
International Journal of Pure and Applied Mathematical Sciences(IJPAMS).
ISSN 0972-9828 Volume 17, Number 1 (2024), pp. 27-40
©Research India Publications
https://dx.doi.org/10.37622/IJPAMS/17.1.2024.27-40

Uniqueness of Linear q-shift Difference Polynomial of a
Meromorphic Function

Harina P. Waghamore1 and Roopa M.2

1Department of Mathematics, Bangalore University, Jnana Bharathi Campus,
Bangalore -560 056, India.

1E-mail: harinapw@gmail.com; harinapw@gmail.com
2Department of Mathematics, Bangalore University, Jnana Bharathi Campus,

Bangalore -560 056, India.
2 Email :mroopaprakash@gmail.com; mroopaprakash@gmail.com

Abstract

In this article,we prove the results on uniqueness of linear q-shift difference poly-
nomial Lk(f,Eq) for a transcendental meromorphic functions and Entire functions
with zero order. The result obtained in this paper which extends and generalizes
some recent results of Harina P Waghamore and Rajeshwari S [4].
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1. INTRODUCTION

In this paper, a meromorphic functions f means meromorphic in the complex plane
C. We assume that the reader is familiar with the basic results and standard nota-
tions of Nevanlinna value distribution theory one can refer([6], [7], [15], [16]). If no
poles occur, then f reduces to an entire function. Let f and g be two non-constant
meromorphic functions defined in the open complex plane. For a ∈ C ∪ {∞} and
k ∈ Z+ ∪ {∞}, the set E (a, f) = {z : f(z)− a = 0} denotes all those a−points of
f , where each a−point of f with multiplicity is counted k times in the set and the set
E (a, f) = {z : f(z)− a = 0}, denotes all those a−points of f , where the multiplici-
ties is ignored. We say that f and g share a CM (counting multiplicities) if f − a and
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g− a have the same zeros with same multiplicities and we have E (a, f) = E (a, g). In
addition, we say that f and g share a IM (ignoring multiplicities) if f − a and g − a

have the same zeros with ignoring multiplicities and we will have E (a, f) = E (a, g).
If 1

f
and 1

g
share 0 CM, then f and g share ∞ CM. While N (r, f) denotes the counting

function of poles of f whose multiplicities are taken into account(respectively N(r, f)

denotes the reduced counting function when multiplicities are ignored). Also we have
N(r, a; f) = N

(
r, 1

f−a

)
, denotes the counting function of a points of f(z) whose mul-

tiplicities are counted(respectively N(r, a; f) denotes for the reduced counting function
when multiplicities are ignored).

In 2012, K. Liu, X. Liu and T. B. Cao in 2012 [8] proved the following result.

Theorem 1 [8] Let f be a transcendental entire function of ρ2(f) < 1. For n ≥ t(k +

1), then [P (f)f(z + c)](k) − α(z) has finitely many zeros.

Theorem 2 [8] Let f be a transcendental meromorphic function of ρ2(f) < 1, not a
periodic function with period c. If n ≥ (t + 1)(k + 1) + 1, then [fn(△cf)

s](k) − α(z)

has finitely many zeros.

Theorem 3 [8] Let f be a transcendental entire function of ρ2(f) < 1. For n ≥ t(k +

1) + 5, then [P (f)f(z + c)](k) − α(z) has infinitely many zeros.

Theorem 4 [8] Let f be a transcendental meromorphic function of ρ2(f) < 1, not a
periodic function with period c. If n ≥ (t+2)(k+1)+3+s, then [fn(△cf)

s](k)−α(z)

has infinitely many zeros.

Theorem 5 [8] Let f and g be a transcendental entire functions of ρ2(f) < 1, not a
periodic function with period c. If n ≥ 2k + m + 6. If [fn(fm − 1)f(z + c)](k) and
[gn(gm − 1)g(z + c)](k) share the 1 CM, then f = tg, where tn+1 = tm = 1.

Theorem 6 [8] Let f and g be a transcendental entire functions of ρ2(f) < 1, not a
periodic function with period c. If n ≥ 2k + m + 6. If [fn(fm − 1)f(z + c)](k) and
[gn(gm − 1)g(z + c)](k) share the 1 IM.

