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Abstract 

The classical Orthogonal Regression analysis relies heavily on 

the normality assumption. However, sometimes we might be 

uncertain of the underlying distribution of our dataset or the 

sample size might be small, which would cause an inaccurate 

inference on the parameter if the data is not normally 

distributed. This leads to the main objective of this paper 

which is to examine alternative methods to the parametric OR 

analysis which do not rely on the normality assumption. In 

this paper, the nonparametric jackknife and bootstrap 

resampling techniques were applied to assess the bias, 

standard errors and confidence intervals for the parameters of 

the model. We studied on the method of delete-one jackknife 

and bootstrapping the observations and made comparisons 

between the two methods as well. Under bootstrapping, three 

methods were considered to construct the confidence intervals 

which include percentile interval, bias-corrected (BC) interval 

and bias-corrected and accelerated (BCa) interval. Based on 

the results, it was found that the bootstrap estimators were 

closer to the values of classical OR analysis compared to 

jackknifed estimators. Besides, the jackknife estimates of bias 

and standard errors were slightly larger than that of bootstrap. 

Furthermore, we also found that the confidence intervals for 

the parameters constructed from jackknife have longer lengths 

and closer to that of OR. This showed that jackknife 

performed better in constructing confidence interval than the 

bootstrap.  

 

INTRODUCTION 

Orthogonal regression (OR) is a type of structural relationship 

or errors-in-variables analysis. It is used to examine the linear 

relationship between two continuous variables X  and Y  

when both variables are measured with error. It is different 

from ordinary least square (OLS) regression where only the 

response variable Y  contains the measurement error. The 

best fitting line of OR minimizes the sum of squares of the 

distances that are perpendicular or in direction other than 

vertical from the plotted points to the line. A classical use of 

OR is to determine whether two methods are equivalent in 

measuring the same quantity. 

In the context of regression, our interest is to determine the 

regression parameters in the model, to estimate the precision 

of the estimators and to make inference on the parameters. In 

recent years, many researchers tend to use resampling 

techniques in regression data analysis instead of the classical 

parametric procedures. Two of the common resampling 

techniques are jackknifing and bootstrapping. In the past 

literatures, many researchers studied on the applications of 

jackknife and bootstrap  in linear regression. However, we 

found that there are not much efforts and concerns on the OR. 

This raises our interest to investigate on the resampling in OR. 

 

LITERATURE REVIEW 

Orthogonal Regression 

In the context of simple linear regression, in OLS, it is 

assumed that the independent variables to be fixed and the 

dependent variable to contribute to the only error in the 

model. However, in practice, we might be facing the case 

where the independent variables cannot be observed directly 

and thus, the measurement errors arise from both dependent 

and independent variables. This type of problem is known as 

errors-in-variables model. It would be problematic if in that 

particular situation, OLS is used. Hence, it is more appropriate 

to apply the OR on the particular situation. 

Adcock (1878) was the first who proposed a method to solve 

errors-in-variables problems. His idea was to fit a line by 

minimizing the sum of squares of the perpendicular distances 

from the plotted points to the line. Kummel (1879) then 

further developed Adcock's idea. Instead of just considering 

the perpendicular distance, he suggested to minimize the sum 

of squares of distances in other direction. Deming (1943) also 

discussed the idea of OR and thus, OR is sometimes referred 

to Deming regression (DR). Apart from those mentioned 

above, the errors-in-variables context was also discussed by 

many other authors such as Kendall and Stuart (1973) and 

Fuller (1987), to name a few. 

According to Carroll and Ruppert (1996), the basic ideas of 

OR are as shown below. Suppose there is a pair of variables 

  ,  that are linearly related with the following expression: 

,10         (1) 

where 0  is the intercept and 
1  is the slope. In the classical 

orthogonal regression development, instead of observing 

 ,,  both of the variables are observed with measurement 

errors such as 

 X  and  Y       (2) 

with   and   are independent mean zero random variables 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4118-4124 

© International Research Publication House.  http://www.irphouse.com 

4119 

with variances 
2

  and 
2

  respectively. A regression-like 

model as shown below is obtained by combining Equation (1) 

and (2): 

  10Y          (3) 

In OR, it is needed to have prior knowledge on the error 

variance ratio,  

,22

        (4) 

in order to estimate the parameter. Fuller (1987) explained 

about the situation of over-parameterization if   is unknown, 

which will cause 1  to be not identifiable.  

