270E-08 1.440E-08 

256 7.570E-04 1.419E-04 4.652E-09 9.080E-10 

512 2.676E-04 3.564E-05 4.110E-10 5.701E-11 

 

 

Table 3: Relative Error in the solution of example 1. 

 

𝑁 
HWCM CWCM 

𝑙2 𝑙∞ 𝑙2 𝑙∞ 

4 7.425E-02 7.056E-02 3.949E-03 3.656E-03 

8 2.142E-02 1.765E-02 1.960E-04 1.609E-04 

16 7.011E-03 4.615E-03 1.232E-05 8.288E-06 

32 2.394E-03 1.192E-03 9.690E-07 4.990E-07 

64 8.328E-04 3.037E-04 8.244E-08 3.124E-08 

128 2.920E-04 7.671E-05 7.189E-09 1.965E-09 

256 1.028E-04 1.928E-05 6.320E-10 1.233E-10 

512 3.629E-05 4.832E-06 5.573E-11 7.731E-12 
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Table 4: Wavelet Error in the solution of example 1. 

 

𝑁 
HWCM CWCM 

𝑙2 𝑙∞ 𝑙2 𝑙∞ 

4 1.068E-01 1.015E-01 5.681E-03 5.260E-03 

8 1.746E-02 1.438E-02 1.597E-04 1.311E-04 

16 3.042E-03 2.002E-03 5.345E-06 3.596E-06 

32 5.359E-04 2.668E-04 2.168E-07 1.116E-07 

64 9.465E-05 3.452E-05 9.370E-09 3.551E-09 

128 1.673E-05 4.394E-06 4.117E-10 1.125E-10 

256 2.957E-06 5.543E-07 1.817E-11 3.547E-12 

512 5.227E-07 6.961E-08 8.028E-13 1.113E-13 

 

 

Table 5: Comparison of HWCM, CWCM and exact solution of example 2. 

 

𝑥 HWCM CWCM Exact 

0.0 0.000000001135899 0.000000001136426 0.000000001136426 

0.1 0.048355245620469 0.048355221296794 0.048355221297174 

0.2 0.084892624279420 0.084892584522836 0.084892584523442 

0.3 0.110449516562801 0.110449467369135 0.110449467369870 

0.4 0.125575939120570 0.125575884830284 0.125575884831088 

0.5 0.130584296336657 0.130584240435533 0.130584240436359 

0.6 0.125575939116509 0.125575884826223 0.125575884827026 

0.7 0.110449516579132 0.110449467385464 0.110449467386200 

0.8 0.084892624456717 0.084892584700129 0.084892584700735 

0.9 0.048355244435639 0.048355220111996 0.048355220112376 

 

 

Table 6: Absolute Error in the solution of example 2. 

 

𝑁 
HWCM CWCM 

𝑙2 𝑙∞ 𝑙2 𝑙∞ 

4 1.236E-03 7.958E-04 4.141E-05 2.789E-05 

8 4.801E-04 2.217E-04 2.193E-05 1.194E-05 

16 1.735E-04 5.679E-05 2.544E-06 8.551E-07 

32 6.168E-05 1.428E-05 2.343E-07 5.402E-08 

64 2.183E-05 3.575E-06 2.088E-08 3.380E-09 

128 7.723E-06 8.94E-07 1.849E-09 2.112E-10 

256 2.731E-06 2.236E-07 1.635E-10 1.320E-11 

512 9.655E-07 5.590E-08 1.445E-11 8.254E-13 
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Table 7: Relative Error in the solution of example 2. 

 

𝑁 
HWCM CWCM 

𝑙2 𝑙∞ 𝑙2 𝑙∞ 

4 1.007E-02 6.483E-03 3.374E-04 2.272E-04 

8 3.732E-03 1.723E-03 1.705E-04 9.286E-05 

16 1.333E-03 4.365E-04 1.955E-05 6.573E-06 

32 4.728E-04 1.094E-04 1.796E-06 4.141E-07 

64 1.672E-04 2.739E-05 1.599E-07 2.589E-08 

128 5.915E-05 6.848E-06 1.416E-08 1.618E-09 

256 2.091E-05 1.712E-06 1.252E-09 1.011E-10 

512 7.394E-06 4.280E-07 1.107E-10 6.321E-12 

 

 

Table 8: Wavelet Error in the solution of example 2. 

 

𝑁 
HWCM CWCM 

𝑙2 𝑙∞ 𝑙2 𝑙∞ 

4 3.091E-04 1.989E-04 1.035E-05 6.973E-06 

8 6.001E-05 2.771E-05 2.742E-06 1.493E-06 

16 1.084E-05 3.549E-06 1.590E-07 5.344E-08 

32 1.927E-06 4.463E-07 7.323E-09 1.688E-09 

64 3.412E-07 5.587E-08 3.263E-10 5.281E-11 

128 6.034E-08 6.986E-09 1.444E-11 1.650E-12 

256 1.066E-08 8.734E-10 6.388E-13 5.158E-14 

512 1.885E-09 1.091E-10 2.823E-14 1.612E-15 

 

 

CONFLICT OF INTERESTS 

The authors declare that there is no conflict of interests regarding the publication of 

this paper. 