In 2013, Harina P. Waghamore and Tanuja A.[5] extend Theorem 4 and Theorem 5 to
meromorphic functions.

Theorem 7 [5] Let f and g be a transcendental meromorphic function with zero order.
If n ≥ 4k+m+ 8, [fn(fm − 1)f(qz + c)](k) and [gn(gm − 1)g(qz + c)](k) share the 1
CM, the f = tg, where tn+1 = tm = 1.
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Theorem 8 [5] Let f and g be a transcendental meromorphic function with zero order.
If n ≥ 5k+4m+17, [fn(fm − 1)f(qz + c)](k) and [gn(gm − 1)g(qz + c)](k) share the
1 IM, the f = tg, where tn+1 = tm = 1.

In 2017, Harina P. wghamore and Rajeshwari S [4], has extended the Theorem 7 and
Theorem 8 to difference polynomials and obtain the following results.

Theorem 9 [4] Let f and g be transcendental meromorphic (res. entire) function with
zero order. If n ≥ 4k+8(n ≥ 2k+6), [P (f)f(qz+ c)](k) and [P (g)g(qz+ c)](k) share
the 1CM, then

1. f ≡ tg for a constant t such that td = 1.

2. f and g satisfy the algebraic equation R(f, g) ≡ 0, where R (w1, w2) = P (w1)w1(qz+

c)− P (w2)w2(qz + c).

Theorem 10 [4] Let f and g be a transcendental meromorphic(resp. entire) function
with zero order. If n ≥ 10k+14(n ≥ 5k+12), [P (f)f(qz+c)](k) and [P (g)g(qz+c)](k)

share the 1IM, then the conclusion of Theorem 9 still holds.

2. DEFINITIONS

Definition 1 [1] The order ρ(f) of a meromorphic function f(z) is defined as,

ρ(f) = lim
r→∞

log T (r, f)

log r
.

Definition 2 [1] Let k be a non-negative integer or infinity. For a ∈ C ∪ {∞} , we
denote by Ek (a, f) the set of all a-points of f , where an a-point of f , where an a-
point of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek (a, f) = Ek (a, g), then we say that f and g share the value a with weight k.

Definition 3 [1] Let f and g share the value a IM. We denote by N∗ (r, a; f, g) the re-
duced counting function of those a-points of f whose multiplicities differ from the mul-
tiplicities of the corresponding a-points of g. Clearly, N∗ (r, a; f, g) = N∗ (r, a; g, f)

and N∗ (r, a; f, g) = N (r, a; f) +N (r, a; g) .

Now, let us recall the definitions of q-shift difference polynomial Lk(f, Eq) and q-
difference operator Lk(f,△) of a meromorphic function f .

Definition 4 [2] For a meromorphic function f and c, q(̸= 0) ∈ C, let us denote its
q-shift, Eq,cf and q-difference operator, ∆q,cf respectively by Eq,cf(z) = f(qz + c)

and ∆q,cf(z) = f(qz + c)− f(z),∆k
q,cf(z) = ∆k−1

q,c (∆q,cf(z)), for all k ∈ N− {1}.
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In 2021, Haldar [2] defined the linear q-shift and linear q-difference operators denoted
respectively by Lk (f, Eq) and Lk(f,∆), for a non-constant meromorphic function f in
a generalized way as follows,

Definition 5 [2] Let us define,

Lk (f, Eq) = akf (qkz + ck) + ak−1f (qk−1z + ck−1) + . . .+ a0f (q0z + c0) (2.1)

and

Lk(f,∆) = ak∆qk,ckf(z) + ak−1∆qk−1,ck−1
f(z) + . . .+ a0∆q0,c0f(z), (2.2)

where a0, a1, . . . , ak; q0, q1, . . . , qk; c0, c1, . . . , ck are complex constants.
From above definition one can easily observe that

Lk(f,∆) = Lk (f, Eq)−
k∑

j=0

ajf(z).