Carroll and Ruppert (1996) mentioned that the OR estimators 

can be obtained based on a n  sized random sample of sX   

and .sY   By minimizing  

    



n

i

iiii XY
1

22

10  ,         (5) 

the slope estimate 0̂  and intercept estimate 1̂  are 

computed as 

   
XY

XYXYXY

S

SSSSS

2

4
ˆ

222222

1





          (6) 

XY 10
ˆˆ                (7) 

where ,
n

X
X

i
  ,

n

Y
Y

i
    ,

22   XXS iX
 

  
22 YYS iY

 and     YYXXS iiXY
. The 

estimator in Equation (6) has been justified in several 

approaches. One of them is the maximum likelihood 

estimation (MLE). According to Fuller (1987), in MLE, the 

sX   and sY   are assumed to be independent and normally 

distributed. 

Meanwhile, Patefield (1977) came out with the derivation of 

the asymptotic variance-covariance matrix of the maximum 

likelihood estimators of 0  and .1  He suggested that when 

2  is unknown, a consistent estimator of the variance-

covariance matrix would be 

   




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where 
 XYS2

1

1

2

ˆ1

ˆ~
ˆ







  and 

 2

ˆ2~
2

2




n

n
 . 

2~  is the 

consistent estimator of 
2  whereas 

2̂  is the maximum 

likelihood estimator of .2  

The 100  1 % confidence interval for 
1  of OR model 

was constructed by Kendall and Stuart (1973) based on the 

normality assumptions. The interval is the transformed of 

     
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where 
2;2 nt  is the 










2
1

  percentile point of the t-

distribution with  2n  degrees of freedom. 

 

Resampling Techniques 

Resampling technique has been widely applied in data 

analysis. It is used to estimate the precision of sample 

statistics and make inference by taking repeated samples 

within the same sample. Two common types of resampling 

techniques are jackknife and bootstrap. 

 

Jackknife Resampling 

Jackknife preceded the bootstrap resampling technique. 

Quenouille (1956) first introduced the idea of jackknife 

procedure to reduce the bias of an estimator. Tukey (1958) 

then expanded the use of jackknife to estimate variance and 

construct confidence limits based on pseudo-values. He also 

tailored the name of jackknife. According to Friedl and 

Stampher (2002), there are two types of jackknife algorithms 

which are delete-one jackknife and delete-d jackknife. The 

delete-one jackknife is carried out by deleting single 

observation from the original sample sequentially while 

delete-d jackknife is a more generalized technique which is 

based on multiple observations deletion. 

 

Bootstrap Resampling 

The bootstrap resampling method was first introduced by 

Efron (1979) to be applied on a variety of estimation 

problems. He demonstrated the method on a series of 

examples and compared with the jackknife results. The 

examples included variance of the sample median, error rates 

in a linear discriminant analysis, ratio estimation and so forth. 

Based on his results, jackknife was concluded to be a linear 

approximation method for the bootstrap. Few years later, 

Efron (1982) proposed three methods for bootstrap confidence 

intervals namely percentile, bias-corrected (BC) percentile 

and bootstrap-t. The bias-corrected and accelerated (BCa) 

interval was later introduced by Efron (1987) to achieve a 

better result on confidence interval. 
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Resampling in Linear Regression 

In linear regression context, Efron (1979) was the first to 

propose the use of bootstrap and jackknife to estimate 

regression parameters. The idea was further developed by Wu 

(1986) and studied by many other researchers as stated below. 

Booth and Hall (1993) suggested bootstrap methods for 

constructing confidence bands for an unknown linear 

functional relationship in errors-in-variables model. They 

applied percentile and percentile-t to compute the confidence 

bands in which no assumptions was made about the ratio of 

error variances. They found out several interesting features of 

the bootstrap bands. First, the bands did not shrink to a line as 

the sample size approached infinity. Second, the percentile-t 

confidence bands showed only a first-order coverage accuracy 

instead of a second-order accuracy which is normally found in 

simpler statistical problems. They believed that the accuracy 

problem was due to the multivariate nature of the particular 

problem and suggested to use the iterated bootstrap to 

improve the coverage accuracy. 

Besides, Abdullah (1995) also discussed about the use of 

nonparametric bootstrap method in errors-in-variables model. 

He compared between four types of bootstrap confidence 

intervals for the parameter, which included percentile, BC 

percentile, BCa and also calibrated or iterated BCa. His results 

showed that the iterated BCa interval was more reliable 

compared to the other types of intervals. 

Sahinler and Topuz (2007) demonstrated the application of 

bootstrap and jackknife in regression analysis. Instead of only 

constructing the confidence intervals, they also estimated the 

bias and standard errors to be compared with the concerning 

estimates of parametric OLS. Based on their results, they 

found that bootstrap was preferable in linear regression 

compared to jackknife. 

