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Abstract: 

Understanding mortality patterns is crucial for effective public health planning and 

resource allocation in the fight against HIV/AIDS. This study aims to identify the best-

fitting probability distribution for modelling HIV/AIDS mortality in the Kalyana 

Karnataka region by comparing the Weibull, Gamma, and Log-Normal distributions. 

Using Maximum Likelihood Estimation (MLE) method, the parameters of these 

distributions were estimated, and model selection. The analysis utilised Log-

Likelihood, Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC), Kolmogorov-Smirnov test, Cramer-von Mises test, and Anderson-Darling test 

as its foundational indicators. The findings indicate that the Weibull distribution 

provides the best fit, as it has the highest Log-Likelihood (-419.9464), lowest AIC 

(843.8927) and BIC (848.8923), and the best goodness-of-fit statistics. The Gamma 

distribution was a close alternative, while the Log-Normal distribution exhibited the 

poorest fit. The superior performance of the Weibull model suggests that HIV/AIDS 

mortality follows a structured pattern, making it a valuable tool for mortality risk 

assessment and predictive modelling. These insights can aid policymakers in 

healthcare planning, intervention strategies, and resource allocation to mitigate 

HIV/AIDS-related deaths. 
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1. Introduction 

The globally increasing rates of human immunodeficiency virus (HIV) and acquired 

immunodeficiency syndrome (AIDS) have made them serious socio-economic and public 

health issues. The access to and spread of HIV/AIDS varies with socio-demographic 

characteristics and regions, even with the availability of advanced medical assistance like 

Antiretroviral therapy (ART) (UNAIDS, 2023). Statistical modelling and probability 

distribution play a key role in quantifying HIV/AIDS cases and their infection growth 

distribution to develop focused intervention methods and optimize healthcare resource 

allocation (Gupta & Sharma, 2021). Probability distributions provide a robust mathematical 

framework to analyze various aspects of HIV/AIDS, such as incidence rates, mortality trends, 

and transmission patterns (Raj & Kumar, 2022). 

Probability distributions are widely used in epidemiology to model disease progression, 

transmission probabilities, and survival analysis. The Poisson distribution is routinely utilised 

for modelling the number of new HIV infections over time in a given population (Anderson 

& May, 1991). Similarly, the Binomial distribution helps to estimate the probability of 

infection among high-risk groups based on exposure levels (Jones et al., 2020). The Normal 

and Log-Normal distributions are frequently used to describe the age distribution of infected 

individuals and the variation in viral loads, respectively (Brown et al., 2019). The Weibull 

and Exponential distributions are instrumental in survival analysis, particularly in estimating 

the life expectancy of HIV-positive individuals under different treatment regimens (Lee & 

Thompson, 2021). 

Mathematical modelling of HIV/AIDS using probability distributions is particularly relevant 

for regions with a high disease burden. In India, for example, where the prevalence of HIV 

varies across states and socio-economic groups, statistical techniques help identify high-risk 

populations and assess the effectiveness of intervention programs (Singh et al., 2018). These 

models allow researchers to predict future trends in disease spread and evaluate the impact of 

ART and preventive measures (WHO, 2023). Policymakers and healthcare professionals rely 

on these probabilistic models to make informed decisions regarding resource distribution and 

targeted interventions (Miller & Johnson, 2022). 

Furthermore, integrating probability distributions with growth models enhances the 

understanding of how the epidemic evolves over time. The Exponential, Logistic, and 

Gompertz models provide insights into the dynamics of disease transmission and saturation 

points within affected populations (White & Black, 2017). The Exponential model is 

particularly useful in the early stages of an outbreak, whereas the Logistic and Gompertz 

models better describe disease progression when interventions and population immunity come 

into play (Taylor et al., 2021). The combination of these models with probability distributions 

ensures a comprehensive approach to study the patterns of HIV/AIDS. 