If we choose qj = qj, cj = c and aj = (−1)k−j

(
k

j

)
for 0 ≤ j ≤ k, then Lk(f,∆)

reduces ∆k
q,cf(z).

Now, it would be interesting to ask, if the q− shift f(qz + c) in Theorems 9 and 10,
can be extended any further and what happens if we consider an intermediate sharing,
between counting multiplicity and ignoring multiplicity sharing?.
In this paper, we try to solve these interesting question by considering Linear q-difference
polynomial Lk (f, Eq) as define in Definition 5, and we obtain Theorems 11 and 12,
which extends and generalizes the Theorems 9 and 10 respectively.

Theorem 11 Let f and g be a transcendental meromorphic functions with zero order.
Let P (z) = anz

n + an−1z
n−1 + . . . + a1z + a0 be a non-constant polynomial with

constant co-efficients a0, a1, . . . , an−1, an(̸= 0), and m be the number of distinct zeros
of P (z). If n ≥ k + 2(m + 1)(l + 2) + 2, [P (f)Lk(f, Eq)]

(l) and [P (g)Lk(g, Eq)]
(l)

share the 1 CM has infinitely many zeros, then the following conditions are satisfied.

1. f ≡ tg for a constant t such that td = 1.

2. f and g satisfy the algebraic equation R(f, g) ≡ 0,
where R (w1, w2) = P (w1)Lk(w1, Eq)-P (w2)Lk(w2, Eq).

Theorem 12 Let f and g be a transcendental meromorphic functions with zero order.
Let P (z) = anz

n + an−1z
n−1 + . . . + a1z + a0 be a non-constant polynomial with

constant co-efficients a0, a1, . . . , an−1, an(̸= 0), and m be the number of distinct zeros
of P (z). If n ≥ 5k + 2m(l + 2) + 13 , [P (f)Lk(f, Eq)]

(l) and [P (g)Lk(g, Eq)]
(l) share

the 1 IM has infinitely many zeros, then the conclusion of Theorem 11 holds.
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3. LEMMAS

We introduce some lemmas in this section which will be required later to support the
main results.

Lemma 1 [3] Let f(z) be a transcendental meromorphic function of ρ2(f) < 1, ζ <

1, ∈ is enough small number. Then

m

(
r,
f(z + c)

f(z)

)
= o

(
T (r, f)

r1−ζ−∈

)
= S (r, f) , (2.3)

for all r outside of a set of finite logarithmic measure. Combining the proof of [8] with
Lemma 1, we can get the following Lemma 2.

Lemma 2 [8] Let f be a non-constant meromorphic function. Then

T (r, Pn(f)) = nT (r, f) + S(r, f). (2.4)

Lemma 3 [2, 12] Let f(z) be a transcendental meromorphic function of zero order
and Lk (r, Eq) , be a linear q-shift polynomial defined in (2.1). Let P (f) = anf

n +

an−1f
n−1 + . . .+ a1f + a0 be a polynomial of degree n. Then we have

(n− k − 1)T (r, f) + S (r, f) ≤ T (r, P (f)Lk (f, Eq)) ≤ (n+ k + 1)T (r, f) + S (r, f) .

(2.5)

If f is a transcendental entire function of zero order, then

T (r, P (f)Lk (r, Eq)) = (n+ 1)T (r, f) + S (r, f) . (2.6)

Lemma 4 [17] Let f(z) be a transcendental meromorphic function of zero order. Then

T (r, f(qz)) = T (r, f) + S (r, f) (2.7)

on a set of logarithmic density 1.

Lemma 5 [1] Let f(z) be a transcendental mermorphic function of finite order. Then

T (r, f(z + c)) = T (r, f(z + c)) + S (r, f) (2.8)

Lemma 6 [1] Let f(z) be a transcendental meromorphic function of zero order. Then

T (r, f(qz + c)) = T (r, f(z)) + S (r, f) (2.9)

on a set of logarithmic density 1.
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Lemma 7 [15] Let F and G be non constant meromorphic functions. If F and G share
1CM, then one of the following three cases holds:
(i) max{T (r, F ), T (r,G)} ≤ N2

(
r, 1

F

)
+N2(r, F )+N2

(
r, 1

G

)
+N2(r,G)+S(r, F )+

S(r,G)

(ii) F = G

(iii) F.G = 1.

