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Abstract 

This study is conducted to develop a numerical solution of heat 

transfer in magneto-hydrodynamic mixed convection flow 

micropolar Casson fluid about solid sphere. The radiation 

effects are also considered in the energy equation. The 

governing momentum energy and angular momentum 

equations are transformed into nonlinear partial differential 

equations by the use of a non-similarity transformation. These 

equations are solved numerically subject to an appropriate 

physical boundary conditions using an implicit finite difference 

scheme known as the Keller-box method. Several parameters 

namely the mixed convection parameter ,  Casson fluid 

parameter , magnetic parameter ,M  radiation parameter R
and micropolar parameter K  have been involved in the 

problem. The effect of these parameters on the local Nusselt 

number and on the local skin friction coefficient, as well as on 

the temperature, velocity and angular velocity profiles are 

illustrated graphically. The obtained results are validated with 

previously published available results and are found to be in 

good agreement. 

Keywords: Magnetohydrodynamic (MHD), Mixed 

Convection, Heat Transfer, Micropolar Casson Fluid, Solid 

Sphere, Radiation 

 

INTRODUCTION 

Casson fluids in the presence of heat transfer is widely used in 

the processing of chocolate, foams, syrups, nail, toffee and  

many other foodstuffs Ramachandra et al [1]. Casson [2], in his 

pioneering work introduced this model to simulate industrial 

inks. Later on, a substantial research has been done on the 

Casson fluid flow because of its important engineering 

applications. Mustafa et al [3] have studied the heat transfer 

flow of a Casson fluid over an impulsive motion of the plate 

using the homotopy method. The exact solution of forced 

convection boundary layer Casson fluid flow toward a linearly 

stretching surface with transpiration effects are reported by 

Mukhopadhyay et al [4]. In the same year, Subba et al [5] 

considered the velocity and thermal slip conditions on the 

laminar  boundary layer heat transfer flow of a Casson fluid 

past a vertical plate. Mahdy and Ahmed [6] studied the effect 

of magneto-hydrodynamic on a mixed convection boundary 

flow of an incompressible Casson fluid in the stagnation point 

of an impulsively rotating sphere. The convective boundary 

layer flow of Casson nanofluid from an isothermal sphere 

surface is presented by Nagendra et al [7]. Mehmood et al [8] 

investigated the micropolar Casson fluid on mixed convection 

flow induced by a stretching sheet. Shehzad et al [9] discussed 

the viscous chemical reaction effects on the MHD flow of a 

Casson fluid over a porous stretching sheet. Recently, Khalid 

et al [10] developed exact solutions for unsteady MHD free 

convection flow of a Casson fluid past an oscillating plate.  

Included in the class of several other non-Newtonian fluid 

models namely the micropolar fluids are fluids belong to a class 

of fluids with non-symmetric stress tensor, they are fluids with 

microstructure. Micropolar fluids may represent fluids 

consisting of rigid, spherical oriented particles suspended in the 

viscous medium, where disfigurement of fluid particles is 

ignored. The model of micropolar fluids were firstly introduced 

by Eringen [11].Further, many physicists, engineers and 

mathematicians studied the micropolar fluid to conclude 

different results related to flow problems. Hassanien et al 

[12]presented the boundary layer flow and heat transfer from a 

stretching sheet to a micropolar fluid. Papautsky et al 

[13]investigated the laminar fluid behavior in microchannel 

using micropolar fluid theory. Nazar et al [14] 