 

 

ACKNOWLEDGEMENT 

The authors are grateful to the 'MES Management' for supporting us to do research 

and to the anonymous reviewers for their valuable comments which led to the 

improvement of the paper. 

 

 

REFERENCES 

 

[1] Sripathy, B., Vijayaraju, P., & Hariharan, G. (2015). Chebyshev wavelet-based 

approximation method to some non-linear differential equations arising in 



68 Lakshmi B. N. et al 

 

engineering. Int. J. Math. Anal, 9(20), 993-1010. 

http://dx.doi.org/10.12988/ijma.2015.5393. 

[2] Oruç, Ö., Bulut, F., & Esen, A. L. A. A. T. T. İ. N. (2019). Chebyshev wavelet 

method for numerical solutions of coupled Burgers' equation. Hacettepe 

Journal of Mathematics and Statistics, 48(1), 1-16. 

http://dx.doi.org/10.15672/HJMS.2018.642. 

[3] Özdek, D. E. (2021). Laguerre wavelet solution of bratu and duffing 

equations. TWMS Journal of Applied and Engineering Mathematics, 11(1), 

66. 

https://acikerisim.isikun.edu.tr/xmlui/bitstream/handle/11729/3051/vol.11.no.1

-07.pdf?sequence=1&isAllowed=y. 

[4] Awashie, G. E., Amoako-Yirenkyi, P., & Dontwi, I. K. (2019). Chebyshev 

wavelets collocation method for simulating a two-phase flow of immiscible 

fluids in a reservoir with different capillary effects. Journal of Petroleum 

Exploration and Production Technology, 9(3), 2039-2051. 

https://link.springer.com/article/10.1007/s13202-018-0601-x. 

[5] Kesava, K. D. C., Sumana, R. S., & Achala, L. N. Study of solution of 

ordinary differential equations using Haar wavelets. MES BULLETIN OF 

APPLIED SCIENCES, 59. 

[6] Balaji, S. (2014). A new approach for solving Duffing equations involving 

both integral and non-integral forcing terms. Ainshams engineering journal, 

5(3), 985-990. https://doi.org/10.1016/j.asej.2014.04.001. 

[7] Aziz, I., & Asif, M. (2017). Haar wavelet collocation method for three-

dimensional elliptic partial differential equations. Computers & Mathematics 

with Applications, 73(9), 2023-2034. 

https://doi.org/10.1016/j.camwa.2017.02.034. 

[8] Beylkin, G., & Keiser, J. M. (1997). On the adaptive numerical solution of 

nonlinear partial differential equations in wavelet bases. Journal of 

computational physics, 132(2), 233-259. 

https://doi.org/10.1006/jcph.1996.5562. 

[9] Chen, Y. M., Wei, Y. Q., Liu, D. Y., & Yu, H. (2015). Numerical solution for 

a class of nonlinear variable order fractional differential equations with 

Legendre wavelets. Applied Mathematics Letters, 46, 83-88. 

https://doi.org/10.1016/j.aml.2015.02.010. 

[10] Yang, Z., & Liao, S. (2017). A HAM-based wavelet approach for nonlinear 

ordinary differential equations. Communications in Nonlinear Science and 

Numerical Simulation, 48, 439-453. 

https://doi.org/10.1016/j.cnsns.2017.01.005. 

[11] Shesha, S. R., Savitha, S., & Nargund, A. L. (2016). Numerical Solution of 

Fredholm Integral Equations of Second Kind using Haar Wavelets. 

http://dx.doi.org/10.12988/ijma.2015.5393


Efficacy of Chebyshev Wavelet Collocation Method through ... 69 

 

Communications in Applied Sciences, 4(2). 

https://www.infinitypress.info/index.php/cas/article/view/1343. 

[12] Shiralashetti, S. C., & Deshi, A. B. (2016). An efficient Haar wavelet 

collocation method for the numerical solution of multi-term fractional 

differential equations. Nonlinear dynamics, 83(1), 293-303. 

https://link.springer.com/article/10.1007/s11071-015-2326-4. 

[13] Sumana, R. S., Achala, L. N. & Bujurke, N.M. (2016). Solution of non-

homogeneous Burgers’ equation by Haar wavelet method. Int. J. Res. Eng. 

Sci, 4(6), 07-16. https://www.ijres.org/papers/Volume%204/v4-i6/Version-

3/B4630716.pdf. 