Lemma 8 [16] Let F and G be non constant meromorphic function sharing the value
1 IM. Let

H =
F ′′

F ′ − 2
F ′

F − 1
− G′′

G′ + 2
G′

G− 1

If H ̸= 0, then

T (r, F ) + T (r,G) ≤ 2

(
N2

(
r,

1

F

)
+N2(r, F ) +N2

(
r,

1

G

)
+N2(r,G)

)
+ 3

(
N(r, F ) +N

(
r,

1

F

)
+N(r,G) +N

(
r,

1

G

))
+ S(r, F ) + S(r,G).

Lemma 9 [16] Let f(z) be a non-constant meromorphic function and let p, k be posi-
tive integers. Then

T
(
r, f (k)

)
≤ T (r, f) + kN(r, f) + S(r, f).

Np

(
r,

1

f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k

(
r,

1

f

)
+ S(r, f),

Np

(
r,

1

f (k)

)
≤ Np+k

(
r,

1

f

)
+ kN(r, f) + S(r, f).

Lemma 10 Let f and g be a transcendental meromorphic functions of zero order. If
n ≥ 2k + 2m+ 4 and

[P (f)Lk(f, Eq)]
(l) = [P (g)Lk(g, Eq)]

(l) (2.10)

then f = tg, where tn+1 = tm = 1, and f and g satisfy the algebraic equation

R (w1, w2) = P (w1) [Lk(w1, Eq)]− P (w2) [Lk(w2, Eq)]

Proof 1 From (2.10), we have

P (f)Lk(f, Eq) = P (g)Lk(g, Eq) +Q(z).
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where Q(z) is a polynomial of degree atmost k = 1. Q(z) ̸= 0, then we have

P (f)Lk(f, Eq)

Q(z)
=

P (g)Lk(g, Eq)

Q(z)
+ 1

From the second fundamental theorem of Nevanlinna theory and by Lemma 2, we have

(n+ k + 1)T (r, f) = T

(
r,
P (fLk (f, Eq))

Q(z)

)
+ S (r, f) ,

≤ N

(
r,
P (f)Lk (f, Eq)

Q(z)

)
+N

(
r,

Q(z)

P (f)Lk (f, Eq)

)
+N

(
r,

Q(z)

P (g)Lk (g, Eq)

)
+ S (r, f) ,

≤ N (r, P (f)) +N (r, Lk (f, Eq)) +N

(
r,

1

P (f)

)
+N

(
r,

1

Lk (f, Eq)

)
+N

(
r,

1

P (g)

)
+N

(
r,

1

Lk (g, Eq)

)
+ S (r, f) + S (r, g) ,

≤ (k + 2)T (r, f) + (m+ k + 1)T (r, f) + (m+ k + 1)T (r, g) + S (r, f)

+ S (r, g) . (2.11)

Similarly

(n+ k + 1)T (r, g) ≤ (k + 2)T (r, g) + (m+ k + 1)T (r, g) + (m+ k + 1)T (r, f)

+ S (r, g) + S (r, f) . (2.12)

Thus, we get

(n+ k + 1) [T (r, f) + T (r, g)] ≤ (3k + 2m+ 4) [T (r, f) + T (r, g)] + S (r, f) + S (r, g) ,

(2.13)

which is a contradiction with n ≥ 2k+2m+4. Hence, we get Q(z) ≡ 0, which implies
that

P (f)Lk (f, Eq) = P (g)Lq (g, Eq) . (2.14)

i.e.,(
anf

n + an−1f
n−1 + · · ·+ a0f

)
{akf (qkz + ck) + ak−1f (qk−1z + ck) + . . . ,+a0f (q0z + c0)}

=
(
ang

n + an−1g
n−1 + · · ·+ a0g

)
{akg (qkz + ck) + ak−1g (qk−1z + ck) + · · ·+ a0g (q0z + c0)}

Let h(z) =
f(z)

g(z)
, we break the rest of the proof into two cases.