Consideredstagnation point flow of a micropolar fluid towards 

a stretching sheet. Exact solutions are obtained using the 

Laplace transform technique for the unsteady flow of a 

micropolar fluid Sherief et al [15]. Hussanan et al [16] studied 

the effects of various physical parameters on velocity and 

microrotation.Hussanan et al [17]explained the unsteady 

natural convection flow of a micropolar fluid on a vertical plate 

oscillating in its plane with Newtonian heating condition.The 

free convection boundary layer flow of micropolar fluid on a 

solid sphere  with convective boundary conditions was 

considered by Alkasasbeh et al [18].Alkasasbeh 

[19]exploredthe heat transfer magneto-hydrodynamic flow of 

micropolar Casson fluid on a horizontal circular cylinder with 

thermal radiation.The natural convection on boundary layer 

flow of Cu-water and Al2O3-water micropolar nanofluid about 

a solid sphere investigated by Swalmeh et al [20]. Micropolar 

forced convection flow over moving surface under magnetic 

field was inspected by Waqas et al [21]. 
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The heat transfer through a boundary layer in the mixed 

convection flow about a sphere has a vast space in applied 

technology, such as solving the cooling problems in turbine 

blades, electronic systems and manufacturing processes, 

experiments on heat transfer between spheres and airflowYuge 

[22]. Recently, the various papers in mixed convection 

boundary-layer flow for an isothermal solid sphere with 

different types of fluids was presented by Hieber and Gebhart 

[23],Chen and Mucoglu [24], Dennis and Walker [25],Tham et 

al [26] and Alkasasbeh et al [27]. 

The objective of this paper is to study the MHD mixed 

convection boundary layer flow over a solid sphere in a 

micropolar Casson fluid with thermal radiation. The boundary-

layer equations are solved numerically via efficient implicit 

finite-difference scheme known as the Keller-box method, as 

displayed by Cebeci and Bradshaw [28]. For comparison 

purposes, the present results for Pr 7, 0   M R K and 

  , (regular Newtonian fluid) are computed. 

 

MATHEMATICAL MODELING 

Consider the impermeable solid sphere of radius a, which is 

placed in an incoming stream of micropolar Casson fluid with 

an undisturbed free-stream velocity U  and constant 

temperature T , with steady mixed convection boundary-layer 

flow. The convective forced flow is assumed to be moving 

upward, while the gravity vector g acts downward in the 

opposite direction as displayed in Figure 1, where x
coordinate is measured along the circumference of the solid 

sphere from the lower stagnation point, y coordinate is 

measured normal to the surface of the sphere. It is also 

assumedthat the surface of the sphere is maintained at a 

constant temperature, wT  with wT T for a heated sphere 

(assisting flow) and wT T  for a cooled sphere (opposing 

flow).  

 

 

Fig. 1: Physical model and coordinate system for the mixed 

convection 

 

The constitutive relationship for an incompressible Casson 

fluid flow as reported by Mukhopadhyay et al [4]: 
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where    ij ije e , ije is the ( , )i j -th component of the 

deformation rate, B  is the plastic dynamic viscosity of the 

non-Newtonian fluid, c is a critical value of this product based 

on the non-Newtonian model and yp is the yield stress of the 

fluid. 

Introducing the boundary layer approximations, the continuity, 

momentum, microrotation and energy equations, can be written 

as follows, respectively:  
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These equations are subjected to the boundary conditions 

Nazar et al [29], 

   0,u v  wT T , 
1

2

uH
y


 


 as 0,y   

( ) ,eu u x ,T T 0,H as y  ,      (5) 

where u and v are the velocity components along the x and y
directions, respectively. H is the angular velocity of micropolar 

fluid,  is the vortex viscosity, T is the local temperature, g
is the gravity acceleration, k  is the thermal conductivity,  is 

the electric conductivity,  is the thermal diffusivity, B  is the 

thermal expansion coefficient, 2

0  is the magnetic field 

strength, is the kinematic viscosity,  is the dynamic 

viscosity,   is the fluid density, c  is the specific heat, 

2 /j a Gr is the microinertia density, 2 /   B c yp  is 

the parameter of the Casson fluid and the spin gradient 

viscosity  / 2    j , the radial distance from the 
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symmetrical axis to the surface of the sphere ( ) sin ( / )r x a x a , 

and the free stream velocity  ( ) sin /eu x U x a  

We introduce now the following non-dimensional variables 

Nazar et al [29], 

1/2 ( )
, Re , ( ) ,

x y r xx y r x
a a a

 
   