[14] Shesha, S. R., Nargund, A. L., & Bujurke, N. M. (2017). Numerical solution 

of non-planar Burger’s equation by Haar wavelet method. Journal of 

Mathematical Modeling, 5(2), 89-118. 

https://jmm.guilan.ac.ir/article_2460_de6a3c4204cdd70ae58a47355b658fa6.p

df. 

[15] Singh, R., Shahni, J., Garg, H., & Garg, A. (2019). Haar wavelet collocation 

approach for Lane-Emden equations arising in mathematical physics and 

astrophysics. The European Physical Journal Plus, 134(11), 548. 

https://doi.org/10.1140/epjp/i2019-12889-1. 

[16] Sumana, R. S., Achala, L. N. and Mishra, V. N. (2021). Numerical simulation 

of elliptic partial differential equations using 3-scale haar wavelets. 31(3), 

355-375. 

[17] Jong, K., Choi, H., Jang, K., & Pak, S. (2021). A new approach for solving 

one-dimensional fractional boundary value problems via Haar wavelet 

collocation method. Applied Numerical Mathematics, 160, 313-330. 

https://doi.org/10.1016/j.apnum.2020.10.019. 

[18] Shiralashetti, S. C., & Deshi, A. B. (2017). Chebyshev Wavelet Collocation 

Method for the Numerical Solution of Ordinary Differential Equations. 

Journal of the Nigerian Mathematical Society, 36(2), 337-353. 

https://ojs.ictp.it/jnms/index.php/jnms/article/view/143/43. 

[19] Adibi, H., & Assari, P. (2010). Chebyshev wavelet method for numerical 

solution of Fredholm integral equations of the first kind. Mathematical 

problems in Engineering, 2010. https://doi.org/10.1155/2010/138408. 

[20] Hosseini, S. G., & Mohammadi, F. (2011). A new operational matrix of 

derivative for Chebyshev wavelets and its applications in solving ordinary 

differential equations with non-analytic solution. Applied mathematical 

sciences, 5(51), 2537-2548. http://www.m-hikari.com/ams/ams-2011/ams-49-

52-2011/mohammadiAMS49-52-2011.pdf. 

[21] Celik, I. (2013). Numerical solution of differential equations by using 

Chebyshev wavelet collocation method. Cankaya university journal of science 



70 Lakshmi B. N. et al 

 

and engineering, 10(2). https://dergipark.org.tr/en/download/article-

file/293746. 

[22] ÇELİK, İ. (2018). Chebyshev Wavelet collocation method for solving a class 

of linear and nonlinear nonlocal boundary value problems. Fundamental 

Journal of Mathematics and Applications, 1(1), 25-35. 

https://doi.org/10.33401/fujma.421996. 

[23] Heydari, M. H., Hooshmandasl, M. R., & Ghaini, F. M. (2014). A new 

approach of the Chebyshev wavelets method for partial differential equations 

with boundary conditions of the telegraph type. Applied Mathematical 

Modelling, 38(5-6), 1597-1606. https://doi.org/10.1016/j.apm.2013.09.013. 

[24] Aminikhah, H., & Hosseini, S. (2015). Numerical solution of nonlinear system 

of integro-differential equations using Chebyshev wavelets. Journal of Applied 

Mathematics, Statistics and Informatics, 11(2), 15-34. 

https://sciendo.com/pdf/10.1515/jamsi-2015-0009. 

[25] Abd-Elhameed, W. M., Doha, E. H., & Youssri, Y. H. (2013, January). New 

spectral second kind Chebyshev wavelets algorithm for solving linear and 

nonlinear second-order differential equations involving singular and Bratu 

type equations. In Abstract and Applied Analysis (Vol. 2013). Hindawi. 

https://doi.org/10.1155/2013/715756. 

[26] Lakshmi, B. N., Sumana, K. P., Asha, C. S., & Achala, L. N. (2022). 

Application of Chebyshev Wavelets to Ordinary Differential Equations. 

International Journal of Mechanics and Thermodynamics 13(1), 1-13. 

https://www.ripublication.com/irph/ijmt22/ijmtv13n101.pdf. 

[27] Bellman, R. E., & Kalaba, R. E. (1965). Quasilinearization and nonlinear 

boundary-value problems. American Elsevier Publishing Co., Inc., New York. 

[28] Saeed, U. (2014, January). Wavelet-Galerkin quasilinearization method for 

nonlinear boundary value problems. In Abstract and Applied Analysis (Vol. 

2014). Hindawi. https://doi.org/10.1155/2014/868934. 

[29] Iqbal, M. A., Khan, U., Ali, A., & Mohyud-Din, S. T. (2015). Shifted 

Chebyshev wavelet-quasilinearization technique for MHD squeezing flow 

between two infinite plates and Jeffery–Hamel flows. Egyptian Journal of 

Basic and Applied Sciences, 2(3), 229-235. 

https://doi.org/10.1016/j.ejbas.2015.05.002. 