Case 1. Suppose h(z) is a constant. Then by substituting f = gh into (2.14), we obtain(
anh

ngn + an−1h
n−1gn−1 + · · ·+ a0hg

)
[ak (h(qkz + ck)g(qkz + ck))

+ak−1 (h(qk−1z + ck)g(qk−1z + ck)) + . . .+ a0(h(q0z + c0)g(q0z + c0))] ≡ 0
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which implies,

ang
n [Lk (g,Eq)]

(
hn+1 − 1

)
+ an−1g

n−1 [Lk (g,Eq) (h
n − 1) + . . .+ a0[Lk (g,Eq)](h− 1)] ≡ 0.

(2.15)

This implies hd = 1, where d = GCD {λj : j = 0, 1, . . . , n} and

λj =

j + 1, if aj ̸= 0,

n+ 1, if aj = 0.

where an(̸= 0), an−1, . . . , a0 are complex constants. By the fact that g is a transcenden-
tal entire functions, we have Lk (g, Eq) ̸≡ 0. Hence, we obtain

ang
n[Lk (g, Eq)]

(
hn+1 − 1

)
+ an−1g

n−1 [Lk (g, Eq)] + . . .+ a0[Lk (g, Eq)] (h− 1) ≡ 0.

(2.16)

Thus, f ≡ tg, where t is a constant with td = 1, where d = GCD (λ0, λ1, . . . , λn).
Case 2. Suppose h(z) is not a constant, then f and g satisfy the algebraic equation
R (f, g) = 0, where

R (ω1, ω2) = P (ω1)(Lk (ω1, Eq))− P (ω2)(Lk (ω2, Eq)).

This completes the proof of Lemma 10.

Lemma 11 [1] Let f and g be transcendental entire function of finite order.
If n ≥ k + 2m + 2, [P (f)Lk (f, Eq)]

(l) = [P (g)Lk (g, Eq)]
(l) then the condition of

Lemma 10 holds.

Proof 2 Similarly, we can prove the result for th entire functions using N (r, f) =

N (r, f) = S (r, f) , N (r, g) = N (r, g) = S (r, g) , and proceeding as in the proof of
Lemma 10, we get Lemma 11.

4. PROOF OF THE MAIN RESULTS

Proof of Theorem 11: Let F = [P (f)Lk(f, Eq)]
(l), F1 = P (f)Lk(f, Eq) and

G = [P (g)Lk(g, Eq)]
(l), G1 = P (g)Lk(g, Eq). Thus F and G share the value 1 CM.

From lemma 9 and f is a transcendental meromorphic function, then

T (r, F ) ≤ T (r, P (f)Lk(f, Eq)) + kN(r, f) + S(r, P (f)Lk(f, Eq)). (2.17)
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On combining (2.17) with Lemma 3, we have S(r, F ) = S(r, f). We also have
S(r,G) = S(r, g), from the same reason as above, from lemma 9 we obtain

N2

(
r,

1

F

)
= N2

(
r,

1

[P (f)Lk(f, Eq)](l)

)
≤ T (r, F )− T (r, P (f)Lk(f, Eq)) +Nl+2

(
r,

1

P (f)Lk(f, Eq)

)
+ S(r, f).

.

(2.18)
Thus, from Lemma 3 and (2.18) we get

(n+ k + 1)T (r, f) = T (r, P (f)Lk(f, Eq)) + S(r, f)

≤ T (r, F )−N2

(
r,

1

F

)
+Nl+2

(
r,

1

P (f)Lk(f, Eq)

)
+ S(r, f). (2.19)

From Lemma 9 , we obtain

N2

(
r,

1

F

)
≤ Nl+2

(
r,

1

P (f)Lk(f, Eq)

)
+ S(r, f),

≤ m(l + 2)N

(
r,

1

f

)
+N

(
r,

1

Lk(f, Eq)

)
+ lN(r, f) + S(r, f),

≤ m(l + 2)T (r, f) + (k + 1)T (r, f) + lT (r, f) + S(r, f),

N2

(
r,

1

F

)
≤ (k + (m+ 1)(l + 2)− 1)T (r, f) + S(r, f). (2.20)