A major advantage of using probability distributions in HIV/AIDS research is their ability to 

quantify uncertainty and variability in disease patterns. This is crucial for designing robust 

public health strategies that account for regional differences in disease prevalence and 
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healthcare access (Martinez et al., 2020). Moreover, statistical techniques such as Maximum 

Likelihood Estimation (MLE) and Bayesian inference are employed to refine probability 

models and improve the accuracy of predictions (Clark & Wilson, 2019). These techniques 

provide a rigorous methodological framework for analyzing large-scale epidemiological data 

and developing data-driven policies. 

The purpose of this study is to investigate the use of probability distributions to analyse the 

rise and distribution of HIV/AIDS. By leveraging statistical techniques, We can obtain a better 

grasp of the factors impacting the disease's spread and establish evidence-based preventative 

and treatment plans. This study's findings will benefit the broader area of epidemiology and 

public health by offering a strong scientific framework for studying infectious diseases. 

 

2. Data Source and Methodology :  

This study employs a quantitative statistical approach to analyze the growth and distribution 

of HIV/AIDS using probability distributions. The study involves data collection, model 

selection, parameter estimation, and validation to assess mortality patterns of HIV/AIDS 

disease in Kalayan Karnataka region. Data on age-wise, gender-wise and HIV/AIDS 

mortality, were collected from: all ART Centers of seven districts of Kalayan Karnataka 

region. The statistical techniques used in this study involve probability distribution fitting and 

visualization methods to analyze the mortality data of HIV/AIDS. 

 

2.1 Fitting of Probability Distribution:  

To understand the pattern of HIV/AIDS mortality, various probability distributions such as 

Weibull, Gamma, and Log-Normal were investigated. The maximum likelihood estimation 

(MLE) approach was used to estimate the parameters of these distributions, resulting in the 

best fit to the observed data. The most acceptable distribution was chosen using Goodness-

of-Fit metrics such as the Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC), and Log-Likelihood values. In addition, goodness-of-fit statistics such as the 

Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling were employed to evaluate 

model adequacy. These statistical parameters were useful in determining the distribution that 

best represented the mortality trend. 

 

2.2 Visualization Techniques:  

To effectively interpret the data, graphical methods were used. A histogram of mortality 

counts was constructed to visualize the distribution of deaths across different categories. 

Additionally, density curves were plotted to compare the fitted probability distributions, 

allowing for a clear understanding of evaluate how closely each model adheres to the observed 

data. These visualization techniques provided insightful representations of mortality trends 

and facilitated better model selection. The statistical analysis and visualization were 

conducted using R programming to ensure accuracy and reproducibility of results.  
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2.3 Maximum Likelihood Estimation (MLE)  

Maximum likelihood estimation (MLE) serves as a core statistical technique for estimating 

the parameters of a probability distribution through the maximisation of the likelihood 

function.  It is widely applied in epidemiological studies, including modelling the age-wise 

mortality distribution of HIV/AIDS patients. MLE ensures that the estimated parameters 

provide the highest probability of observing the given data (Casella & Berger, 2002). 

The Likelihood Function : Let 𝑋 =  {𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑛} be a sample of observed mortality 

ages. The likelihood function for a probability distribution with parameter θ is given by: 

𝐿(𝜃) = 𝑃(𝑋;  𝜃) =  ∏ 𝑓(𝑥𝑖;  𝜃)

𝑛

𝑖=1

 

where 𝑓(𝑥𝑖; 𝜃) is the probability density function (pdf) of the chosen distribution. Since direct 

maximization of L(θ) is often complex, we use the log-likelihood function: 

𝑙𝑜𝑔𝐿(𝜃) =  ∑ 𝑙𝑜𝑔𝑓(𝑥𝑖;  𝜃)

𝑛

𝑖=1

 

MLE estimates θ by solving : 

𝜕 log 𝐿

𝜕𝜃
= 0 

 

2.4 MLE for Common Distributions: 

2.4.1 Weibull Distribution: 

For a Weibull distribution with shape (α) and scale (λ), the pdf is: 

𝑓(𝑥; 𝛼, 𝜆) =  
𝛼

𝜆
(

𝑥

𝜆
)

𝛼−1

𝑒−(𝑥 𝜆⁄ )𝛼
  ;  𝛼 > 0, 𝜆 > 0, 𝑥 ≥ 0.      