 
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   (6)

 

where Re ( / )U a  is the Reynolds number.Using the 

Rosseland approximation for radiation, the radiative heat flux 

is simplified as (Bataller [30]) 
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where 
*  and 

*k  are the Stefan-Boltzmann constant and the 

mean absorption coefficient, respectively. We assume that the 

temperature differences within the flow through the micropolar 

fluid such as that the term 
4T may be expressed as a linear 

function of temperature. Hence, expanding 
4T in a Taylor 

series about T and neglecting higher-order terms, we get 

4 3 44 3 .T T T T  
   (8)

 

Substituting variables (6)–(8) into equations (1)–(4), we 

obtain the following non-dimensional equations of the 

problem under consideration:  
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The boundary conditions (5) become 
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Where / K  is the material or micropolar parameter, 

Pr /   is the Prandtl number,
2 /  M B a U  is the 

magnetic parameter and 
* * 3/ 4   R k c T  is the radiation and 

  is the mixed convection parameter which is given by: 

 
2Re

Gr
  ,     (13) 

with
3 2( ) / wGr gB T T a is the Grashof number. Also, it is 

worth mentioning that 0   corresponds to the assisting flow 

(heated sphere), 0   corresponds to the opposing flow 

(cooled sphere) and 0   corresponds to the forced 

convection flow. 

To solve the system of equations (8) to (11) subjected to the 

boundary conditions (12), we assume the following variables:  
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where is the stream function defined as  
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which satisfies the continuity equation (8). Thus, equations (9) 

to (11) become 
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It can be seen that at the lower stagnation point of the sphere

( 0)x , equations (16) and (18) reduce to the following 

ordinary differential equations: 
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and the boundary conditions (19) become 
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Where primes denote differentiation with respect to .y  

The physical quantities of interest in this problem are the local 

skin friction coefficient fC and the local Nusselt number Nu  

which are defined by 
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Using the non-dimensional variables (6)-(8) and the boundary 

conditions (13), the local skin friction coefficient fC and the 

local Nusselt number Nu  are: 
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NUMERICAL SOLUTION  

Equations (16) to (18) subject to boundary conditions (19) are 

solved numerically using the Keller-box method. This method 

seems to be the most flexible among the common methods and 

despite recent developments in other numerical methods, it 

remains a powerful and very accurate approach for parabolic 

boundary layer flows. It is also  easily adaptable to solve 

equations of any order and unconditionally stable on the 

solutions Cebeci and Bradshaw [28]. The following four steps 

have been used to obtain the solution 

i. Reduce the transformed equations (16) to (18) to a 

first-order system. 

ii. Write the difference equations using central 

differences. 

iii. Linearize the resulting algebraic equations by 

Newton’s method and write them in  matrix-vector 

form. 

iv. Use the block tridiagonal elimination technique to 

solve the linear system. 

In numerical calculation, the suitable step size y and 

boundary layer thickness y  must be determined. These 

suitable values must be defined so that the numerical results for 

the quantities discussed is not affected by y and y . Usually, 

we choose the step size 0.2 y and we run the simulation 

until y . Moreover, the step size for the position x is chosen as 

0.005 x  is sufficient to provide accurate numerical results. 

 

RESULTS AND DISCUSSIONS 

Equations (16)–(18) subject to the boundary conditions (19) 

have been solved numerically using an efficient implicit finite-

difference scheme known as the Keller-box method, along with 

Newton’s linearization technique as described by Cebeci and 

Bradshaw [28] for several values of parameters namely the 

Casson parameter , the magnetic parameter ,M the radiation 

parameter ,R  the mixed convection parameter ,  Prandtl 

number Pr,  and the micro-rotation parameter K on the Nusselt 

number, skin friction coefficient, temperature, velocity and 

angular velocity fields, at some streamwise positions x .for 

both the assisting ( 0)   and opposing ( 0)   flow 

cases.The solutions of nonlinear partial differential equations 

start at the lower stagnation point 0x  up to 120 ox due to 

the probability of boundary layer separation occur after this 

point around the circumference of a solid sphere with initial 

profiles as given by the equations (19) to (21). Tables 1, 

presenta comparison between the results of this study and 

previously published results reported by Nazar et al [31]at 

Pr 7, 0   M R K  and   , (regular Newtonian fluid) 

for various values of . The comparison showed a good 

agreement indicating that the Keller-box method is suitable for 

solving this type of problem. 