Furthermore, the application of bootstrap and jackknife in 

linear regression were also studied by Algamal and Rasheed 

(2010). They focused on the accuracy of the two methods in 

estimating the distribution of the linear regression parameters 

through different sample sizes  n  and different bootstrap 

replications  B . Based on their results, the jackknife 

estimators were reliable when the sample size was large 

enough  50n . Besides, they also found better results with 

less bias in bootstrap as B  increases. 

Francq (2014) investigated on the DR and Bivariate Least-

Squares (BLS) regression in constructing the confidence 

intervals of the regression parameters in errors-in-variables 

model. He found that the confidence intervals constructed by 

the two regressions were based on approximation (except the 

one for slope constructed by DR). This caused the coverage 

probabilities to be lower than the nominal value. Hence, he 

applied jackknife and bootstrap procedures to improve the 

coverage probabilities. Two bootstrap procedures named 

bootstrapping the residuals and bootstrapping the pairs were 

considered which were then split into three approaches 

(percentile, bootstrap-t on DR and bootstrap-t on BLS). 

Francq (2014) found that jackknife had lower coverage 

probabilities than the nominal level for small sample sizes. 

Therefore, its confidence interval might be too narrow in 

practice. In bootstrapping the residuals, the coverage 

probabilities were collapsed when the ratio of the variances of 

measurement errors  XY  decreased and when the sample 

size increased. This is due to the fact that the randomness of 

the errors in X  was not taken into account by bootstrapping 

the vertical residuals. Thus, bootstrapping the residuals was 

not recommended as the coverage probabilities collapsed and 

the confidence intervals were shifted in practice. In contrast, 

bootstrapping the pairs was recommended to improve the 

coverage probabilities especially when .1XY  It could 

provide better coverage probabilities than the approximate 

confidence intervals computed directly by DR and BLS. 

Moreover, this bootstrap approach took into account the 

measurement errors in both variables. 

 

METHODOLOGY 

Data 

The dataset is adapted from Minitab, Inc. (2014). It was 

originated from a medical equipment company which wanted 

to compare their new blood pressure monitor with a similar 

model on the market. They obtained systolic blood pressure 

readings on a random sample of 60 people using the two 

instruments. 

 

Jackknife Resampling Technique 

Let   be the parameter of the population of interest. Suppose 

a sample of size n  from the population is denoted as 

 ,,...,, 21 nXXX  where each of the iX  can be either 

univariate or multivariate. In this study, the focus is on the 

case where sX i '  are univariate. The sample estimator of   

is denoted as ̂  which is a function of the observations in the 

sample. The general form of ̂  is given by 

 nXXXf ,...,,ˆ
21 .             (10) 

According to Abdi and Williams (2010), the procedure of 

delete-one jackknife to obtain the jackknife estimate of   is 

as follows: 

Step 1: Compute ,ˆ
i  the estimator of ,  by omitting the 

observation i  from the  sample, where ,,...,1 ni   which 

is also known as the partial prediction .i  

 niii XXXXf ,...,,,...,ˆ
111            (11) 

Step 2: Based on the partial prediction ,i  the pseudo-value i  

is computed  as 

  ii nn   ˆ1ˆˆ*
.                   (12) 

Step 3: Finally, the bias-corrected delete-one jackknifed 
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estimator, ,ˆ
j  is computed  as the mean of the n  pseudo-

values. It is noted that the estimator can also be  computed 

without using the pseudo-values. The formula is as follows: 

    


 1ˆˆ1ˆ1ˆ
ˆ

11

*

 






nnnn
nn

n

i

i

n

i

i

j
     (13) 

 where  

.
ˆ

1

n

n

i i  



             (14) 

The jackknife is known as a nonparametric method to estimate 

and reduce the bias. In general, the bias, ,B  of an estimator is 

defined as 

  ,ˆ   EB       (15) 

where ̂  is the estimator of   and  ̂E  is the expected 

value of .̂  Based on this, the jackknife estimate of bias can 

be obtained as follows: 

   ˆ1ˆˆˆ  nB jj    (16) 

The expected value of the estimator is being replaced by the 

biased estimator whereas the parameter is being replaced by 

the unbiased jackknife estimator. 

Meanwhile, the jackknife estimate of standard error of ̂  can 

be obtained from the sample variance of the pseudo-values. 