The log-likelihood function: 

𝑙𝑜𝑔𝐿(𝛼, 𝜆) = 𝑛𝑙𝑜𝑔𝛼 − 𝑛𝛼𝑙𝑜𝑔𝜆 + (𝛼 − 1) ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

−  ∑ (
𝑥𝑖

𝜆
)

𝛼
𝑛

𝑖=1

 

Maximizing this function gives ML estimates for α and λ. 

 

2.4.2 Gamma Distribution: 

The Gamma Distribution pdf: 

𝑓(𝑥; 𝑘, 𝜃) =  
𝑥𝑘−1𝑒−

𝑥
𝜃

𝜃𝑘Γ(𝑘)
       ;   𝑥 > 0, 𝑘 > 0 , 𝜃 > 0 

The log-likelihood function: 

𝑙𝑜𝑔𝐿(𝑘, 𝜃) = 𝑛𝑘𝑙𝑜𝑔𝜃 − 𝑛𝑙𝑜𝑔Γ(𝑘) + (𝑘 − 1) ∑ 𝑙𝑜𝑔𝑥𝑖 −  
1

𝜃
 ∑ 𝑥𝑖 
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2.4.3 Log-normal Distribution: 

The Log-normal pdf: 

𝑓(𝑥; 𝜇, 𝜎) =  
1

𝑥𝜎√2Π
 𝑒

−
(𝑙𝑜𝑔𝑥− 𝜇)2

2𝜎2  ;  𝑥 > 0, −∞ < 𝜇 < +∞ , 𝜎 > 0.   

The log-likelihood function: 

𝑙𝑜𝑔𝐿(𝜇, 𝜎) =  −
𝑛

2
log(2𝛱) − 𝑛𝑙𝑜𝑔𝜎 −  ∑ 𝑙𝑜𝑔𝑥𝑖 − 

1

2𝜎2
 ∑(𝑙𝑜𝑔𝑥𝑖 −  𝜇)2 

For HIV/AIDS mortality analysis, Weibull and Gamma distributions are often preferred   due 

to their ability to model age-related mortality risk (Johnson et al., 2019). 

 

3. Results and Discussion: 

3.1  Visualization of Age-wise Mortality 

 
Figure 1: Histogram and smoothed trend (LOESS curve) of HIV/AIDS mortality 

distribution across age groups. 

 

This graph is a histogram of age-wise HIV/AIDS mortality with fitted probability 

distributions. 

1. Histogram (Light Blue Bars) 

o Represents the observed distribution of mortality across different age groups. 

o The x-axis shows Age, and the y-axis represents Density (relative frequency). 

 

2. Fitted Distributions (Colored Curves) 

o Gamma (Blue Curve): Right-skewed, models continuous positive data. 

o Log-Normal (Green Curve): Peaks at a younger age and has a long tail, indicating higher 
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mortality risk at younger ages. 

o Weibull (Purple Curve): Often used in survival analysis, capturing different mortality 

risk patterns. 

 

3. Empirical Density (Red Curve) 

o A non-parametric estimate of the actual data distribution, helping visualize the mortality 

trend. 

o It provides a smooth approximation without assuming a specific model. 

The Log-Normal distribution (green) peaks earlier, indicating a higher concentration of 

mortality among younger individuals. This suggests that the mortality rate is more skewed 

towards lower ages compared to other distributions. The Weibull (purple) and Gamma (blue) 

distributions provide a moderate fit, capturing the general trend of mortality but differing in 

their ability to model the tail behavior. The red empirical density curve, which closely follows 

the histogram bars, serves as a benchmark for evaluating the theoretical distributions. This 

graphical representation effectively highlights the distributional characteristics of HIV/AIDS 

mortality, aiding in the identification of the most suitable probability model for age-wise 

mortality patterns. 

 

3.2 Distribution Fitting:  

The fitted distribution parameters and selection criteria are summarized in the following table. 