Figures 2 and 3 illustrate the influence of the Casson parameter 

on the local Nusselt number Nu and the local skin friction, 

respectively. It is seen from these figures that an increase of the 

Casson parameter leads to an increase in the local Nusselt 

number and decreases in the local skin friction. Moreover, as 

the value of x  increases, the rate value of the local Nusselt 

number decreases and the local skin friction increases.  
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Table 1. Comparison of numerical values of local Nusselt number Nu  at Pr 7, 0   M R K and   ,  

(Newtonian fluid),for various values of x and  .Values in parenthesis are those of Nazar et al [31]. 

x           

-4 -3 -2 -1 -0.5 0.0 0.74 0.75 

0o 0.6518 0.7094 0.7516 0.7858 0.8009 0.8149 0.8342 0.8344 

 (0.6534) (0.7108) (0.7529) (0.7870) (0.8021) (0.8162) (0.8354) (0.8357) 

10o 0.6430 0.7030 0.7461 0.7808 0.7961 0.8106 0.8300 0.8300 

 (0.6440) (0.7040) (0.7470) (0.7818) (0.7970) (0.8112) (0.8307) (0.8309) 

20o 0.6146 0.6836 0.7299 0.7663 0.7821 0.7968 0.8167 0.8174 

 (0.6150) (0.6845) (0.7305) (0.7669) (0.7827) (0.7974) (0.8173) (0.8176) 

30o  0.6499 0.7026 0.7421 0.7589 0.7743 0.7952 07955 

  (0.6507) (0.7027) (0.7422) (0.7591) (0.7746) (0.7955) (0.7958) 

40o  0.5970 0.6632 0.7079 0.7264 0.7431 0.7654 0.7656 

  (0.5977) (0.6628) (0.7076) (0.7261) (0.7429) (0.7652) (0.7655) 

50o   0.6093 0.6633 0.6843 0.7029 0.7272 0.7276 

   (0.6080) (0.6624) (0.6836) (0.7022) (0.7267) (0.7270) 

60o   0.5333 0.6069 0.6321 0.6536 0.6810 0.6827 

   (0.5309) (0.6055) (0.6309) (0.6525) (0.6800) (0.6803) 

70o    0.5470 0.5686 0.5949 0.6267 0.6287 

    (0.5224) (0.5668) (0.5934) (0.6253) (0.6257) 

80o    0.4377 0.4904 0.5257 0.5645 0.5668 

    (0.4342) (0.4879) (0.5236) (0.5672) (0.5632) 

90o     0.3835 0.4425 0.4941 0.4968 

     (0.3796) (0.4398) (0.4920) (0.4926) 

100o
      0.3345 0.4144 0.4175 

      (0.3263) (0.4120) (0.4127) 

110o       0.3206 0.3248 

       (0.3179) (0.3192) 

120o        0. 1688 

        (0.1276) 

 

 
Fig. 2: Effect of the local Nusselt number  

for various values of the Casson parameter 

 

 
Fig. 3: Effect of the local skin friction  

for various values of the Casson parameter 
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Figures 4 and 5 depict the influence of the radiation parameter 

,R  on the local Nusselt number and local skin friction, 

respectively. An increase in R  from 0 (non-Radiation case) to 

3, strongly accelerates the flow, i.e., increasing in a local skin 

friction coefficient and local Nusselt number values. In all 

profiles, a peak arises near the surface of the sphere and this 

peak is displaced progressively closer to the wall with an 

increase in R  values. 