Similarly for G we have,

(n+ k + 1)T (r, g) = T (r, P (g)Lk(g, Eq)) + S(r, g)

≤ T (r,G)−N2

(
r,

1

G

)
+Nl+2

(
r,

1

P (g)Lk(g, Eq)

)
+ S(r, f). (2.21)

From Lemma 9, we obtain

N2

(
r,

1

G

)
≤ Nl+2

(
r,

1

P (g)Lk(g, Eq)

)
+ S(r, g),

≤ m(l + 2)N

(
r,
1

g

)
+N

(
r,

1

Lk(g, Eq)

)
+ lN(r, g) + S(r, g),

≤ m(l + 2)T (r, g) + (k + 1)T (r, g) + lT (r, g) + S(r, g),

N2

(
r,

1

G

)
≤ (k ++(m+ 1)(l + 2)− 1)T (r, g) + S(r, g). (2.22)

If the (i) of Lemma 7 is satisfied implies that,

max{T (r, F ), T (r,G)} ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N2(r, F ) +N2(r,G) + S(r, F ) + S(r,G).
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Now, combining above with (2.19) and (2.22) we obtain,

(n+ k + 1){T (r, f) + T (r, g)} ≤ 2[N(r, f) +N(r, g)] + 2Nl+2

(
r,

1

P (f)Lk (f, Eq)

)
+ 2Nl+2

(
r,

1

P (g)Lk(g, Eq)

)
+ S(r, f) + S(r, g),

≤ (k + (m+ 1)(l + 2)− 1)T (r, f) + 2[N(r, f) +N(r, g)] + (k + (m+ 1)(l + 2)− 1)T (r, g)

+ S(r, f) + S(r, g),

≤ 2(k + (m+ 1)(l + 2) + 1)[T (r, f) + T (r, g)] + S (r, f) + S (r, g) ,

≤ 2k + 2(m+ 1)(l + 1) + 2.

Which is in contradiction with n > k + 2(m+ 1)(l + 2) + 1.
Hence F = G or FG = 1.
From Lemma 10, we get f = tg for tm = tn+1 = 1 and f and g satisfy the algebraic
equation R(f, g) = 0, where R (w1, w2) = P (w1)Lk(w1, Eq)− p (w2)Lk(w2, Eq).

Corollary 1 Let f and g be a transcendental entire functions with zero order. Let
P (z) = anz

n + an−1z
n−1 + . . .+ a1z + a0 be a non-constant polynomial with constant

co-efficients a0, a1, . . . , an−1, an( ̸= 0), and m be the number of distinct zeros of P (z).
If n ≥ k + 2(m+ 1)(l + 2) + 4, [P (f)Lk(f, Eq)]

(l) and [P (g)Lk(g, Eq)]
(l) share the 1

CM has infinitely many zeros, then the conclusion of Theorem 11 holds.

Proof of Theorem 12: Let F = [P (f)Lk(f, Eq)]
(l), G = [P (g)Lk(g, Eq)]

(l).

From lemma 4, assume that H ̸= 0, we get

T (r, F ) + T (r,G) ≤ 2

[
N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N2(r, F ) +N2(r,G)

]
+ 3

[
N(r, F ) +N(r,G) +N

(
r,

1

F

)
+N

(
r,

1

G

)]
+ S(r, F ) + S(r,G). (2.23)

Combining above with (2.19)-(2.22) and from lemma 3, we obtain

(n+ k + 1)[T (r, f) + T (r, g)] ≤ T (r, F ) + T (r,G)−N2

(
r,

1

F

)
−N2

(
r,

1

G

)
+Nl+2

(
r,

1

P (f)Lk(f, Eq)

)
+Nl+2

(
r,

1

P (g)Lk(g, Eq)

)
+ S(r, f) + S(r, g),

≤ 2 (N2(r, F ) +N2(r,G)) + 2Nl+2

(
r,

1

P (f)Lk(f, Eq)

)
+ 2Nl+2

(
r,

1

P (g)Lk(g, Eq)