Similar to the jackknifed estimator, the standard error can also 

be computed without using the pseudo-values. The formula is 

as follows: 

 
 

 

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
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ˆ1
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ˆˆ1
ˆ 


     (17) 

The standard error can be used to construct the confidence 

interval for the jackknife estimate of  . The particular 

estimation is distributed as a Student's t distribution with 

 1n  degrees of freedom under the independence 

assumption and thus, the confidence interval is given by 

jnj t  
ˆˆ

2;1           (18) 

 

Bootstrap Resampling Technique 

According to Francq (2014), there are two well-known 

bootstrap resampling procedures in linear regression, which 

based on the residuals or the observations. Bootstrapping the 

residuals is used when the regressors are fixed. Instead, when 

the regressors are as random as the response, bootstrapping 

the observations could be a better approach to be applied. In 

this study, the focus is on OR model where both variables  

X  and Y are measured with errors (random). Therefore, the 

discussion is proceeded with only bootstrapping the 

observations throughout the study. According to Sahinler and 

Topuz (2007), bootstrapping the observations can be 

conducted as follows: 

Step 1 : For ,,...,2,1 Br   draw a n  sized bootstrap 

sample with replacement from the original sample, where 

each of the observations has the same probability n1  to be 

selected and B  is the number of replications. 

Step 2 : Compute ,ˆ
)(rb  the bootstrap estimator of ,  

from each of the bootstrap samples, 

Step 3 : Obtain the probability distribution   bF ̂  of 

bootstrap estimates )()()(
ˆ,...,ˆ,ˆ
Bbbb  21  which can be used 

to estimate the bootstrap estimator, bias, standard error and 

confidence interval. 

The bootstrap estimator, ,ˆ
b  is calculated as the mean of the 

distribution  bF ̂ , 

B

r

rb

b




B

1

)(
ˆ

ˆ


      (19) 

and the bootstrap estimate of bias and standard error are given 

by 

,ˆˆ   bbB  and          (20) 

 
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
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

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b
B
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                       (21) 

respectively. 

 

Percentile Interval 

According to Efron (1982), the percentile interval is 

constructed based on the cumulative distribution function 

which is written as 

     
B

t
ttC b

b







ˆ#ˆPrˆ *
   (22) 

of the bootstrap distribution of .ˆ
b  The 100  21 % 

confidence interval is obtained by finding the 
th  percentile 

and  th1  percentile. The general form of the confidence 

interval is written as 

      1ˆ,ˆ 11 CC          (23) 

where 
1ˆ C  is the inverse cumulative function based on 

Equation (22). 
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Bias-corrected Percentile Interval 

Suppose the bias correction is defined as  

  ̂ˆ1

0 Cz  ,    (24) 

where   is the cumulative distribution function for a 

standard normal variate and  ̂Ĉ  is the cumulative 

distribution function as shown in Equation (22). The 100

 21 % confidence interval is given by 

       

  10

1

0

1 2ˆ,2ˆ zzCzzC         (25) 

where z  and 1z  are both standard normal distribution 

functions. Notice if ,00 z  the BC interval reduces to the 

percentile interval (Efron, 1982). 

 

Bias-corrected and Accelerated Interval 

According to Efron (1987), the bias correction and 

acceleration factor are needed to calculate the percentiles that 

are used to determine the limits of the interval in BCa method. 

The bias correction, ,0z  is the same as the one in BC method 

as shown in (23). The acceleration factor a  is proposed to be 

computed by using delete-one jackknife estimates of the 

statistics. The jackknife estimates that would be used are the 

partial predictions of n  jackknife samples and the mean of 

the partial predictions as shown in Equation (11) and (14), 

respectively. The acceleration is then calculated as 
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and the 100  21 % BCa confidence interval is given by 

           1ˆ,ˆ 11 zCzC          (3.18) 

where 
1ˆ C  is the inverse cumulative distribution function of 

the bootstrap distribution of b̂  based on Equation (22).  z  

is given by 

 
 
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1
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1

0
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1 


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
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z
zz    (3.19) 

and likewise for  1z . 

 

RESULTS AND DISCUSSION 

Orthogonal Regression Analysis 

Figure 1 showed the plot of the 60 pairs of observations of 

blood pressure of the dataset. There was a strong linear 

correlation between the readings of the new method and the 

current method. 

 

Figure 4.1: Scatter Plot with Fitted Line of Blood Pressure 

Levels 

 

The calculate error variance ratio for the blood pressure data 

was 0.90. The estimates of the intercept and slope parameter 

of OR were 64441.0ˆ
0   and .99542.0ˆ

1  Their 

standard errors were 1.74470 and 0.01415, respectively with 

the 95% confidence interval of 0  and 1  are  ,77513.2

06395.4  and  02315.1,96769.0 . 