 

 

Fig. 4: Effect of the local Nusselt number for various values 

of the radiation parameter 

 

 

Fig. 5: Effect of the local skin friction for various values of 

the radiation parameter 

 

Figures 6 and 7 represent the variation of local Nusselt number 

Nu  and local skin friction coefficient fC  with different values 

of mixed convection parameter  . From these figures, it is 

found that the increase of   results in increase of Nu and fC . 

Across the sphere surface, Nu  and fC increase before turning 

into decreasing approach. 

Figures 8-9 illustrate the effect of the micro-rotation parameter 

K on the local Nusselt number and the local skin friction, 

respectively. It is seen from these figures that an increase of the 

micro-rotation parameter leads to decrease in the local Nusselt 

number and increase in the local skin friction. 

 

 

Fig. 6 Effect of the local Nusselt number for various values of 

the mixed convection parameter 

 

Fig. 7 Effect of the local skin friction for various values of the 

mixed convection parameter 

 

The behaviour of magnetic parameter M  on the local Nusselt 

number Nu and local skin friction fC is illustrated in Figures 

10-11. It is observed that the local Nusselt number and the local 

skin friction increased with the decrease in M . This behaviour 

is in accordance with the physical observation that the 

application of transverse magnetic field always results in a 

resistive type force also called Lorentz force. This type of 

resisting force tends to resist the fluid flow and thus reducing 

the fluid motion significantly.  

 

Fig. 8: Effect of the local Nusselt number for various values 

of the micro-rotation parameter. 
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Fig. 9: Effect of the local Nusselt number for various values 

of the micro-rotation parameter. 

 

The influence of Casson parameter on temperature, velocity, 

and angular velocity profiles are exhibited in Figures 12-14. 

Figure 12 depicts that the temperature profiles (0, )y  

increase as the values of  decrease. WhileFigure 13 indicates 

that an increase in  tends to result in a decrease in the velocity 

profiles ( )(0, )f y y  . This is true because as appeared in the 

shear term of the momentum equation (15), an increase in 

implies a decrease in yield stress of the Casson fluid. Figure 13 

shows that as Casson parameter  increases, the angular 

velocity profiles (0, )h y also increase. Physically, an increase 

in Casson parameter means a decrease in yield stress and an 

increase in the plastic dynamic viscosity of the fluid which 

makes the momentum boundary layer thicker. This effectively 

slows down the fluid motion.  

 

 

Fig. 10: Effect of the local Nusselt number for various values 

of the magnetic parameter 

 

 

Fig. 11: Effect of the local skin friction for various values of 

the magnetic parameter 

 

 

Fig. 12: Effect of the temperature profile for various values of 

the Casson parameter 

 

 

Fig. 13: Effect of velocity field for various values of the 

Casson parameter 
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Fig. 14: Effect of the angular profile for various values of the 

Casson parameter 

 

 

Fig. 15: Effect of the temperature profile for various values of 

the radiation parameter 

 

 

Fig. 16: Effect of velocity field for various values of the 

radiation parameter 

 

 

Fig. 17: Effect of angular velocity field for various values  

of the radiation parameter 

 

Figures 15-17 present the effect of the radiation parameter R  

on temperature, velocity, and angular velocity profiles. The 

observation shows that the temperature, velocity, and angular 

velocity profiles increase with an increase in R  because 

increasing the value of radiation parameter provides more heat 

to the fluid that causes an enhancement in the temperature, 

velocity, angular velocity profiles and the thickness of thermal 

boundary layer. 

Figures 18-20 present the effect of the mixed convection 

parameter   on the temperature, velocity, and angular velocity 

profiles. It should be noted that ( 0)  corresponds to pure 

assisting flow (heated sphere) while ( 0)  corresponds to 

opposing flow (cooled sphere). In these figures, it is predicted 

that the velocity and angular velocity increase while the 

temperature decreases as   increases. This is due to the fact 

that when   (i.e., buoyancy effects) increases, the convection 

cooling effect increases and hence the fluid flow accelerates. 