)
+ 3

[
N

(
r,

1

F

)
+N

(
r,

1

G

)]
+ S(r, f) + S(r, g),

≤ 2(2k + 4){T (r, f) + T (r, g)}+ 2(m(l + 2) + k + 1){T (r, f) + T (r, g)}
+ 3{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

≤ (6k + 2m(l + 2) + 13){T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (2.24)
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which is a contradiction with n ≥ 5k + 2m(l + 2) + 13. Thus we get H ≡ 0.
The following proof is trivial, we give the complete proof. By integration for H twice,
we obtain

F =
(b+ 1)G+ (a− b− 1)

bG+ (a− b)
, G =

(a− b− 1)− (a− b)F

Fb− (b+ 1)
. (2.25)

which implies that T (r, F ) = T (r,G) +O(1). Since

T (r, F ) ≤ T (r, P (f)Lk(f, Eq)) + S(r, f),

≤ (n+ k + 1)T (r, f) + S(r, f). (2.26)

then S(r, F ) = S(r, f). So S(r,G) = S(r, g) is. We distinguish into three cases as
follows.
Case 1. b ̸= 0,−1. If a− b− 1 ̸= 0, then by (2.25), we get

N

(
r,

1

F

)
= N

(
r,

1

F − a−b−1
b+1

)
. (2.27)

By the Nevanlinna second main theorem, and lemma 3, we have

(n+ k + 1)T (r, g) ≤ T (r,G) +Nl+2

(
r,

1

P (g)Lk(g, Eq)

)
−N

(
r,

1

G

)
+ S(r, g),

≤ (l + 1)T (r, g) + (m(l + 2) + k + 1)T (r, f) + S(r, f) + S(r, g). (2.28)

Similarly, we get

(n+k+1)T (r, f) ≤ (l+1)T (r, f)+(m(l+2)+k+1)T (r, g)+S(r, f)+S(r, g). (2.29)

Thus from equations (2.22) and (2.29), we have

(n+ k + 1){T (r, f) + T (r, g)} ≤ [2(l + 1) + 2m(l + 2) + 2k + 2]{T (r, f) + T (r, g)}
+ S(r, f) + S(r, g). (2.30)

Which is a contradiction with n ≥ 5k + 2m(l + 2) + 13. Thus a− b− 1 = 0, then

F =
(b+ 1)G

bG+ 1
. (2.31)

Using the same method as above, we get

(n+ k + 1)T (r, g) ≤ T (r,G) +Nl

(
r,

1

P (g)Lk(g, Eq)

)
−N

(
r,

1

G

)
+ S(r, g),

≤ Nl

(
r,

1

P (g)Lk(g, Eq)

)
+N

(
r,

1

G+ 1
b

)
+ S(r, g),

≤ (ml + k + 1)T (r, g) + S(r, g). (2.30)
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Which is a contradiction.
Case 2. b = 0, a ̸= 1. From (2.25), we have

F =
G+ a− 1

a
.

Similarly, we also can get a contradiction. Thus a = 1 follows, it implies that F = G.
Case 3. b = −1, a ̸= −1. From (2.25), we obtain

F =
a

a+ 1−G
.

Similarly, we can get a contradiction, a = −1 follows. Thus, we get F.G = 1. From
Lemma 5, we get f = tg for tm = tn+1 = 1, and f and g satisfy the algebraic expression
R(f, g) = 0, where

R (w1, w2) = P (w1)Lk(w1, Eq)− P (w2)Lk(w2, Eq).

Thus, we have completed the proofs.

Corollary 2 Let f and g be a transcendental entire functions with zero order. Let
P (z) = anz

n + an−1z
n−1 + . . .+ a1z + a0 be a non-constant polynomial with constant

co-efficients a0, a1, . . . , an−1, an( ̸= 0), and m be the number of distinct zeros of P (z).
If n ≥ 2k + 2m(l + 2) + 5, [P (f)Lk(f, Eq)]

(l) and [P (g)Lk(g, Eq)]
(l) share the 1 IM

has infinitely many zeros, then the conclusion of Theorem 12 holds.
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