 

Results of Jackknifing and Bootstrapping 

In this study, 60 jackknife samples were generated by 

omitting one pair of observations at a time (size = 1n  = 

59). Moreover, 1000 bootstrap samples with the sample each 

of size 60 from the original dataset were also generated. Both 

resampling processes were carried out by using SAS 9.3. 

Summary results of the OR analysis, jackknifing and 

bootstrapping regression procedures were shown in Table 1. 

 

Table 1: OR, Jackknife and Bootstrap Results of Intercept 
0  

and Slope Parameter 
1  

Method 
0  

1  

Estimator Bias Standard error Estimator Bias Standard error 

OR 0.64441 - 1.74470 0.99542 - 0.01415 

Jackknife 0.68079 -0.03637 1.72224 0.99516 0.00026 0.01395 

Bootstrap 0.65175 0.00734 1.66937 0.99545 0.00002 0.01348 

It was observed that both of the bootstrap estimators,  b0̂  

and   ,
ˆ

1 b  were closer to the estimates of OR compared to 

the jackknifed estimators  j0̂  and  .
ˆ

1 j  It was noted that 

the jackknife estimators were computed as the bias-corrected 

jackknifed estimators based on Equation (13). In comparison, 
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the two jackknife estimates of bias were slightly larger than 

that of bootstrap. Apart from these, it was also observed that 

the bootstrap standard errors are smaller than the values of 

jackknife. However, the jackknifed standard errors were 

closer to the standard errors obtained from the OR analysis.  

Comparisons between the 95% confidence intervals computed 

from the OR analysis, jackknife and bootstrap were 

conducted. In this context, the interpretation were based on 

the common concern such as length of confidence intervals. 

Three bootstrap confidence intervals were considered which 

included percentile, BC and BCa. The results were tabulated 

in Table 2. 

 

Table 2: 95% Confidence Intervals of Intercept 0  and Slope 

Parameter 1 computed from OR, Jackknife and Bootstrap 

Method 
0  1  

Lower 

limit 

Upper 

limit 
Length 

Lower 

limit 

Upper 

limit 
Length 

OR -2.77513 4.06395 6.83908 0.96769 1.02315 0.05546 

Jackknife -2.76542 4.12699 6.89241 0.96724 1.02308 0.05584 

Bootstrap 

Percentile -2.74407 3.79551 6.53958 0.96988 1.02329 0.05341 

BC -2.94411 3.61893 6.56304 0.97082 1.02411 0.05329 

BCa -2.94411 3.61893 6.56304 0.97098 1.02411 0.05313 

 

It could be seen the jackknife confidence intervals for both 

parameters were superior in length compared to bootstrap. 

Besides, they were also closer to the confidence intervals 

computed from OR analysis. All the bootstrap confidence 

intervals had lengths shorter than that of OR analysis. 

Meanwhile, there was not much difference in length among 

the percentile, BC and BCa bootstrap confidence intervals. 

For ,0  the length of the percentile interval was shorter than 

the other two intervals but it was vice versa for .1  Thus, 

there was no way for us to evaluate the performance between 

the three methods due to the inconsistent results. 

In general, the results of jackknife and bootstrap could be 

different even though both are similar approaches that rely on 

data resampling. Fan and Wang (1995) stated that the 

disparity between jackknife and bootstrap is mainly caused by 

the sample size. This is because the number of jackknife 

samples is limited by the original sample size. Thus, it may 

lead to an inappropriate application of the jackknife 

resampling technique when the sample size is small. 

 

CONCLUSION AND FUTURE WORK 

This paper investigated the use of jackknife and bootstrap 

resampling technique as alternative approaches to the 

parametric OR analysis in estimating orthogonal regression 

coefficients. It was shown that the values of jackknife and 

bootstrap estimators did not differ much from the value of OR 

analysis. Besides, both approaches were effective in reducing 

bias and estimating the standard errors. This helps when the 

classical method is suspected to be inappropriate. Based on 

the results, the jackknife performed better in constructing 

confidence intervals for the parameters. However, apart from 

the percentile, BC and BCa confidence intervals, there might 

be some other bootstrap methods that are yet to be studied in 

this paper. In general, the bootstrap resampling technique is 

more widely applied compared to jackknife even though it is 

more computational intensive.  

In future works, we could apply the Monte Carlo simulation in 

order to make better comparison between jackknife and 

bootstrap resampling techniques because it samples from a 

population universe. In addition, it is suggested to check for 

the coverage rate to aid in the comparison between different 

confidence intervals. 
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