Table 1 :  Distribution Fitting of HIV/AIDS Mortality 

Distribution Parameter 

1 

Parameter 

2 

Log-

Likelihood 

AIC BIC Kolmogorov

-Smirnov 

Cramer-von 

Mises 

Anderson-

Darling 

Gamma Shape = 

1.91888 

Rate = 

0.04216 

-424.2233 852.4467 857.4463 0.1019 0.3285 2.0211 

Log-

normal 

Meanlog 

= 3.53502 

Sdlog = 

0.91789 

-438.1463 880.2926 885.2922 0.1466 0.6317 3.7824 

Weibull Shape = 

1.67607 

Scale = 

50.45681 

-419.9464 843.8927 848.8923 0.0850 0.2133 1.5152 

Based on the statistical metrics provided in the above table, the distribution of Weibull is 

identified as the ideal match for modelling HIV/AIDS mortality in the Kalyana Karnataka 

region. This conclusion is drawn from its superior statistical performance, including the 

highest Log-Likelihood (-419.9464), indicating a closer match to the observed data. 

Additionally, it has the lowest AIC (843.8927) and BIC (848.8923) values, suggesting that it 

is the most efficient model among the three tested distributions. The lowest Kolmogorov-

Smirnov statistic (0.0851) implies that it has the smallest deviation from the actual data, while 

the Cramer-von Mises (0.2134) and Anderson-Darling (1.5153) values confirm that it 
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provides the best goodness-of-fit. 

Among the three probability distributions tested (Gamma, Log-Normal, and Weibull), the 

Weibull distribution outperforms the others in accurately representing the HIV/AIDS 

mortality pattern. The Gamma distribution is a close second, but its higher AIC/BIC values 

and slightly poorer fit statistics make it less suitable compared to Weibull. On the other hand, 

the Log-Normal distribution performs the worst, as indicated by its lowest Log-Likelihood, 

highest AIC/BIC values, and the highest goodness-of-fit test values, suggesting a poor 

representation of the mortality data. 

The superior fit of the Weibull distribution implies that HIV/AIDS mortality follows a specific 

trend where mortality risk changes with age. Given that the Weibull distribution is widely 

used in survival analysis, it suggests that the mortality rate either increases or decreases over 

time, depending on its shape and scale parameters. This makes it a valuable tool for 

understanding long-term mortality trends. 

While the Gamma distribution provides a reasonable fit, it does not capture the mortality 

pattern as effectively as Weibull. In contrast, the Log-Normal distribution fails to align with 

the observed mortality data, indicating that the HIV/AIDS mortality pattern does not follow 

a log-normal assumption. These findings reinforce the importance of using the Weibull 

distribution for mortality risk assessment, prediction models, and public health planning, 

enabling better allocation of healthcare resources and targeted interventions for HIV/AIDS 

management in the region. 

 

4. Conclusion 

The study aimed to determine the best-fitting probability distribution for modelling 

HIV/AIDS mortality in the Kalyana Karnataka region, comparing Gamma, Log-Normal, and 

Weibull distributions. The results clearly indicate that the Weibull distribution is the most 

appropriate model, demonstrating superior fit and efficiency. It achieved the highest log-

likelihood (-419.9464), suggesting it closely matches the observed data, and had the lowest 

AIC (843.8927) and BIC (848.8923), highlighting its efficiency. Furthermore, it exhibited the 

smallest Kolmogorov-Smirnov (0.0851), Cramer-von Mises (0.2134), and Anderson-Darling 

(1.5153) values, confirming its optimal goodness-of-fit. While the Gamma distribution 

provided a reasonable alternative, it was slightly less effective, and the Log-Normal 

distribution showed the worst fit, making it unsuitable for modelling HIV/AIDS mortality in 

this context. 

Given its strong performance, the Weibull distribution is recommended for mortality risk 

assessment and prediction. This model can effectively capture the dynamic mortality trends, 

providing valuable insights for policy planning, healthcare resource allocation, and targeted 

interventions for managing HIV/AIDS mortality in the region. Moving forward, future 

research could delve into more advanced modelling techniques, such as parametric survival 

models or Bayesian approaches, to further refine mortality estimates and enhance the 

precision of public health strategies. 
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