Figures 21-23 display the temperature velocity and angular 

velocity profiles for different values of the micro-rotation 

parameter K . It is found as K increases the values of 

temperature profiles increase, but the velocity and angular 

velocity profiles decrease. 

 

 

Fig. 18: Effect of the temperature profile for various values of 

the mixed convection parameter 
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Fig. 19: Effect of velocity field for various values of the 

mixed convection parameter 

 

 

Fig. 20: Effect of angular velocity field for various values of 

the mixed convection parameter 

 

 

Fig. 21: Effect of the temperature profile for various values of 

the micro-rotation parameter 

 

 

Fig. 22: Effect of velocity field for various values of the 

micro-rotation parameter 

 

 

Fig. 23 Effect of the angular velocity profile for various 

values of the micro-rotation parameter 

 

CONCLUSION 

In this paper, we have studied the problem of mixed convection 

boundary layer flow over a solid sphere immersed in a 

micropolar Casson fluid. We investigated the effects of Casson 

parameter, radiation parameter, mixed convection parameter, 

magnetic parameter and micro-polar parameter on the flow and 

heat transfer characteristics. The partial deferential equations 

were solved numerically via the Keller-box method. This study 

concluded the followings: 

i. An increas in the values of radiation parameter and 

mixed convection parameter led to an increase in 

the values of local Nusselt number and local skin 

friction coefficient. But, the opposite behavior is 

obtained for the case of the magnetic parameter. 

ii. An increase in the values of Casson parameter led to 

the increase in the value of local Nusselt number 

and decreases in local skin friction coefficient. 

However, an opposite effect is determined for the 

case of the micro-polar parameter. 

iii. An increase in the values of Casson parameter, 

radiation parameter, and mixed convection 

parameter increase will lead to the increment in 

the velocity and the angular velocity profiles. 
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Whereas, an opposite influence is determined for 

the case of the micro-polar parameter. 

iv.  The values of temperature profiles increase when the 

radiation parameter and micro-polar parameter 

increase. On the other hand, values of 

temperature profiles decrease when Casson 

parameter and mixed convection parameter 

increase. 

 

Nomenclatures 

 

a  Radius of the cylinder; 

B  Thermal expansion coefficient; 

fC   Local skin friction coefficient; 

c
 
 Specific heat; 

f  Reduced stream function; 

j
 

Microinertia density;  

H     Angular velocity of micropolar fluid;  

g  Acceleration due to gravity; 

Gr  Grashof number; 

K
 

 Material or micropolar parameter; 

k   Thermal conductivity; 

*k  Mean absorption coefficient; 

M   Magnetic parameter;  

Nu
 

Local Nusselt number; 

R   Radiation parameter; 

Pr  Prandtl number; 

yp
 
 Yield stress of the fluid; 

wq   Constant wall heat flux; 

Re  Reynolds number; 

T  Fluid temperature; 

T  Temperature of the ambient fluids; 

,u v  Non-dimensional velocity components 

 along x  and y directions; 

,x y  Coordinates measured from the lower 

 stagnation point along the surface of  

 sphere and normal to it, respectively; 

 

 

 

Greek Symbols 


 

Thermal diffusivity; 


 
 Parameter of the Casson fluid; 

  mixed convection parameter 

  Spin gradient viscosity; 

  Non-dimensional temperature; 

  Dynamic viscosity;
  

B   Plastic dynamic viscosity of the non-

 Newtonian fluid; 

c  
 Critical value of this product based on the 

 non-Newtonian model; 

  Vortex viscosity; 

   Electric conductivity; 

*   Stefan-Boltzmann constant; 

   Thermal diffusivity; 

   Fluid density; 

  Kinematic viscosity; 

  Non-dimensional stream function. 
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